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At low temperatures, the spatial dispersion (in particular, the additional light waves) and the polariton effects 
alter substantially the physical picture of reabsorption of light in crystals. Besides the usual volume 
reabsorption, which is due to overlap of the light emission and absorption spectra, allowance for the 
additional light waves leads to the onset of two new reabsorption mechanisms. One is due to exciton collisions 
with the surface of the crystal, which are accompanied by formation of photons that propagate into the 
interior of the crystal. Reabsorption corresponds to their absorption in the crystal, so that the intensity of the 
corresponding process turns out to be proportional to the concentration of the excitons at the boundary. The 
other reabsorption mechanism comes into being when account is taken of exciton scattering by defects 
(impurities) in the crystal lattice or of exciton-exciton collisions. Since these processes can be accompanied by 
interband transitions, a new volume source of reabsorption appears (exciton + impurity+photon 
+ impurity), and can take place even in crystals in which the ordinary reabsorption mechanism is negligible 
because of the weak overlap of the emission and absorption spectra. We discuss the limits of applicability of 
the reabsorption equations that can be used in the region of sufficiently low and high temperatures. 

PACS numbers: 71.36. + c, 71.35. + z, 78.55. - m 

1. INTRODUCTION 

Experimental investigations of exciton luminescence 
of crystals at low temperatures have been going on now 
for  several  decades. Most recently, however, spectral 
and temperal singularities of crystal emission have 
been observed for many crystals and cannot be inter- 
preted within the framework of the ideas, dating back to  
Frenkel's paper1 (see also Ref. 2), on the emission of 
light by excitons. According to Ref. 1, the absorption of 
light corresponds to a rea l  process, in which a photon 
incident on a crystal i s  transformed into an exciton, 
luminescence corresponds to the inverse process, etc. 

This analysis i s  valid if both the excitons and the pho- 
tons a re  well defined elementary excitations of the me- 
dium that interact weakly with one another. However, 
in crystals in which the excitons have sufficiently large 
oscillator strengths, the retarded interaction in the re- 
gion of low values of the wave vector renormalizes the 
spectrum of the elementary excitations (i-e., of the 
transverse photons and excitons which appear only when 
the Coulomb interaction i s  taken into account). The 
spectrum of the new elementary excitations, which a re  
superpositions of excitons and photons and usually 
called polaritons, differ substantially at small values of 
k from the exciton spectrum (see Fig. 1). The use of 
polaritons rather than excitons and photons makes it 
possible in fact to  develop in most natural fashion an 
interpretation of the above-mentioned singularities of 
exciton luminescence of crystals a t  low temperatures. 
The exciton-photon interaction for polaritons has been 
approximately taken into account even in the harmonic 
approximation, s o  that the perturbations a r e  produced 
only by scattering from phonons and lattice defects. 
This circumstance no longer makes i t  possible to speak 
of luminescence as a process in which an exciton i s  
transformed into a photon, etc. The emission spectrum 
observed outside the crystal i s  now the result  of elastic 
and inelastic processes that occur on the surface of the 

crystal, and the polariton i s  completely o r  partially 
transformed in  these processes into an  "external" lumi- 
nescence photon. At the same time, the polariton scat- 
tering inside the crystal (from phonons o r  from crystal 
defects) leads only to intraband o r  interband transitions 
of the polaritons. 

An important factor when i t  comes to using the fore- 
going qualitative picture of the so-called polariton 
mechanism of luminescence314 (see also Ref. 5) i s  that 
in the region of large wavelengths the above-mentioned 
elementary excitations (polaritons) a r e  in  fact photons 
in the medium and their properties can be completely 
described within the framework of the macroscopic 
Maxwell's equations with account taken of the spatial 
d i ~ p e r s i o n . ~  Therefore, for example, an "external" 
luminescence photon produced when a polariton collides 
with the surface of a crystal corresponds to a refracted 
wave. I ts  intensity, which generally speaking is a 
function of the frequency and of the time, is directly 
proportional to  the number of polaritons with a given 
frequency and polarization (see, e.g., Refs. 7 and 8). It 
follows thus from the foregoing that the determination 
of the polariton distribution function on the boundary of 
the crystal is a basic problem that a r i ses  within the 
framework of the polariton mechanism of luminescence. 

FIG. 1. a) Spectrum of transitions in acrystal. Thewavy lines 
show the interband transitons. b) Lower branch of the polari- 
ton spectrum. The wavy lines show the intraband transitions. 
The 'bottleneck" region is shaded. 
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For a number of problems of exciton physics (energy 
transfer, capture of excitons by impurities, exciton- 
exciton collisions, etc.), however, it i s  necessary to 
know the polariton distribution function not only on the 
surface of the crystal but also in  i t s  volume. This per- 
mits a more general formulation of the problem, and 
makes i t  particularly urgent to  derive f i rs t  of all the 
kinetic equations for the polaritons at different values 
of the exciton-phonon interaction constant. We shall 
deal with this question later on. 

