
impurity centers transforms them into electrically 
active complexes. Milevski;" has indicated that if the 
binding energy of the electrcin at the center exceeds the 
migration energy of the center, then electrically active 
complexes can remain in the glide planes. The exis- 
tence of such complexes was observed experimentally 
in Ref. 11. These experiments were made on Si crys- 
tals with high concentration of oxygen (and possibly of 
other electrically inactive impurities). Therefore the 
concentration of the active centers in the glide planes 
was so  high, that two-dimensional potential barr iers  
were produced in them. The conductivity of such crys- 
tals in a direction perpendicular to the glide planes was 
much less than the conductivity in directions parallel 
to the glide planes. It was assumed in Ref. 11 that 
this fact can be attributed t o  detouring of the carr iers  
around the dielectric regions produced in the glide re-  
gions (private communication from E.B. Yakimov). 
In our relatively pure crystals these effects could not 
take place. The conclusions of our paper do not depend 
on the nature of the electric activity of the dislocations. 
No matter what produces the dielectric cylinders, it 
can be asserted (in our opinion) that these cylinders 
affect the resistance of the sample because of the de- 
tour effect, and that the radii of the cylinders should 
depend nonmonotonically on T. 

The authors thank Y.A. Osip'yan for helpful remarks 
and for a discussion of the work. 
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Self-localized excitations in the Peierls-Frahlich state 

L D. Landau Institute of Theoretical Physics, Academy of Sciences of the USSR 
(Submitted 6 July 1979) 
Zh. Eksp. Tcor. Fiz. 78,677499 (February 1980) 

We show that stationary excited states of a one-dimensional Peierls dielectric are amplitude solitons. They 
originate as the result of self-trapping ofan electron which is initially excited across the optical gap 24 ,. The 
energy of the soliton W, = (2/7r)d, its charge e, = 0, and its spin s = 1/2. The gap parameter has the form 
A (x) = A o  tanh(d $/up).  The soliton carries a singly occupied v,  = 1 localized state with an energy in the 
center of the forbidden band E ,  = 0. For systems with a commensurabiity 1:2 the multiplicity of occupation 
may be arbitrary, v,  = 0, 1, 2, and the soliton can have a charge e, = - e ,  0, e .  We show that inclusion of 
electron-electron interactions conserves the property e, = 0. A small local charge oocurs as the result of 
phonon dispersion in the vicinity of Zp,. Interaction between the chains leads to a smoothing of the jump in 
the phase of the function A ( x )  at distances I -v , /T,  >v, /A ,, (T, is the three-dimensional ordering 
temperature). A charge -e is localized in that region. An effective coupling between the chains or a 
commensurability of the order of more than two causes an attraction between solitons with a force -v,/12 at 
distances S I .  The presence of solitons produces spin resonance effects, absorption, or luminescence at a 
frequency A ,  and a broadening of the fundamental absorption edge 24 ,. 

1. INTRODUCTlON P (4 mv (5 )  ='po cos ( 2 p F z + x ) ,  

1. It is well known that the quasi-one-dimensional where x i s  the coordinate along the chain, p, the Fermi 
gas of non-interacting electrons on a system of 

momentum for  the electrons in the metallic phase, and deformed chains at zero temperature T i s  in a Peierls- 
?I the CDW phase. Fr6hlich ground state (see the reviews in Refs. 1 to 3). 

It is characterized by a static deformation of the lattice The electrons occupy states with negative energies 
q~ (x) and a charge density wave (CDW) q (x) of the form Ek = - E, , where 
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e,-[ (u&)'+A,'l", A.==gcpo-er exp {-iP), 

u p  is the Fermi velocity, g the electron-phonon inter- 
action constant, h= vg2/2rvF, and v the degree of de- 
generacy of the electron band. 

The ground state of the system, obtained in the self- 
consistent-field approximation, is determined cor- 
rectly due to the adiabaticity parameter 

where m and M a r e  the band mass  and the so-called ef- 
fective CDW mass,  u is the CDW phase velocity, Tj 
= w(&*) is the unrenormalized phonon frequency. This 
parameter is estimated t o  be m/M- for  KCP and 
m / ~  - lo-' for TTF-TCNQ.~ 

2. The elementary excitations of the system contain, 
firstly, two phonon branches which at low temperatures 
can be defined conveniently a s  the phase x and the amp- 
litude 6 of the mode: 

with the dispersion laws 

This picture may be justified both for  a system which is 
three-dimensional a s  f a r  as the phonons a r e  concerned, 
and for a one-dimensional one, regardless of the pres- 
ence of a long-range order.4 As a result of thermal and 
quantum fluctuations in x and 6 the parameter 4 is de- 
termined with an accuracy4s5 

e,-A. max {(T/Ao) ", (mlM) "'1. (1) 

Apart from the phonons we must consider electron 
and hole excitations which determine the properties of 
the system a s  a narrow-band semiconductor. If we as-  
sume, as is usually implied, that the state of the lattice 
is fixed (A (x)  = A, = const) the electron-hole excitations 
a r e  constructed in the same way as the particles of the 
ground state -linear combinations of the waves I*pF 
+ k ) with dispersion law &, . However, the excitations 
determined in that way a r e  bare and must to some ex- 
tent be modified under the influence of the interaction 
with the phonon modes-polaron effect. The present 
author has shown5 that, in a one-dimensional Peierls- 
FrShlich system this effect i s  particularly strong and 
leads to a radical rearrangement of the picture of the 
electron excitations of the system. The reason is5  that 
an electron o r  hole, excited initially into a state with 
momentum kc: h0/vF and energy E, = A,, interacts with 
the deformations of the superstructure (CDW)-the re- 
normalized phonons. When the phonon spectrum is 
quasi-one-dimension& this system in the units u,, A,, 5, 
= v,/Ao, does not contain any parameters, except the 
adiabaticity parameter1' u/vF<< 1. Because of that 
i t  is necessary to distinguish two kinds of electron ef- 
fects, depending on the relation between the electron 
life time T and the characteristic phonon frequency a,. 

