
In the conditions of the Earth's magnetosphere d -(2 to 
3 ) x  lo7 cm, which agrees with the observational re- 
sults. 
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Photon coalescence in a dispersive medium when 
scattered by impurity centers without a change in its state 
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The probability of scattering multimode light by impurity centers, with absorption of an arbitrary number of 
photons and production of a single photon (photonaalexmce probability) is calculated for an isotropic 
medium with frequency dispersion but not with spatial dispersion of the dielectric constant in the 
transparency region. It is shown that the probability depends not only on the total number of centers but also 
on their distribution in space. The following eases are considered, 1) uniform concentration of the centers, 2) 
specified coordinate dependence of the concentration, 3) center concentration randomly fluctuating in space. 
The previously derived equations for the coalexmce probability of two or three photons (uniform 
concentration of the scattering centers) differ from those obtained in the present paper, which makes use of 
consistent quantization of the field in a dispersive medium [S. I. Pekar, Sov. Phys. JETP 41,430 (197511. 

PACS numbers: 42.10.Ke, 78.50. - w 

Multiphoton processes  i n  a dispersive medium must 
be treated by quantizing the electromagnetic field in the 
medium. This  quantization was considered in a number 
of papers on the basis  of crystal  mi~ ro theo ry . ' -~  In 
these papers they used not the complete system of the 
crystal  basis  functions, but only i t s  excitonic excita- 
tions. The resul t s  of these papers are therefore valid 
only in a narrow spectral  region near the exciton reso-  
nance. When photons coalesce, however, the frequency 
of the light wave changes severalfold, and to analyze 
the coalescence we must  be able to quantize the field in 
a wide spectral  region. This is why the resul t s  of Refs. 
1-3 are not used in the theory of photon coalescence, 
and in  part icular  in the present  paper. 

The coalescence of photons (the generation of multiple 
harmonics) on molecules of the host substance was p re -  
viously considered a number of t imes (see, e.g., Refs. 
4-8). In these studies the field was quantized in a wide 
spectral  interval, the light waves were considered 
macroscopically, and the dielectr ic  constant of the 
crystal  ~ ( w )  was introduced phenomenologically. The 
field quantization, however, was not consistent: the 
electromagnetic-field energy operator  w a s  postulated 
in the form 

but the form of the operators a; and a, was not derived 
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and their commutation law was not proved, but was 
written in analogy with a nondispersive medium. Dif- 
ferent connection of the operators a; and a, with the 
vector potential of the field were assumed by different 
authors. The solution of the same problem led there- 
fore to different results (cf., e.g., Refs. 5 and 7). 

A consistent method of field quantization in a disper- 
sive medium, applicable in a wide spectral interval and 
with &(w) introduced phenomenologically, was proposed 
in 1975.9 In the absence of dissipation, i.e., when the 
electromagnetic field l ies in the transparency region of 
the crystal, canonically conjugate quantities with a 
known commutation law were separated in the expres- 
sion for the field energy, and the photons in a disper- 
sive medium were obtained in consistent fashion. It is 
this quantization method which will be used here. 

In a preceding paper'' we calculated on the basis of 
this method9 the probabilities of multiphoton processes 
occurring a t  local centers and accompanied by a change 
in the states of the centers. In a number of cases the 
expressions obtained for the probabilities turned out to 
be different from those used earlier.  In the present 
paper we consider multiphoton processes in which the 
centers remain in the initial state, i.e., there is no 
energy exchange between the radiation and the center. 

The unperturbed free-photon energy operator W is 
expressed with account taken of the dielectric constant 
E(W) [i.e., under the assumption that the phonon disper- 
sion law i s  of the form k = WE'/~(W)/C, and not k = w/c], 
and contains consequently in part  the interaction W' of 
the light with the molecules of the host substance. In 
the treatment of the scattering of light by the host mole- 
cules, the perturbation of the operator W is therefore 
not W' but some difficult-to-separate part of W'.  This 
circumstance has escaped attention of most workers 
dealing with the interaction of light with the crystal host 
substance, who took the perturbation to be W'. Not 
seeing a t  the moment how to solve this problem cor- 
rectly, we consider the interaction of the light with the 
impurity centers whose contribution to  the polarization 
is not yet included in & (w). In that case we do not en- 
counter the aforementioned difficulty. 