At this point we emphasize that allowance for  polari- 
ton effects is particularly important a t  low tempera- 
tures, when the bulk of the polaritons is concentrated 
in the "bottleneck" region (see Fig. 1). If the tempera- 
ture of the crystal is not too low, however, and the 
bottleneck is weakly populated, we can use the kinetic 
equations not for the polaritons but for  the excitons and 
photons, provided only, as shown below, we introduce 
into these equations certain correction terms necessi- 
tated by the effects of spatial dispersion. 

The present afticle is devoted in fact to a discussion 
of the evolution of the physical picture of reabsorption 
of light when the temperature of the crystal i s  changed. 
In particular, we shall obtain the aforementioned cor- 
rection terms for  the usual equations of reabsorption, 
and consider some physical effects corresponding to 
them. 

To proceed to their analysis in the most natural fash- 
ion, we shall f i rs t  consider the polariton effects (i.e., 
we shall disregard the influence of the retarded inter- 
action on the emission spectrum). In this case one can 
obtain in  quite obvious fashion for  the exciton concen- 
tration an equation that permits a complete description 
of both the exciton luminescence and the energy trans- 
port by the excitons. 

Since the exciton lifetime in  a dielectric ( 7 %  lo-' 
- sec) i s  usually much longer than i t s  f ree  path 
time to  with respect to scattering by phonons, at not too 
low temperatures we have t,=10-" -lo-'' s ec  and the 
exciton manages to collide a tremendous number of 
t imes with phonons during i t s  lifetime. Therefore the 
excitons can be regarded as in a state of thermodynam- 
i c  equilibrium with the lattice, and the concentration 
c(r , t )  can be determined from the diffusion equation 

~ c / ~ ~ = D A c - c / T + ~  (r, t ) ,  (1) 

where D is the exciton diffusion coefficient and Z(r,t) i s  
the source function (see Ref. 5). 

In luminescent crystals, the possibility of emission of 
a luminescence quantum by an exciton from one point of 
the crystal and i ts  absorption, accompanied by the pro- 
duction of an exciton, at another point can be taken into 
account by adding to the right-hand side of (1) the fol- 
lowing integral term (we disregard the anisotropy of the 
crystal) 

1 exp(-k(v) lr-r,l) 
- - - ~ P ( v ) B ( v ) ~ ( v ) ~ v ~  C ( ~ , O .  lr-l , l  dr,, (2) 

Y 

where p(v) is the probability, per  unit time, of produc- 
tion of a photon of frequency IJ in radiative annihilation 
of the exciton, k(v) is the coefficient of absorption of 

light of frequency v in the crystal, and B(v) is a quantity 
equal to the fraction of absorption acts of light of fre- 
quency v, as a result of which excitons a r e  produced. 
The quantity B (v) is directly connected with the quantum 
yield ~ ( v )  of the exciton luminescence when light of fre- 
quency v is excited, namely 

so  that 

where E(v) is the luminescence spectrum normalized to 
unity: 

The assumption that the exciton becomes thermalized 
before i t s  decay that is accompanied by photon emission 
allows us  to regard the quantity p(v) in (2) a s  dependent 
only on the crystal temperature. The luminescence 
photon produced a t  the point r can also land at the point 
r, and experience one o r  several reflections from the 
crystal surface. This means that the possibility of re- 
flection of the luminescence light from the crystal 
boundaries i s  not taken into account in the kernel of the 
integral relation (2). It is clear that these reflections 
increase the role of the reabsorption. Single reflec- 
tions, the only ones of interest in the case of weak 
crystals, a re  taken into account in Ref. 9. Multiple 
scatterings, which are particularly important for films 
whose thickness exceeds slightly the photon mean f ree  
path, were considered in part  in Ref. 10, and we shall 
return to this question later. The use of relations (1) 
and (2), supplemented by the usual diffusion boundary 
conditions, enables us to study not only the distribution 
of the exciton in luminescent crystals a s  a function of 
the character of the source and of the conditions on the 
crystal boundaries, but also to investigate the time 
evolution of the spectral composition of the exciton lu- 
minescence as a function of i ts  thickness and shape 
(see Refs. 5 and 11). 

We emphasize once more that in the derivation of re- 
lations (1) and (2), o r  of those modifications of these 
equations which were mentioned above, i t  i s  assumed 
that the excitons and photons a r e  different well defined 
elementary excitations of the crystal and that the pro- 
cesses corresponding to their transformation into one 
another (i.e., the processes of absorption of light and 
luminescence) can be taken into account within the 
framework of perturbation theory in terms of the oper- 
ator of the exciton-photon interaction. At sufficiently 
low temperatures, however, as already mentioned, an 
appreciable fraction of excitons manages to "slip-off" 
into those parts of their spectrum (Fig. 1) where the 
assumption mentioned above is no longer valid. Under 
these conditions, relations (1) and (2) a r e  strictly 
speaking not well founded, and the entire problem as a 
whole calls for  a more exact analysis. 
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2. KINETIC EQUATION FOR POLARITONS AND 
GENERALIZATION OF THE EQUATIONS OF THE 
PHENOMENOLOGICAL THEORY OF REABSORPTION 