States with 7wo:< 1 a r e  determined for  a fixed spon- 
taneous lattice configuration. States with T,, -A;', cor  
responding to  optical transitions through the gap and to  
virtual transitions which determine the renormalized 
phonon spectrum and the specific dielectric permitti- 
vity2* 

(w, i s  the plasma frequency) belong to this class. 
Among the thermo-activated excitations there a r e  also 
states for  which the recombination proceeds faster than 
over a time a,'. For  all these short-lived states one 
can take the spectrum c,, smeared out by an amount - c, given by (1). The corresponding theory was given 
in Refs. 4 and 5. 

Long-lived excitations with T >,u,' must be studied 
a s  stationary states of the electron-phonon system. It 
was shown in Ref. 5 that they can be considered a s  
strong coupling polarons with a constant a - (~,/u) ' /~ 
>> 1, with an intermediate radius - 5,, and with an energy 
W inside the forbidden band -A,< W <  A,, and with an 
effective mass  M, - m*M/m- A,/u' (m* = A,,/u:). For the 
simple model of non-interacting electrons on an isolated 
chain, an exact solution was indicated with deformations 
of the domain wall type carrying a localized electron 
state. Notwithstanding the localization of the wavefunc- 
tion of the additional electron and the lattice deforma- 
tion the total charge and energy densities of this excited 
state turned out to be delocalized and constant along the 
length of the system. In what follows, we shall call 
these excitations solitons in accord with the established 
terminology. 

3. In the present paper we give a detailed theory of 
the stationary excited states of a Peierls-Frohlich sys- 
tem. We consider the effect of weak electron-electron 
interactions, coupling between chains, and phonon dis- 
persion on the soliton charge. We study the interaction 
between solitons. We establish a correspondence with 
quasi-classical solutions in two-dimensional models of 
interacting fermions in field It allows us to 
state that the solitons considered a r e  the only possible 
kind of stationary excited states for  a system of spin- 
5 electrons. For a system with a single conduction 
electron per elementary cell, a soliton solution can 
exist and with an unoccupied or  doubly occupied local- 
ized state. For a system with spinless fermions cor- 
responding to an infinite repulsion of real  electrons at 
a single si te excited stationary states a re  in general 
not present. 

2. SINGLE-SOLITON SOLUTION FOR AN ISOLATED 
CHAIN 

1. We consider a system of non-interacting electrons 
on a deformed chain which is in the Peierls-FrBhlich 
ground state. We add to  the system v, s v electrons, 
where v is the degree of degeneracy of the original 
band. As a result of the interaction A ( x )  of these elec- 
trons with the deformations of the superstructure the 
system goes over into a stationary state: the ground 
state o r  an excited state. It follows from the analysis 
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given in Ref. 5 that one may expect self-trapping of the 
additional electrons in a region -5, when the binding 
energy is U$ - A,,. Since Wb /wo - v,/u >> 1 one can solve 
the problem in the approximation which is quasi-clas- 
sical in the lattice degrees of freedom, corresponding 
to the strong-coupling polaron theory. (This theory is 
given in Refs. 9 and 10 for one-dimensional problems.) 
In the zeroth approximation in the parameter wo/Wb in 
the trapping region and in the parameter u/v, outside 
it4 one can consider the lattice deformation to  be a 
classical quantity 

where A (x) = A,(x) +iA,(x) is a complex function, and x 
= const is an arbitrary phase. Fa r  from the localiza- 
tion region (1x1 >>to), the system must go over into one 
of the possible ground states, i.e., 

The electron wavefunctions +, (x) in the field A(%) can 
be written in two equivalent representations: 

9,,(3.)=2'tu,(x) cos (pFx)  +iv , (x)  sin ( p F z )  I ,  (4b) 

where 

Any stationary state of the system, including the 
ground state, is determined by the condition that the 
functional of the energy of the system W {  A(x), +, (x) } 
is an extremum. Assuming the electron spectrum near 
the Fermi points I~P,  to be linear we can write 

where t);, (x) = d+,,(x)/dx and the summation is taken 
over all  occupied  state^.^ The first  term in (5a) is the 
lattice deformation energy. Since we want t o  obtain 
solutions with a well defined parity we shall use the 
representation (4b) in which 

Varying (5b) with respect to up ( x ) ,  v, (x) we get Dirac 
type equations for the eigenfunctions corresponding to 
the energies E, : 

u,,'-A&,,-i(E,,+A,) v . 4 ,  ( 6 4  
v,'+A.v,,-i(EC-A1)u,4. (6b) .- - 

Varying (5b) with respect to Al(x), 4 ( x )  we get the self- 
consistency conditions : 

2. Equations (6) to (8) correspond to the self-consis- 
tent field approximation for  a non-uniform state of the 
system or ,  strictly speaking, to the zeroth quasi-clas- 
sical approximation. Their applicability is, a s  we in- 
dicated above, based upon the existence of the adiabati- 
city parameter v,/u >> 1. One knows also another phys- 
ical  system described by approximately equivalent 
equations. That is the model of a two-dimensional rela- 
tivistic field theory with a large number of interacting 
fermions v>> 1 which was studied in Refs. 6 to  8. The 
large parameter v was necessary for  the use of the 
quasi-classical approach. However, the approximate 
equations which were derived were studied already ex- 
actly for  arbitrary v and the results obtained can be 
used in the cases  of interest to  us,  v = 2 o r  v =  1. In 
view of the necessity of a more detailed study and also 
because of the different dynamics of these systems we 
give below an independent derivation of the soliton sol- 
ution. The results of Refs. 6 to 8 indicate the unique- 
ness of the solution given here.3' 

3. We shall look for a solution such that in the region 
of the soliton ~ ( x )  changes in the complex plane along a 
,chord of the circle I A I  = A,. Through the choice of the 
phase X in the definitions (3)(4a) we can assume that 4 
= const, A = A, + iA,(x), as shown in Fig. 1. We define 
the parameters O c  ec n and k o a  0 in such a way that 

Ai=Ao cos 0, k , = ( A , 2 - ~ , 2 ) ' A = ~ 0  sin 0. 

It i s  clear from Eqs. (6a) and (6b) that when A, = const 
there exists always a localized, normalized solution 
which in what follows will be indicated by the index p 
= 0. 

a) If 4 ( i  m)=rk0, as shown by the arrow in Fig. 1, 
we have Eo= A,, v,(x) = 0, 

b) If 4 ( i m )  =iko, we have E o =  - 4 , u 0 ( x )  = 0, 

It is clear from a comparison with the results of Ref. 

FIG. 1. 
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5 that the cases  a) and b) correspond to electron and 
hole polarons. To fix the ideas we shall in what follows 
consider the case a). 

where 

(20) 

In equilibrium we must have X = 0. This condition de- 
termines for the ground state (0 = 0, vo= 0) the equilibri- 
um value of the gap parameter 

When p P 0 it follows from (6b) that 

Substituting (10) into (7), (8) we get 

Aoa-er exp (-113.). 
where 

Zf there i s  a soliton present the sum in (20) i s  changed 
by an amount -0(1/L) due to the change in the density of 
states because of the existence of scattering phases in 
uk(x) and due to the accuracy of the normalization (18). 
We thus have always 

is the particle number density, and 

Substituting (10) into (6a) we get an equation for u, (x) 
when p +O: 

v,,"+[A,'(x) -Azz(x) +E:-EoZl ur=O. (14) 

A s x - i m  we have A;- 0, g + E t -  A:, i.e., (14) changes 
to the equation 

The sum in (19a) can be evaluated to order  0(1), a s  it 
occurs with a factor which i s  integrated over .r. We get 

6W Aoko 
-=- [ V ~ - V ~ ]  +2E,X. 
6A, 2 chz(k,x) 

In the equilibrium position 

SW,'SA,-6W/6A,=O 

and we have from (19) and (21) A,= ~ , , + o ( l / L ) ,  6' = e o  
= nv,/v, o r  8 = 0. 

v,"+ (E;-A:) v,=O, (14a) 

corresponding to the unperturbed ground state. The so- 
lutions of (14a) a r e  plane waves, numbered by the 
quasi-momentum p =k: 4. We determine the total excitation energy W ( 6 )  from 

the relation 

d tV (22) 
d0 

whence 

where L i s  the length of the chain, and Nk a normaliz- 
ing factor. We require that (15) be a solution also of 
the exact Eq. (14) for all x. For  this it i s  necessary 
that 

The quantity X ( 0 )  occurs in (22a) with a factor inte- 
grated over x ,  i.e., one can with an accuracy O(1) as- 
sume that X(8) = 0. We get 

whence 

A*(+) =-ko th (kg) .  (16) 

Substituting (16)into (9a) and (10) we get a complete 
se t  of electron states in  the field ~ ( x ) :  

p=O: Eo=A, cos 0, vo(z) e 0 ,  
uo= (k,/2) '!'/ch (koz), (17) Integrating (22b) with the boundary condition W(0) 

= V  , A ,, corresponding to electrons a t  the point k = 0 
when the superstructure i s  not deformed, we get, in 
agreement with the results  from Refs. 6 to 84' 

w (0) =A. [(vo-v 4) cos O+ 2- n sin e l ,  (23) 

( 3  Vo 
tV,= w (en) = -sin n - A ~ ,  Oo=n --. v (23a) 

where 

It i s  clear from (22b) and (23) that the positions 8 = O  and 
8 = 8, correspond to a maximum and a minimum of the 
energy of the system. We show the function W(8) in Fig. 
2 for v=2 ,  v,=O, 1,2.  

[an accuracy 0(1/L) i s  necessary in (18) for a correct  
isolation of the single-particle effect]. 

We substitute Eqs. (16) to (18) in Eqs. (11) to (13). 
When summing we must assume the states with p =k,  
E, = -ck to be v-fold occupied states, those with P = k, 
E,  = +E, to be unoccupied, while we assign to the local- 
ized states p = 0 an arbitrary occupation number v,: 0 

-(v< v. We get 
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5. We consider different cases  for  the occupation 
numbers v and v,. 

a) v0=O:8,=0, Ws=O,ko=O, and we have the unde- 
formed system in i t s  ground state. 

b) vo=v:O,=n,Ws=O,ko=O, and we have the unde- 
formed system with an occupied v-fold degenerate level 
in the ground state. 

When v=  1 the trivial cases a) and b) exhaust all pos- 
sibilities. Hence we conclude that when v = 1 (infinite 
repulsion of the electrons on one site) there a r e  no sta- 
tionary excited states. Any electron excited across  the 
gap will after a time 7 2 w,' be continuously absorbed 
into the ground state. This non-radiative recombination 
proceeds, a s  follows from the qualitative analysis given 
in Ref. 5, through intermediate non-stationary polaron 
states. 

We now consider the most important case of electrons 
with spin degeneracy v = 2. Here there i s  already a non- 
trivial stationary state: 

W.= -- Ao, 
n 

which we shall study in what follows. We note that this 
solution with 9,=n/2 has an electron-hole symmetry, 

-i.e., self-trapping both of an electron, and of a hole 
leads to the same result. 

- 6. We show that-the soliton-charge i s  delocalized. -It 
follows from Eqs. (171, (18) that the density distribu- 
tions p, (x ) in the states p = 0, k a re  equal to 

The total change in density in  the system has the form 

In equilibrium 8 =nu,,/u and we find from (25) that 

An exact compensation of local charges has taken place. 
We shall show in section 4 that the effects of coupling 
between chains, and also commensurability again pro- 
duces a local charge around the soliton, but at dis- 
tances 1 >> 5,. 

The properties obtained can also be established with- 
out turning to the explicit form of the solution. We dif- 
ferentiate (12) with respect to  x and use Eqs. (6) to (8). 
We get 

' dp.-  bW 6 IV 
2 dz ' I T -  

&-. 
6At 

(26) 

Hence i t  follows that in equilibrium p(x) = const and we 
a r e  led to (25a). A similar investigation for a more 
general model i s  performed in section 3. 