Allowance for the interaction between the Coulomb ex- 
citons and the electromagnetic field of the transverse 
photons in the harmonic approximation can be carried 
out with the aid of an appropriate u-V transformation 
(see, e.g., Ref. 11). The Hamiltonian of the new ele- 
mentary excitations (polaritons) corresponds in the 
vicinity of an isolated exciton resonance, a s  shown in 
Fig. la ,  to two energy branches, &,(k) and &,(k). If 
[(i)([+(i ))(i = 1,2) a re  the operators of annihilation (crea- 
tion) of a polariton with wave vector k of branch i, then 

+(O (0 h,= e,  (k) Et E k  . (4) 
k, 

Allowance for the exciton scattering by the lattice 
phonons leads to the polariton-phonon interaction. In 
the approximation linear in the displacements of the 
nuclei, the operator corresponding to this interaction 
can be  written in the form 

where rp,= b,+ b:, b,(b:) is the operator of annihilation 
(creation) of a phonon with wave vector q,  the quantities 
g, j(i, j = l,2)-the bare vertices-correspond to the 
transition of the polariton from branch i to branch j, 
accompanied by emission o r  absorption of a phonon. 
We have left out from the expression for Hi,, terms of 
the type ([+(P[++ H.c.); this, as will be shown below, is 
justified within the framework of the approximation 
used in the derivation of the Boltzmann kinetic equation. 

We assume below that the exciton-phonon interaction 
is weak enough and that the polariton level width corre- 
sponding to this interaction i s  small  a t  k << n/a (a is 
the lattice constant) compared with the longitudinal- 
transverse splitting A of the exciton." If ~ ( p )  is the 
free-path time of such a polariton, then the foregoing 
means that 

A> ill (PI. (6) 

Only in this case is the renormalization of the exciton 
spectrum as a result of the retarded interaction of im- 
portance. Consequently the use of the polariton mech- 
anism of luminescenee i s  justified only if the inequality 
(6) is satisfied, and i t  may become necessary to intro- 
duce those generalizations of the transport equations (1) 
and (2) which were referred to in the introduction. 

The equations for the polariton distribution function 
can be obtained with the aid of the equations for the 
nonequilibrium polariton Green's function. These equa- 
tions can in turn be obtained by using the diagram tech- 
nique developed, for example, in Ref. 12 o r  13. 

Assuming the exciton-photon interaction to be weak 
enough, we shall disregard also the effects of exciton 
autolocalization (see Ref. 14 for the corresponding 
criteria). In this case the equation for  the Green's 
function can be solved by iteration in the polariton-pho- 
non coupling constant g,, [see (5)]. In second order in 

g,,, the equation for the Green's function can be re-  
duced to the Boltzmann equation for the distribution 
function of the polaritons, in perfect analogy with the 
procedure used in Ref. 12 for  the electron-phonon sys- 
tem. Allowance for the succeeding iteration (see Ref. 
15), and also for the t e r m s  not accounted for in (51, in 
the form (5+rp[++ H.c.), does not change the structure of 
the equation for the polariton distribution function, and 
merely renormalizes the transition probabilities that 
enter in this equation. We shall not calculate here these 
probabilities, and merely show later how they can be 
connected with the phenomenological quantities D,T, 
k(v), &), etc., which enter in Eqs. (1) and (2) and 
which characterize the excitons when no account is tak- 
en of the polariton effects. The Boltzmann equation 
mentioned above for the distribution functions f r'(r, t), 
where i is the number of the branch ( i=2) ,  takes the 
following form2) 

where W s  is the probability of polariton scattering 
from the state (j, p') into the state (i, p), vi (p) is the 
group velocity of the polariton ( i, p), and IAi '(r, t) is the 
source of the polaritons. 

We shall show now how to obtain from the system (7) 
the transport equations (1) and (2) as well as those gen- 
eralizations of these equations which a re  due to  the 
presence of the additional waves, to allowance for the 
reflection of the luminescence photons from the crystal 
boundaries, and to scattering of the polaritons by the 
crystal defects o r  impurities. 

As already emphasized, in 4 s .  (1) and (2) we did not 
take into account the renormalization of the exciton and 
photon spectrum due to the retarded interaction. This 
approximation is justified for  sufficently high tempera- 
tures, when the average value of the wave vector of the 
thermalized exciton k, = (M is the effective mass  
of the exciton and T is the temperature in energy units) 
is much larger  than the quantity k,=E(O)/c ( E  i s  the ex- 
citon energy and c is the speed of light). It is precisely 
in the wave-vector region k z  k, that a substantial re-  
normalization of the exciton and photon spectrum takes 
place (see Fig. 1). At k, >>k, most excitons do not 
"feel" this renormalization and the excitons can be re-  
garded as in a state close to thermodynamic equilibrium 
with the lattice a t  each point of the crystal. 