7. We show that the total soliton energy i s  delocal- 
hed .   here i s  a lattice part  of the'energy density ' 

Aa(z) A,' k2 
8 L?' d c b Z ( k o z )  ' 

a bound state energy density 

and also an energy density of the states of the continu- 
ous spectrum 

8 
w. ( z )  =- es, (z) =- -- ~~g,(t) +O 

n 
a 

The total energy density is equal to 

We see  from (27) that in equilibrium when 0 =O,=nv,/v 
we have w(x) l /L  and from a comparison with (24) we 
get 

Thus, local changes in the electron and lattice energies 
a r e  fully compensated. The total soliton energy (23a) is 
Ws= ( 2 / n ) ~ ,  and is determined by the volume effects of 
the density of states6 although the equilibrium conditions 
(19a), (20b) a r e  defined locally. 

8. The kinetic energy of a soliton moving with a ve- 
locity v << u is basically determined, as for strong 
coupling polarons, by the lattice inertia. The electron 
contribution to the mass  M, is small  in the ratio - (u/v, << 1. We have 

- ,Neglecting the change- in the shape of the soliton when i t  - - 

moves with a small  velocity we can substitute into (28) 
~ ( x ,  t) = h,tanh(x-vt). We obtain 

9. In concluding this par t  we consider the special 
case of a system with two-fold commensurability when 
in the metallic phase there is one electron in the ele- 
mentary cell. For the well known compounds of organic 
origin2 the Peierls  transition is in this case suppressed 
by the Mott-Hubbard effect (Ref.5).5' However, the 
model considered here can be applied to the K(def)TCP 
c~mpound. '~  Moreover, a s  a result  of recent studied3 
of polyacetylene (CH), and interpretation of this system 
a s  a Peierls  dielectric with a doubling of the period was 
proposed. In view of the large band width ("10 eV) Cou- 
lomb effects may be insignificant when A=0.7 eV. 

In all i ts  complexity, the case considered can, ac- 
cording to Ref. 14, be reduced to a determination of the 
phase of the function ~ ( x ) .  By an appropriate choice of 
the constant X in the definitions (3) and (4a), (4b) we can 
put in the functional (5b) A,= 0, which corresponds to 
the condition 9=n/2.  After variation we get Eqs. (6a), 
(6b), and (8) for Al = 0 but we need not take into account 
Eq. (7) and i ts  consequences (19a) and (21). To sum up, 
we obtain all  results  described above for v = 2, except 
the connection (23a) between 8, and v,. In the case con- 
sidered we have 8 =n/2 automatically for any v,. 

We arr ive  a t  the conclusion that the soliton can now 
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carry  any number of localized electrons vo= O,1,2. 
Correspondingly, the charge of the soliton will be e, 
= -e, 0, e,  where e is the charge of the ca r r i e r s  in the 
metallic phase. Allowance fo r  the Coulomb interaction 
should lift the degeneracy of the energy W, with respect 
to the charge e,. TO f i rs t  order 

The determination of the coefficient C - 1  is difficult be- 
cause of the necessity to take into account the disper- 
sion (2) of the permittivity. 

One may conclude that the electro-neutrality (vo= 1) of 
a soliton in a non-commensurable system was the only 
consequence of the condition of equilibrium under varia- 
tions of the phase of the function A(x). The other prop- 
er t ies  a r e  the consequence of the condition of equilibri- 
um under variations of the modulus of Ah), and a re  the 
same for  non-commensurable and two-fold commensur- 
able systems. 

The results  of, this subsection correspond to the model 
considered in Ref. 6, and the preceding study to the 
model of a chiral field considered in Ref. 7. 

3. EFFECT OF PERTURBATIONS ON THE LOCAL 
CHARGE OF A SOLITON 

1. We showed in the preceding section in the frame- 
work of the one-dimensional Peierls-Friihlich model 
that the charge and energy of the system remain uni- 
form when there i s  a soliton present. Because of this 
the solitons need not contribute to the electrical and 
thermal conductivity of the system. Their only kinetic 
manifestations could be  spin diffusion. 

In actual systems one might expect an appreciable 
change in the local soliton properties. In particular, i t  
is important to  take into account the electron-electron 
interaction which is usually not weak. Moreover, it i s  
necessary to study the effects of the coupling between 
the chains, the effect of phonon dispersion, of commen- 
surability, and also of the soliton motion. The delocal- 
ization of the energy is an accidental property of the 
simple model and must disappear when we take the cor- 
relation energy into account. The delocalization of the 
charge was connected with the electron-hole degeneracy 
of the solution and may be conserved also fo r  a more 
complicated system. In the present section we consider 
the problem of the local charge of a self-trapped excita- 
tion for a rather general model of a quasi-one-dimen- 
sional system of electrons on a deformed lattice. This 
special study can be carried out by analogy with the 
special case (26) on the basis of the equations of motion 
without having at our disposal the explicit form of the 
solution for the compIicated model. 

2. We consider a quasi-one-dimensional system of 
conducting filaments with transverse coordinates R,. 
We shall assume that there a r e  no electron transitions 
between the filaments. Let the electrons on the same 
filament and on different filaments interact through 
long-wavelength phonon fields = *, (x, R,, t ) ,  includ- 
ing the Coulomb potential aC(x,  R,), and through short- 
wavelength fields 

B. (r ,  R., t )  erp ( i 2 p s )  +B,+ ( z , k ,  t )  exP ( - i 2 p ~ z ) .  . 
These fields a r e  characterized by-parameters for the 
interaction with the electrons g ~ : u ' ( ~ m , ~ n )  and by the 
bare Green functions 

- 2 

0,'::' wa 
(xm-xn)E ~ ' - ~ i ( k  e.rp(i[k(z,-z,) +kL (R,-R,) I). 

(29) 
To fix the ideas we shall put 

- 
o a 2 ( k ,  k,) =o, ' (k)  +SLz(k,),  o S Z ( k )  .'+2a.&k, (29a) 

Qaz(k1) = ~ f ~ ' e x p { i k - ( R n , - R p , ) ) .  
rn 

We introduce operators for the creation @ i ( x ) ,  the 
annihilation $,(x), the density p,(x), and the current 
j,(x) of particles on the chain n, and also operators of 
the CDW components qn(x) and qi(x): 

P. (2) =9.+f$n, i n ( 4  =$.+4$R, qn(x) =$*+a-qnr qn+ (x) =lpnfa+lp., 

where eZ, 6, = g(6, iGy)  and j a r e  the Pauli matrices 
and the unit matrix. In these variables the system 
which we a r e  describing is characterized by the 
Lagrangian 

where 

A,,(z, t )  = x g , ! : , ) B . m ( ~ ,  t )  
"Z 

i s  the field which is conjugate to the CDW density q,(x). 
In the zeroth approximation for the Peierls-FriThlich 
model the operator A,(K, t) changes to the classical gap 
function A ,(r). 

We assume that in the model considered, a s  in the 
particular Peierls-Friihlich case, there exist self- 
trapping stationary excited states. The adiabatic approxi- 
mationdeveloped in section 2, which corresponds to the 
strong coupling polaron theory, means in the general 
case that at least some of the modes B, have frequen- 
c ies  5, which a r e  small compared to the soliton binding 
energy. On the other hand, it will become clear in 
what follows that only modes with a considerable disper- 
sion, 3, I,,,,,, will turn out to affect the charge of the 
soliton appreciably. Both conditions lead u s  practi- 
cally to  one and the same mode-phonons of the acous- 
tic branch a =a. In the main adiabatic approximation 
we may assume the B P  to be classical local deforma- 
tions. We need the other modes in thequantum-mechan- 
ical averaging (. . .), for given BiX'. In the Feynman 
formulation this means that the functional integration 
is performed by the saddle-point method over the fields 
B,(.K, t) while the integration over the other fields 
B,(x, 1 )  with (Y +'a is assumed exact. 

3. Let there  be an isolated moving self-trapped exci- 
ted state of the system in the neighborhood of the chain 
n = 0. Since the energy and charge of the excitation 
must be finite, the characteristic perturbations of the 
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changes over a length not less than 5, = vF/A,, >> I/%, we 
find from (34a) p(x)= (l/x2Y"(x). 

quantities p,(x), j,(x), An(x) must decrease sufficiently 
rapidly with increasing chain number n. We can there- 
fore determine the total perturbations Since f(y)-  0 as y-ia, we find from (34a) the exad 

result that the soliton charge Q and dipole moment P, 
are equal to zero while the second and higher moments 
are finite: 

We determine also the effective gap parameter 

according to the formulae We introduce a characteristic soliton length 5 and gap 
deformation amplitude 6. We then have from (33) to 
(35) 

For the model considered in section 2 we have exactly 

The function A(x, t) changes to the solution 

for a fixed soliton in the model considered in section 2. 

We use the equations of motion derived in Appendix 
I, which connect the operators p,, j,, and 4. We 
average Eq. (A.I.12) at fixed perturbations of B,(x, t ) 
and substitute Eqs. (31). We get and equation connect- 
ing the perturbed distributions p(x, t), J(x, t), and 
A(x, t ) :  

We see that the local charges are small both in the adi- 
abatic parameter pF s/dp and in the atomic parameter 
h O / & F .  

4. The exact compensation established above for the 
charge Q and the dipole moment PI occurs thanks to 
the long-range three-dimensional Coulomb field. At 
large distances and for a weak coupling between the 
chains the screening occurs with the participation of a 
large number of chains. However, in kinetic phenomena 
local charges a re  important, in particular, on the cen- 
tral chain n =0, where the localized electron is situated. 

We consider Eq. (A.I.9) neglecting all effects of the 
coupling between the chains, i.e., I,, =O. For j ,  and 
Po we get Eqs. (32), (33) with x = 0, up= 0. The solution 
of (33) is, according to (34b) po(x) = f(x). As a result 
the charge Q and the even moments will be non-vanish- 
ing 

where 

$ i s  defined by (A.I.8a). 

We consider a perturbation moving with a constant 
velocity v+si. We then have from (A.I.5a) J =  up and 
d/dt = - v d/dx. We get from (32) Substituting the solution found in section 2 into (33) we 

find to first order in the dispersion F/vF: 

For a moving soliton it i s  necessary to consider the 
second term in Eq. (33) for Ax). When substituting the 
zeroth solution it vanishes, since A(x) changes in the 
complex plane along a straight line through the origin. 
When dispersion i s  taken into account the motion, in gen- 
eral, deforms the soliton. However, one can show that 
the general nature of the solution does not change like- 
wise in the next perturbation theory order in ( ~ / u ) ~ .  
We cannot exclude the possibility that Q(v) - Q(0) 
a (V/U)~" with n >3. 

where 

It follows from (33) that 

1 
~ ( ~ ! = ~ ~ ~ ( y ) e ~ p { - x l z - y l } d y  

4. SOLITONS IN THE ORDERED PHASE AND 
STATISTICAL EFFECTS or ,- 

p ( ~ ) = f ( t ) i ~ ~ l ( y ) e z p { - x l z - ~ l ) d ~ .  2 (34b) 

In view of the fact that in reality op >> .> while f (y) 
1. We consider the quasi-one-dimensional Peierls- 

Frtihlich model, characterized by an equilibrium gap 
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A, and a low three-dimensional ordering temperature 
T, :: A,,. The binding energy of the soliton i s  

i.e., W, >> T,, so that i t s  formation (electron self-trap- 
ping) proceeds mainly independently of the surrounding 
chains. As a result, however, there occurs on the cen- 
t ra l  chain n = O  a change in sign of the parameter A(x) 
when one passes through the soliton region with center 
at the point x,. Since the chains in the ordered phase 
must be correlated, the change in sign of A(x) far  from 
the soliton will be smoothed out and this must be re -  
flected in the soliton properties. If the perturbation of 
the surrounding chains decreases rapidly with increas- 
ing n, it i s  sufficient for a description of the effect to 
take into account the chain n = 0, which carr ies  the 
soliton, and Z of i t s  nearest neighbors. Since the 
smoothing out will take place over distances I - v,/T, 
>> 5, we can use a quasi-classical description in terms 
of the phase X, on the chains, assuming ~A,,(x) ( A,. In 
that case the presence of the soliton i s  taken into ac- 
count by a jump in the phase x,(x): 

while the phases x,(x), n +O, a re  continuous. 