In the approximation indicated above, the branch of 
the spectrum i = 1 can be regarded as corresponding to 
photons, while the branch i = 2 as corresponding to the 
excitons; we can then disregard the renormalization of 
their spectra in the region k s k ,  (dashed lines). Taking 
the foregoing into account, i t  must be recognized, when 
writing down the equations for the distribution functions 
the photons f:)(r, t )  =q,(r, t )  and for  the excitons f r ' ( r ,  t )  
=f,(r,t), but for photons the main scattering process in 
the energy region -E(k,) is a process in which the pho- 
ton goes over, with participation of the phonons, into an 
exciton (interband transition, see  Fig. la) .  On the other 
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hand, Raman scat ter ing of photons by phonons (intra- 
band transitions) correspond to the next higher approxi- 
mation in the  exciton-phonon interaction, and can be  
omitted here. At the s a m e  t ime ,  the situation f o r  ex-  
citons is reversed .  The mos t  f requent  f o r  them is 
precisely the intraband p r o c e s s  of scat ter ing by pho- 
nons. Nonetheless, the exciton-into-photon t rans forma-  
tion processes  mus t  a l so  be  taken into account, s ince  
they correspond precisely to  luminescence. If t h e  fo re -  
going is taken into account, Eqs. (7) can be  rewri t ten 
in  the form3': 

dtp(r ,  +-) - ~ ~ i p ( r ,  0 
t ~ ( p ) ~ =  J ( / ) + l p ( r , t )  

(If 

d'p' 
+J  ~~h~~ ( r ,  t )  - f ~ i : ~ i ~ ( r ,  t )  1, 

where v(p) and u(p) are the group velocities of the exci- 
tons and photons, and J(f) is the  collision integral  that 
corresponds to  the intraband p r o c e s s e s  of exciton sca t -  
ter ing by phonons. Inasmuch as a t  p >> k o  the  photon 
velocity u is much higher than the exciton velocity, we 
can leave out f rom (8) the t ime  derivat ive a(p/at, and 
we have 

where c (r, t )  is the density of the exci tons a t  the  point r 
and t ,  n; is the exciton energy Boltzmann distribution 
normalized to unity, and $,(r,t) is a s m a l l  "current" 
increment. Changing o v e r  in (8) in the usual  manner ,  
f o r  the excitons on1 y, to  t h e  diffusion approximation, 
we find that the functions c(r, t )  and q,(r, t)  sat isfy the  
equations 

where 

We sha l l  neglect hereafter  the  anisotropy and a s s u m e  
that the c rys ta l  is a plane-parallel plate  of thickness 
d(O -i x d )  and that the source  function of the exci tons 
I ,  depends only on  x . In this  c a s e  the distribution func- 
tions a r e  a l so  functions of x only. 

We represen t  the  distribution function q,(x, t)  i n  the 
fo rm of a s u m  

where cp:(x, t )  and q;(x, t )  a r e  respectively the dis t r ibu-  
tion functions of the photons moving t o  the  planes x = d  
and x = 0. If the  vector  u of the photon velocity makes  
an angle 0 with the ax i s  x(O6 0 ~r/2), then Eq. (111, 
with allowance f o r  the foregoing, can  be wri t ten i n  the 
f o r m  

u ( p )  cos 8 
1 

(x' t ,  + Qp(pp+ ( x ,  t )  = -FPc  ( x ,  t ) ,  
d x  2 

Consequently 

r i p { - k p x l c o s  8 )  
v p +  ( 2 ,  t ,  8 )  = 

kPS 
2u, cos 0 j r p c  o (E, t )  ~ X P  {=) dS 

(14a) 
cos 0 

e s p { k p z / c o s  0 )  
v p -  ( 2 ,  t. 8 )  = 

kP5 
2~ ( p )  cos R I F p c ( i ,  t ) e ~ p { - ~ } d i  

where  k,= @,/u (p)  is the  extinction coefficient f o r  the  
photons with momentum p .  

The  quantities A, and A,  must  be  obtained with the aid 
of the boundary conditions. In the genera l  c a s e  t h e s e  
conditions and the  values of A ,  and A, a r e  cumbersome 
i n  f o r m  and we there fore  confine ourse lves  h e r e  to  
only4' a semi-infinite c r y s t a l  (d  = 03). Inasmuch as the 
function qp cannot increase  x -  m, the value of A, is 
z e r o  in this  case.  On the o ther  hand the value of A, can 
be obtained f r o m  the boundary condition that  e x p r e s s e s  
the flux-balance condition: 

u ( ~ )  cos Ocpp+(O, t ) p 2 d p  s i n  8 d 0  

=r,  (0) u ( p )  cos Ocpp- ( 0 ,  t ) p z d p  sin e d 0  

+ap , ( lp )c (O,  t )  np ,8u(pI )  cos $p?dp, s in  lpd*, ( 1 5 4  
where rp(8) is the coefficient of specu la r  reflection of a 
photon with momentum P when incident on  the  boundary 
a t  an angle 8;  the exciton momentum p, and the angle $ 
a r e  determined f r o m  the condition 

p s i n e = p ,  s in*,  e , ( p ) = ~ % ( p , ) ,  (15b) 

and the  quantity ap,($) de te rmines  the probability of the 
interband t ransi t ion induced by the boundary and t rans -  
forming,  upon reflection, a n  exciton with energy c 2 ( p , )  
incident on the  c rys ta l  boundary a t  a n  angle II, into a 
photon having the s a m e  energy. Taking (15b) into ac -  
count, we get the following condition on the boundary: 

The possibility of th i s  p r o c e s s  is due to the allowance 
f o r  the spat ial  d i spers ion  in the dielectr ic  t ensor ,  s o  
that  a,,($) depends on the f o r m  of the additional bound- 
a r y  conditions (ABC) ( see  Ref. 6). 

The values of the function q,(x, t )  in  (10) a r e  de te r -  
mined [see (13) and (14)] by the relat ion 

+ap (Q) nP?c(0, t ) e x p  {- 2). (16) 

Therefore, if we take into account a l so  (12), the f i r s t  
t e r m  in the right-hand s ide  of (10) can b e  represented 
as a sum of two contributions, J ,  + J,: 

av - ( x  t )  1 
u ( p )  cos 8 -- - Q,qp-  ( x ,  t )  = - Fpc ( x ,  t )  . a x  L 
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w 
P' 

&(I)= J ~ X P  {- OaP(0)de, (v) = -- 
cos e (2n\2 dv FP. (18) 

0 

The term J, i s  due to reabsorption of the exciton lumi- 
nescence: the radiation [the polaritons of branch 1 (see 
Fig. 1) produced in the radiative decay of the exciton at 
a depth [ ]  is absorbed at a depth x with formation of ex- 
citons (polaritons of branch 2). Naturally, J, i s  deter- 
mined by the overlap of the luminescence and absorp- 
tion spectra [see (17a)l. 

'Ihe presence of the function R, in the expression for 
J ,  i s  due to the reflection of the luminescence from the 
crystal boundary, s o  that R, = 0 a t  r,= 0. Thus, when 
reabsorption is taken into account, the term J, i s  the 
usual term in the kinetic equation (10) (see Refs. 5 and 
11). 

What is unusual in this equation i s  the term J,. It 
manifests itself only within the framework of a theory 
that takes consistent account of the spatial dispersion 
and the additional waves. The foregoing becomes clear- 
e r  if it is recognized that to find J ,  i t  was necessary to 
take into consideration the boundary condition (15). In 
this boundary condition, the last term in the right-hand 
side determines the flux of the photons that go into the 
interior of the crystal and a r e  produced as a result of 
the inelastic exciton collisions with the boundary. This 
is precisely why J, i s  proportional to the electron con- 
centration on the boundary and, in contrast to J , ,  does 
not vanish even in those crystals where the absorption 
and luminescence spectra do not overlap. Thus, reab- 
sorption is realized even at J, = 0. However, for the ex- 
istence of the reabsorption connected with the quantity 
J,, the boundary plays an important role: the excitons 
produce photons only when colliding with the boundary, 
while the photons a re  absorbed in the volume. Pro- 
cesses of this kind will be called induced surface reab- 
sorption (IS@. 

To estimate the contribution of ISR to transport pro- 
cesses and to formation of the luminescence spectrum, 
we must know the coefficient a,($) of the conversion of 
an exciton into a photon when the exciton i s  reflected 
from the surface of the crystal. To estimate a, we con- 
sider the problem of reflection of a polariton of branch- 
2 with momentum p, p >Po (the polariton hardly differs 
from the exciton in this momentum region), incident 
from the interior of the crystal on its surface, assum- 
ing the incidence to be normal. On the surface of the 
crystal (see Fig. 2) the incident polariton energy flux 
S breaks up into three fluxes5' S,, &, and &, where S, 
and S, a r e  the reflected fluxes corresponding respec- 
tively to the polaritons of the first  and second branches, 
while S, is the light energy flux emitted from the crys- 
tal. The sought coefficient of conversion of excitons in- 
to photons, i.e., the quantity a,, i s  equal to the ratio 
q/S. In a cubic crystal, with allowance for spatial dis- 
persion, the dielectric constant for the vicinity of the 
dipole-allowed exciton resonance can be expressed in 
the form 

D 

FIG. 2. Polariton fluxes on the boundary: S-flux of polaritons 
of branch 2 incident on the boundary. 81 and &-reflected 
fluxes of polaritons of branches 1 and 2 respectively, S3- 
flux of outgoing photons. 

where w is the frequency, k is the wave vector, n2 
= k2c2/w2, fl =fiwew2/m*c2, we i s  the frequency of the ex- 
citon at k = 0, wt = w:(&, - & .,), co and & ., are  respectively 
the static and high-frequency dielectric constants. In 
this case (see Ref. 6) the expression for the polariton 
energy flux of branch i takes the form: 

where ni  is the proposed real  refractive index, @ = W: 

- w2+&Ylf, Ei i s  the amplitude of the electric field in the 
polariton of branch i. Using this expression for the en- 
ergy flux and the relation6 @w:= -@,@,, we can rewrite 
the coefficient a, in the form 

where E is the amplitude of the electric field intensity 
of the polaritons of branch 2,  which a re  incident from 
the inside on the surface of the crystal, whereas El is 
the amplitude of the electric field intensity of the polar- 
itons of branch 1, which propagate from the boundary 
into the boundary of the crystal and which a re  in the 
considered frequency region in practice photons with 
refractive index nlS K. 