2. The model described here is characterized by the 
energy functional 

where the region I x  1s i s  excluded from the integral. 

The equilibrium state of the system is described by 
the extrema of (40) with the additional condition (39). 
We define for n +O: x,(x) = xo(x) + $(x). The functions 
X, and $b satisfy the equations 

and the boundry conditions6' 

From (41), (42) we get the following solution: 

where I ,  = I ln(tana/8). 

The functions x,(x) and xn(x) a r e  shown in Fig. 3, and 
e, = 7r/2(Z + 1). 

3. Although the core of the soliton i s  uncharged, in 
the region where the phase is smoothed out 5, << (x - x, ( 
5 l  there appear charges 9, with a density p,(x) 
=enxnf(x)/r. From (42) we have 

b 

FIG. 3. 

en e, 
q.= -[%.(+m)-%,, ( - m )  I = - 

Z + l  ' 
n+O. 

For a soliton with the opposite change in amplitude all 
charges 9, and 4, change in sign. The total charge 4 of 
the system depends on the signs of the carr ier  charges 
en : 

a) all chains a r e  charged identically: 

in agreement with the results of section 3; 
b) the surrounding chains a re  charged opposite to the 

central one: 

a s  Z -m we have 4 - - 2e, i.e., the charge is doubled; 
c) the charges of the chains alternate: 

q - e, a s  Z ---the system has a single charge. Case 
a) corresponds to systems with total charge transfer, 
for instance, KCP, while case c) corresponds to  sys- 
tems with partial transfer, for instance, from the TTF- 
TCNQ series. In KCP the solitons thus remain unchar- 
ged, while in TTF-TCNQ they have a charge - - e lo- 
calized in a region I - v,/T,. 

4. The presence of coupling between the chains also 
leads to a more appreciable interaction between the 
solitons. As shown above, the change in A(x) for an 
isolated soliton occurs along a well defined diameter 
which is perpendicular to the direction of ordering 
A(+-o) =A(- -Q). We can therefore speak of solitons 
with two signs: corresponding to $(x)- *$a sgn(x- xi) 
a s  x-xi.  

We obtain in Appendix I1 a solution of Eqs. (41) for 
two solitons positioned at a distance d>> 5,. The calcu- 
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lation of the energy %"of (40) and of the interaction 
force Y= - a&O/ad shows that solitons of opposite sign 
on the same filament and of the same sign on neighbor- 
ing filaments attract one another, 9, ,: 0, while soli- 
tons with the same sign on the same filament and of 
opposite sign on neighboring filaments repel one another, 
Fv1, 9 , ,>0 .  According to (A.II.3,6,11) we have for 
d-5 1 

and for d>>l 

At a finite temperature T << T,, attracting solitons will 
be in a region d-51, where the thermal length I, is de- 
termined from the relation 91, O: T under the condition 
that 1,<<l. We get 

When T< c/A,,<< T,, we have IT - 5,. In that case bound 
solitons on a single filament must annihilate. 

Quantum oscillations of a pair of solitons at distances 
to< 1x1 :l can be described by the Hamiltonain 

where M, is given by Eq. (28). From (45) we can esti- 
mate the amplitude of the zero-point oscillations do 
=<lxl>:  

For typical parameters u/vF - T,/A,, - lo-' we have 
d,/l - lo-'. The estimates given here a re  valid if d0>>5,. 
In reality, however, 

The Hamiltonian (45) also possesses a large number 

of quasi-classical levels 

In the states with n>> 1 the average distance between the 
solitons 1x1 >> 5,. 

5. From the estimates given above it follows that a s  
the result of thermal motion when T<< T, solitons on the 
same chain must attract and annihilate one another, but 
on neighboring chains they must form quasi-classical 
bound states, when 1, > a,, o r  quantum states when 
I ,  < a,. The linear concentration of solitons c has the 
form 

- - 

c= (M,T/Zrr)"j e l p  (- W , / T ) ,  

in reality 

el-100(T/W.)" exp {-W,/T!, 

whence for T < T, : ~ d 4  we have cl<< 1. 

We find that when T < T, separate solitons and bound 
complexes a r e  on average far from one another and 
pratically do not interact. Due to  the r a r e  collisions 
there may occur a coupling of solitons of the same sign 
on a large number of neighboring filaments so  that 
planes a r e  formed with a simultaneous change in sign 
of all 4(x).  An analogous coupling may occur between 
solitons and microscopic defects. 

6. The interaction of the CDW with the main struc- 
ture at odd-order commensurability leads qualitatively 
to the same effects a s  the described interaction of the 
chains. In practice only the case of three-fold commen- 
surability is important. The jump in phase must pro- 
ceed from x(x0 -0) = - n/6 to x(x0 +0) = 5n/6 with a cor- 
responding smoothing out of the phase to x(- 0 0 )  =0, 
x(+-) = 2 n / 3 .  Hence, the soliton charge q, =2e/3. 

5. CONCLUSION 

1. In the present paper and in an earlier one5 we have 
shown that in the quasi-one-dimensional Peierls- 
FrBhlich system a particularly strong interaction is 
realized between the electron and phonon degrees of 
freedom of the excited states. As a result purely elec- 
tron o r  hole excitations with wavevector k and energy 
cl, = [G + ( ~ ~ k ) ~ ] " ~  go over into self-trapped states of 
size - 5,. The deformation of the Peierls superstruc- 
ture [gap parameter ~ ( x ) ]  has the form of a domain wall 
~ ( x )  = A,tanh(x/<,,). This deformation produces onebound 
state which must-be occupied by one electron, v, = 1. 
As a result of the polarization of the vacuum states of 
the continuous spectrum, the local charge density turns 
out to be exactly compensated ax) =O. As a result the 
soliton turns out to be electrically non-active, e, = 0. 
However, it carr ies  a localized spin i. A special case 
is a system with commensurability 1:2 (doubling of the 
period). In that case bound states can have any multi- 
plicity of occupation, v, = O,1,2, and correspondingly 
es=-e ,  0, e; s =0, i, 0. 

The energy, and also the charge, of the soliton turn 
out to be delocalized. The soliton mass  M, - Ao/u2, 
where u is the CDW phase velocity. It is larger than 
the electron effective mass, a s  follows 

These results were given in section 2. 

The property of electro-neutrality of the stationary 
self-trapped state is conserved also for systems with 
electron-electron interactions. It i s  subject to a weak 
influence of the initial phonon dispersion in the Kohn 
anomaly region w(2& +q) - w +Fq. As a result there 
appears a local soliton charge e,a Ao/cF. These prob- 
lems were considered in section 3 .  

The effects of coupling between the chains and of 
even-order commensurability lead to the smoothing out 
of the jump in the phase of the function ~ ( x ) i n  the region 
-5,. The smoothing out occurs at distances I-vF/Tc 
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and vF/T,, where Tc and Tp a r e  the three-dimen- 
sional ordering and pinning temperatures. As a result 
the soliton may acquire a charge e, - e, localized in a 
region - 1 without a change in the spin. This problem 
was studied in section 4. 

The same effects a re  responsible for the attraction 
of solitons of opposite sign on the same chain or  the 
same sign on neighboring ones. As a result there ap- 
pears a system of bound states with a large number of 
levels. This effect i s  considered in section 4. 

2. The self-trapped states considered here must 
manifest themselves in spin diffusion effects and in 
photo-electric effects. They may be discovered in ab- 
sorption or  luminescence at the frequency 4. The ex- 
perimental effects will be considered in detail in a 
separate publication. The polaron effect must, in prin- 
ciple, aff ec't the semi-conducting properties of systems 
such a s  a Peierls dielectric. 

The principal role must be played by the fast build-up 
of solitons with increasing temperature in view of their 
large mass M, >> m* and lowered energy W,: A,,. The 
result may become a phase transition into an intermedi- 
ate state at a temperature T*< 4 when the soliton den- 
sity becomes of the order of 5;'. 

Soliton states a re  of great importance for systems 
close to two-fold commensurability when 

where a is the period of the undeformed lattice. Such a 
situation can be realized accidentally when there i s  in- 
complete charge transfer or  when there i s  alloying a s  
in polyacetylene.13 

It was shown in Ref. 14 that when condition (47) i s  
satisfied a superstructure will be formed with a wave- 
vector Q = tr/a *2pF. For a uniform deformation A(x) 
=const states above the gap (electron or  hole states for 
2PF? Q might be occupied with a density n. From the 
results of the presentpaper and of Ref. 5 it i s  clear that as 
the result of the polaron effect a system i s  formed 
of charged, e, =e, spinless, s = 0, solitons with a 
density n, carrying a two-fold occupied ( vo = 2) local 
level. When n <  5;' the interaction between the solitons 
is unimportant. Similar conclusions were reached by 
Su, Schrieffer, and ~ e e g e r "  a s  a result of numerical 
calculations of soliton states on a chain of finite length 
with a Peierls dimerization. The qualitative conclu- 
sions and quantitative results of Ref. 15 agree with the 
results of the analytical study given in section 2 of the 
present paper when applied to a system with two-fold 
commensurability (subsection 9). The results of Ref. 
15 agree quantitatively with the data about the activa- 
tion energies in alloyed polyacetylene.13 It i s  especially 
important that an explanation i s  obtained for the absence 
in this substance of spin paramagnetism of the current 
carriers. The Peierls nature of the dimerization in 
(CH), i s  thus confirmed and also the self-trapping of 
the current carriers5 in a one-dimensional Peierls sys- 
tem. We note that there is in polyacetylene a well de- 
fined adiabatic parameter M/m =nM,/m*. According to 
Ref. 15 M, = 7me and m */me * A ~ / & ,  10 (me i s  the free 

electron mass, me =m). Hence, M/m -10'. . 
In conclusion we emphasize that the self-localized 

states described here exist only for a sufficiently weak 
coupling between the superstructures on neighboring 
chains. For non-commensurable systems the necessary 
restriction i s  expressed by the inequality Tc << A. For 
a system with a two-fold commensurability a condition 
must be satisfied by the anisotropy parameter of the 
phonon spectrum a! =Q2/w2(2kF) : a! >> A, where A = g 2 /  
TUF. 

The author expresses his deep gratitude to I. E. Dzya- 
loshinskir for interesting discussion and a critical read- 
ing of the manuscript and to L. P. Gor'kov for useful 
discussions. 

APPENDIX I 

We consider the system described in section 3 and de- 
termined by the Lagrangian (30) and Eqs. (29), (29a), 
(30a). We formulate the equations of motion for the 
operators pn(x,t) and jn(x,t) ,  using the commutation 
relations 

[P"(x), )llll(!l) 1=0. [ p , l t ) ,  qme(y) I=(), 
[pn(z), im(y) l-i2n--6(x-y)8,~,,. 

dx 
(A.1.1) 

These relations follow from the corresponding boson 
representations,16 valid for electrons in the vicinity of 
the Fermi level. They also require refinements of the 
interatomic radius when there are  interactions present. 
However, one usually assumes that these effects lead 
only to a change in the numerical coefficients in the 
equations which follow below. For us the coefficient of 
dpn/dx in (A.1.3) is important and it will in what follows 
be renormalized as the compressibility of the system. 
We get 

Varying (30) with respect to sin ,Ban, and B', we get 

1." 1,11 

We substitute (A.I.4) in (A.I.3) and ~ u t  z"'= 0, which 
corresponds to neglecting relativistic interactions. We 
obtain 

dj. d -+ -C [ a .  .ir,C g , : : ' ~ : : : ]  p,,,=i.. 
dt dx _ (A.1.6a) 

8.m.l 

where 
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For small o, k we write 

where 

If the coupling constants do not have dispersion g:; - - 
=g,6,,, the quantities C/o, w - ~  and I,, in (A.1.8) a r e  
averages over a of the corresponding quantities in  (30), 
with weight d/g2. absti tuting (A.1.8) in (A.1.5) we get 