In the presence of additional light waves (polaritons 
of branch 21, the ordinary boundary conditions that fol- 
low from Maxwell's equations a r e  insufficient for the 
solution of the boundary-value problems, and it i s  nec- 
essary to use also the ABC. We use here the simplest17 
ABC in the form Pe I .=,= 0, where Pe is the exciton part  
of the polarization of the medium. The use of ABC and 
of the ordinary boundary conditions enables use (see, 
e.g., Ref. 17) to determine expressions for all the elec- 
t r ic  field intensities. The expression for the intensity 
E l  of interest to us and contained in (19) i s  of the form 

From (19) and (20) i t  follows that the coefficient a, 
depends strongly on the parameters of the exciton tran- 
sition and can vary in a rather wide range. We shall 
calculate a, numerically for the crystals CdS and CuC1, 
which a re  frequently encountered in experiments. The 
results of the calculations a r e  shown in Fig. 3. It fol- 
lows from this figure that a, depends strongly on the 
exciton momentum. Excitons in the momentum region 
p >Po can be regarded a s  being in thermodynamic equi- 
librium with the lattice. To find the mean value z(T) it 

336 Sov. Phys. JETP 51(2), Feb. 1980 Agranovich eta/ .  336 



coefficients. These coefficients can now be represented 
in the form 

- -- 

FTG. 3.  Plot of a ( ~ ) :  1-for CdS, 2-for CuCl. 

is therefore necessary to average a, over the Boltz- 
mann distribution nB (p) 

w 

a ( T )  = a p n B ( p )  d p .  
0 

Thus, the effectiveness of conversion of the excitons 
into photons that move from the boundary into the in- 
t e r io r  of the crys ta l  turns  out t o  depend on the tempera-  
ture. However, even from the form of the a, depen- 
dence (see Fig. 3) it follows that t he  z(T) function i s  not 
monotonic with increasing T: a t  sma l l  T the value of 
z (T)  increases,  reaches a maximum in the temperature 
region T = w,, - y, E (w,,) = 0, and then decreases  rapidly. 
It follows therefore from the foregoing that the ISR 
mechanism proposed here  can be considered only for  
the temperature region where z(T) i s  a maximum. 

In crystals  of the CdS type, for  a wide range of tem- 
peratures,  the t e rm J, in the right-hand side of the 
transport  equation f o r  the excitons (10) can be neglected 
and only the t e rm J ,  need be taken into account. The 
equation (10) is no longer integral, and this  makes i t s  
analysis much s impler .  We shall return t o  th is  ques- 
tion. At present, however, we proceed to an  analysis of 
the influence of the lattice defects (or impurities) on the 
reabsorption with allowance for  the additional waves. 

The presence of lattice defects can lead to trapping of 
the excitons and to  luminescence that is sensitized by 
them. We shall not consider this  process  here,  how- 
ever .  We take into account below only the possibility of 
elast ic  and inelastic scat tering of polaritons by crystal  
defects, which leads to their intraband and interband 
transitions. It was already emphasized in Ref. 4 that 
the already mentioned interband transitions can lead to 
a number of spec t ra l  singularities of the exciton lumi- 
nescence. No l e s s  interesting, however, i s  apparently 
the new reabsorption process,  which i s  discussed below 
and i s  controlled by the impurities o r  lattice defects. 

The appearance of additional scat tering (i.e., sca t te r -  
ing by lattice defects) makes now the polariton sca t te r -  
ing probability W$, in Eqs. (7) of a sum of two t e rms ,  
corresponding to scat tering by the phonons and by the 
impurities (defects). The arguments in Sec. 2 remain 
valid in this case,  too. Now, however, al l  the kinetic 
coefficients in (10) and (11) change because of the 
change of the scat tering probability W$.  The diffusion 
coefficient i s  changed by those polariton-impurity scat- 
ter ing processes which leave the polariton on the same 
branch of the spectrum (in our  case, on the second 
branch). On the other hand, the processes  discussed in 
Ref. 4, which lead to  t ransfer  t o  another C'optical") 
branch of the spectrum, a l te r  a l so  the remaining kinetic 

where the indices ph and imp denote respectively the 
t e r m s  due to scat tering by phonons and impurities. In 
the presence of impuri t ies  we obtain also reabsorption 
t e r m s  J, and J,, in which, however, the meaning of the 
coefficients k(v) and p(v) i s  different. Thus fo r  J, (vol- 
ume reabsorption) we obtain from (17a) the expression 

Thus, in the case  discussed here the volume-reab- 
sorption t e rm can be represented a s  a sum of four 
t e rms ,  three of which a r e  due only to allowance fo r  the 
polariton scat tering by the impurities. As seen from 
the expression given for  J,, the exchange-reabsorption 
t e r m  i s  present  even fo r  exciton s ta tes  with arbitrari ly 
sma l l  overlap of the light emission and absorption spec- 
t r a .  In this  limiting case  we need retain in the expres-  
s ion for  J, only the t e r m s  pi,,(v) o r  ki,,(v), which a r e  
proportional t o  the impurity o r  defect concentration. 

Thus, allowance fo r  the additional waves leads to new 
(surface o r  volume) reabsorption sources.  The relative 
role of these reabsorption sources can vary greatly for  
different c rys ta ls  and they must  be taken into account 
f i r s t  of all in cases  when the ordinary reabsorption 
mechanism does not work. In the next section we dis-  
cuss  the role of ISR in grea ter  detail. 