4i 
= -z In,,, (A,,+A,,a-Am+An). 
g2G11 

(A.I.9) 

3. We introduce the total charge density p ( x )  and cur- 
rent J ( x )  along the chains: 

If we sum (A.I.9) over n, the right-hand side vanishes 
and on the left-hand side we can write for  the Fourier 
representation 

a,k" 4ne2 +- (A.1.11) 
1.l.m i f c  

where a i  - 1, C a ,  = a  is the relative correction to the 
compressibility of the system, si are  the sound veloci- 
ties, E ,  is the permittivity of the structure, and S, i s  
the cross  section per filament. We get 

where 

APPENDIX II 

1. We consider two solitons of the same sign posi- 
tioned a t  the points d / 2 .  The boundary condition (42b) 
is generalized in accordance with Fig. 4a 

The solutions of Eqs. (41) outside the discontinuity 
points x = d / 2  a re  characterized by the first  integral H 
o r  k: 

' / :11~' - -  (1-cos q) =H, H=2/P-2.  (A.II.2) 

It follows from (42a) that when I x l>d/2 we have H = 0, 
k = 1. When Ix l<d/2 the quantity H =H(d) i s ,  according 
to the principle of least action for the functional (40), 
proportional to the force of the interaction between soli- 
tons F: 

b 

FIG. 4. 

2n 2+2 . " rp  *+*- J ,  -I;-%= I ( 2 ~ + 4 s i n ' ? ) ' ~ d @ +  1 2  1 sin 1 d$-Hd (A.u.~) 
0, Z - - 

e. v.-n 

Varying (A.II.3) with respect to ++, +- for given H we get 
++= -+-, i.e., the solution i s  antisymmetric and 

'P* 1 I 
C O S T = ~ ~ A ~ ,  2 ' = ~ k < i .  (A.II.4) 

The solution of (A.II.2) can be written in the form 

where K(k) is the complete elliptical integral of the 
f i rs t  kind. The quantity k is, according to (A.II.l, 4,5) 
determined from the equation 

When d >> I we have k - 1, +,- n/2 and H= [32/(2lI2 
+ 1)2]ed. We found in particular that for an isolated 
soliton the smoothing out of the phase occurs antisym- 
metrically (see footnote 6). 

When d < < I  we have k- 2-'I2, +,- 0 and H- 2, i.e., 
the repulsive force i s  finite. 

2. We consider the case of solitons of opposite sign. 
Instead of (A.II.l) we have in correspondence with Fig. 
4b 

Since +'(0) = O  and +(0)+ 0, now H i  0 in  (A.II.2), i.e., 
there i s  an attraction. Instead of (A.11.3) we have 

Varying (A.11.8) with respect to +, and ++ we get 

9 'Po 
cos @ + = - s i n 2 8 ,  2  H=-2 s inz- .  2 

The solution of (A.11.2) now i s  

The quantity (40) i s  a t  the extrema of (A.II.2) equal to According to (A.II.8,9,10) the quantity +, is deter- 
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mined from the . equation . 

The solution-of (~.11.11) h& a continuous singularity at 
the point d / l=  r/2, $,=n. When d >> 1 we have $,- 0, 
$, - 7th.  

When d (r/2)1 we have J l o =  $+= r, H 1 2. In this region 
there is a finite attractive force (A.II.2a) for H = 2 which 
is independent of distance. 

Note added in proof (27 December 1979). Correction: 
the last terms in Eqs. (A.I.12) and (321, the f i rs t  term 
in the definition (33a) and the right-hand sides of Eqs. 
(36), (37), (381, and (38a) must be multiplied by the co- 
efficient uFg/g2z = w;/2nu2. Aa a result  the local 
charges turn out to be small  in the parameter A~G,, 
but not in S/vF. 

The uniform change (25a) of the phonon charge when 
there is a soliton present is in fact compensated by a 
decrease by one of the number of s ta tes  in the occupied 
band: the local level p =0 is formed from'detached 
states of the continuous spectrum (remark by J. R. 
Schrieff er)  . 

For the compound K(def)TCP the situation turns out 
to be more complicated than was assumed in section 
2.9 in view of the fact that the two-fold commensurabil- 
ity occurs only when we take into account the weak po- 
tential of the K' ions and the energy for fixing the phase 
may be small compared to A,. The theory of this com- 
pound will be given separately. 

The exact solution for  a system with a two-fold com- 
mensurability which is equivalent to the results  of sub- 
section 2.9 was found recently by Takayama, Lin-Lin, 
and Maki (1979 preprint). 

The a u t h o ~ s  express their deep gratitude to J. R. 
Schrieffer for interesting discussions of the theory of 
quasi-one-dimensional systems and of the physics of 
poly-acetylene. 

')1n related three-dimensional systems of the exciton insulator 
type and in superconductors there is a weak coupling p r a m -  
eter  (~l/t*)~<< 1. 

2)~n what follows V F  = 1 in all intermediate formulae. Also fi 

= 1 everywhere. 
3 ) ~ n  the cited papers they found also stationary soliton-anti- 

soliton pairs with a fixed distance I ,  which depended on vo/v. 
However, when v = 1 these solutions a re  not present, while 
for v = 2 we have I =-, i. e., only isolated solitons a re  sta- 
tionary. 

4 ) ~ h e  arguments given here aIlow us to avoid the more labori- 
ous direct calculation of the energy W ( 0  1, given in Refs. 6, 
'1. 

5 ' ~ n  that case, however, the so-called spin-Peierls dimeriza- 
tion may occur'' where analogous effects again arise. For 
the easy plane kind of anisotropy the spin-lattice system will 
in general be isomorphic to  the Peierls-Frrihlich electron 
model. 

6 ) ~ o n d i ~ o n  (42b) assumes in addition to (39) that we have ,cho- 
sen an extremum (39) which is anti-symmetric with respect 
to ro. One can show that such a choice corresponds to an ab- 
solute minimum of H (see Appendix 11). 
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