3. LUMINESCENCE DAMPING TIME WITH 
ALLOWANCE FOR ISR 

As already indicated (see Sec. 2), in crystals  in which 
the radiation and emission spec t ra  overlap weakly, we 
can neglect the volume reabsorption and take into ac-  
count at  sufficiently high temperature only the surface 
reabsorption. The exciton diffusion coefficient then 
takes the form 

d c ( z ,  t )  d 2 c ( x  t )  C(Z t )  
-- D - + - = I , x e - = + z  ( x )  c (0, t )  , 

d t  d x' T 

where I, is the intensity of the external source of the 
excitons, and the expression f o r  P ( x )  i s  given by (17b) 
and (18). 

For  simplicity we confine ourselves a s  before to 
semi-infinite crystals  (x  3 0). We consider the f i r s t  the 
solution of Eq. (21) in the stationary case, when the ex- 
citon density does not depend on the time. In this case 
the general  solution of the stationary equation, which 
we denote here by u (x), can be written in the form 

I , x r  
u ( x )  =U ( 0 )  e-"I1+ --- (e-~=-e-"') 

( 1 - x 2 P )  
"I? 

p'dp exp ( -k ,x /cos  0) - exp ( -x /1 )  
- I - ru(0)  U ) ~ ~ I ~ , B !  d o  sin O a , , ( v ) -  

(ln) ~ - ~ ' ~ , , V C O S  0 
(22) 

where I =a i s  the diffusion displacement length of the 
exciton. In the diffusion approximation, the boundary 
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condition on the crystal surface x = 0 i s  of the form 

where the surface-annihilation coefficient 2- 0 i s  de- 
termined by the possibility of capture of an exciton by 
traps on the surface and the possibility of i t s  conversion 
into a luminescence optical quantum. Using the bound- 
ary  condition (23), we find that the density of the exci- 
tons on the crystal surface u(0) is of the form 

where - 
L (k) = j P (z) e-h& 

0 

is the Laplace transform of the function Y(x) .  It is 
seen from (24) that for the existence of a stationary 
solution. It is necessary to satisfy the inequality 

Using (17b) and (18) and taking the Laplace transform of 
the function 4P(x), we find that 

and consequently the inequality (25) i s  always satisfied. 
We consider now the question of the damping time T, 

of the crystal luminescence. We assume here that dur- 
ing the time of irradiation a stationary exciton distribu- 
tion has been established in the crystal and i s  described 
by formula (22), i.e., c (x ,  t )  1 ,=,=u(x). According to 
Refs. 5 and 11, the luminescence damping time i s  de- 
fined as follows: 

where g(w) i s  the extinction coefficient a t  the observa- 
tion frequency, while C (k,  w) and U (k) a r e  the Laplace 
transforms of the corresponding functions. Consequent- 
ly, to determine T, there i s  no need to solve Eq. (21) 
with the corresponding initial and boundary conditions, 
and i t  suffices to know the Laplace transform C(k, W) 
of the exciton density. Taking the Laplace transform of 
(21) and putting w = 0, we get 

where G(k) = ~ / ( 1  - D7k2), and the integration contour 
passes to the right of the imaginary axis. The integra- 
tion i s  easy, since the functions U ( I z )  and L(k)  have no 
singularities in the right-hand half-plane and conse- 
quently only the poles of the function G(k) in the right 
half-plane contribute to the integrals. We obtain ulti- 
mately 

Putting for simplicity p = 0 and assuming that (aT)% 0.1 
(see Fig. 3),  we get ~ ~ / r = l + ( a ~ ) = l . l .  

Allowance for the second boundary increases the role 
of surface reabsorption. For  sufficiently thin films, the 
contributions from the two boundaries add up, i.e., 
T,/T = 1 + (aT) + (BT) (B is the coefficient of conversion 
of an exciton into a photon on the second boundary), and 
a t  a=B we have T , / T ' J ~ . ~ .  

Thus, for crystals with weakly overlapping emission 
and absorption spectra, the contribution of the ISR to 
the increase of the luminescence damping time turns 
out to  be  of the same order  a s  the contribution from the 
volume reab~orpt ion.~*"  

4. CASE OF LOW TEMPERATURES 

At sufficiently low temperatures, lower than the long- 
itudinal-transverse splitting A of the electron, the 
greater part  of the excitons a re  in the region of the 
longitudinal-transverse splitting6' and a significant role 
is assumed by the processes of scattering by photons 
inside the lower polariton branch, accompanied by the 
transition of the polariton into the region of low wave 
vectors. In order  not to clutter up the calculations in 
this section, we shall not consider a t  all the upper 
(first) polariton branch, although in principle, of 
course, it is not difficult to take this branch into ac- 
count. The distribution function f,(x, t) of the polaritons 
in the second branch satisfies an equation that follows 
from (7) and is of the form 

,We divide the lower polariton branch into two momen- 
tum regions: 1) p <Po, 2) p >Po, where Po  is the wave 
vector of the light at the frequency of the exciton reso- 
nance (see Fig. lb). This, a s  yet formal, division leads 
us to a system of kinetic equations f o r  the polariton dis- 
tribution functions in the region 1) f:)(r, t )  and in the 
region 2) f f ' ( r ,  t ) ,  which coincides completely with the 
system of equations (7), provided we assume in them 
that the index i numbers the subdivision regions and not 
the polariton branches. Just  as in the upper polariton 
branch, the basic scattering process for the "photon- 
like" polariton in region 1) i s  scattering by a phonon 
with a transition into region 2); this enables us to neg- 
lect the proper collision integral in this region. In the 
second region, in turn, a s  already noted in Sec. 2, the 
most intense is the scattering by phonons inside a re-  
gion, and this scattering establishes thermodynamic 
equilibrium between these particles and the lattice. 
This enables us to use for these particles the diffusion 
approximation [we note here that when speaking of the 
lower-branch polariton everywhere in Sec. 2 we had in 
mind precisely the "excitonlike" polaritons in region 
2)]. This collisionless-hydrodynamic model of the 
transport phenomena fo r  the lower polariton branch 
leads, obviously, to the exciton diffusion equation (10) 
with an integral term in  the right-hand side in the form 
(1 7a). 

The indicated subdivision into only two regions-col- 
lisionless and hydrodynamic-is possible (see Refs. 7 
and 8) only for crystals with small oscillator strength, 
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and consequently with a nar row transi t ion region. A s  
already noted, f o r  example, i n  Ref. 8, the contribution 
of the polaritons situated inside the bottleneck can  i n  
th i s  case  b e  neglected. 

F o r  c rys ta l s  with l a rge  osci l la tor  s t reng th  (for ex- 
ample, anthracene), the t ransi t ion region with momen- 
tum p-Po is broad, i t  contains many part ic les ,  and can 
no longer be  neglected. In th i s  region the  proper  colli- 
s ion integral  is of the o r d e r  of the integrals  of colli- 
s ions with t ransi t ions into o ther  regions,  making it dif- 
ficult to analyze theoretically the  t r a n s p o r t  phenomena 
and calling f o r  a numerical  solution. 

In conclusion, the authors  thank N. A. Efremov and 
Yu. E. Lozovik f o r  helpful discussions.  

APPENDIX 

We consider a f la t  c rys ta l  of finite thickness  d. In 
th i s  case, besides the boundary condition (15), at x = 0, 
it is necessary  to have a condition on  the second s u r -  
face x=d: 

cpp-(d, t )  up cos 8 sin 8d!3pZdp=R,(8) rpp+ (d, t) up cos 0 sin edOpZdp 

+PD,(9)c(d)nD?up cos $ sin Ipd$pp,'dp,, (A. 1 )  
P sin 8=p, sin $, el(p) =e,(p,), 

where the quantities R and P are assumed to be  differ- 
e n t  f rom the corresponding quantities Y and a on the 
sur face  x = 0. Substitution of (14a) and (14b) in  (1 5a) and 
(A.l) leads to a sys tem of a lgebra ic  equations f o r  the  
coefficients A, and A,, the solutions of which are 

nptB 
A&- -[ap (0) c (0, t) exp - - 

A 0.0) 
{ cfi: ) +rg (8) Bp (0) c(d, t) ] , (A. 2)  

where 

A (p, 8) =exp{k,d/cos 8) -rp(0) R,jO)exp {-k,d/cos 8). 

The integral t e r m s  (-F,) are cumbersome and will not 
be  written out here.  Neglect of these  t e r m s  c o r r e -  
sponds to neglect of t h e  volume reabsorption. Leaving 
out the volume reabsorpt ion t e r m s ,  we have the follow- 
ing exciton-density diffusion equation 

ac(x' t ,  - D a Z C ( 5 , + f C ( Z , t ) - I o x e - - + c  (0, t ) F ,  (z) +o(a, t )Z%(x),  
at a l t  z 

where 

d% n,,B 
" ' x ' - J ~ a ( p , e )  

pp (0) [exp {k,x/cos 8) +rP exp {-kpx/cos 13) I.  

"we use a system of units with ti= 1. 
"If the exciton-autolocalization effects do take place, but the 

wave vector p at  p << n/a remains for them a "good" quantum 
number and the inequality (6) also retains its form, then i t  

seems that the results of the analysis presented below re- 
main in force. All that change a re  the meaning and method of 
calculation of the quantities v ,  W ,  and I in (7). These quan- 
tities can now also be obtained by perturbation theory in 
which, however, the states of the zeroth approximation 
should be taken to be the states of the polaritons (excitons) 
with autolocalization effects taken into account. The problem 
of autolocalization of electrons in semiconductors is discus- 
sed in  Ref. 16. 

3 '~n  the considered approximation, allowance for the polariton 
effects is nevertheless important when the boundary condi- 
tions a r e  considered. X t  is precisely allowance for these ef- 
fects which leads to new reabsorption mechanisms (see be- 
low). 

 he results for arbitrary d a re  given in the Appendix. 
 his is a manifestation of the polariton nature of the dis- 

cussed elementary excitations. If we neglect the exciton- 
photon mixing effect, then the fluxes 8 I =  S2= 0 and there i s  
no conversion of excitons into photons on the boundary. 

6 ' ~ n  the same region of the spectrum are  located the surface 
polaritons. See Ref. 18 for their possible role. 
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