We consider on the basis of Ref. 9 the processes of 
absorption of several photons by impurity centers, with 
generation of one photon with the summary frequency. 
The medium is assumed to be transparent, isotropic, 
having frequency but not spatial dispersion of &(w) and a 
magnetic permeability 1 = 1, bounded by the parallel 
planes z = 0 and .z = L, with the dimensions of the cyclic- 
ity L, and Ly in the x and y directions much larger than 
L. The operator of the photon energy in the medium i s  
of the formg 

where k are wave vectors whose quasidiscrete spectrum 
is determined by the cyclicity conditions (the surface 
effects are  not considered) and 1 numbers the roots of 
the dispersion equation 

e ( o )  o'/cX=kl (2) 

at fixed k. We denote these roots by w:,, where I 
= 0,1,. . . , s,. The polarizations of the mode a re  num- 
bered by the index v = 1, 2, and a;,, and a,, are  the 
Bose creation and annihilation operators of a photon of 
mode I, k,v. 

The operator of the vector potential of the field is 

A(r)=~ek,c"r(~/vm(oI~)~lk)'~(aIkL+aI~-k,t), (3) 
1kv 

where e, is a unit vector of the polarization of the 
mode Ikv, and 

The energy operator of the interaction of one center 
with the electromagnetic field is of the form 

here d is the operator of the dipole moment of the cen- 
ter ,  and A(r) i s  the operator of the vector potential of 
the field at the location r of the center. The number of 
values of the vector k in the frequency interval dw and 
inside the solid angle dS2 i s  

1' Ve',,  ( 0 )  
p(o)dQdo= Tdkzdk ,dk ,=  - m ( o )  oZdodQ. 

(2n) /mlc 

We present below expressions for the probabilities, 
per unit time, of the processes of interest to us. It i s  
assumed that at the initial instant of time there a re  
specified the numbers of the photons whose phases a re  
perfectly random, and the usual perturbation theory" 
i s  used, in analogy with the procedure used by Hop- 
field.' 

We use the following notation. The symbols w;, 
l@, ' .  . . denote that the process in questlon consists of 
production of one photon of frequency w,  and polariza- 
tion el and absorption of I ,  photons of frequency w, and 
polarization e,, etc. The presence of the factor dw,, 
da,, or  d3k1 means that the photon w, i s  produced in the 
frequency interval d w ,  and inside the solid angle dQ,, 
or  else in the element d3k1 of the wave-vector space. 
The radiation has the exact frequencies w,, w,, . . . , w,. 
The state of the entire system i s  designated by the 
aggregate of indices i, . . . , n ,,. . . , where i i s  the set  of 
quantum numbers characterizing the state of the me- 
chanical subsystem, and n,, is the number of photons 
in the mode lkv. 

The probability of emission of a photon of frequency 
w ,  upon coalescence of I, photons w,,13 photons 
w,, . . . , I ,  photons w, i s  equal to 

where F =  1 +I,+. . . + L A  i s  the total number of photons 
participating in the process, the expression m(. . .) is 
given in the Appendix, and 

here j i s  the number of the impurity center, r j  is its 
coordinate, and Ak is the vector sum of the wave vec- 
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tors of the absorbed photons minus the wave vector of 
the produced one. For example, in the case of genera- 
tion of a photon w, a t  the doubled frequency w, = 2w, we 
have Ak=2k, -k,. The summation in (8) is over all the 
impurity centers of the crystal. 

At X= 2 and 1,=2 Eq. (7) describes the generation of 
photon w, a t  double the frequency of the incident mono- 
chromatic light beam: 

(9) 
At X = 2 and 1, = 3 we have generation a t  tr iple the f r e  - 
quency of the incident light 

At X=3 and 1, =1, = 1 we have emission of the photon w, 
upon coalescence of the photons w, and w,: 

nzn3 h x J6(ot -w=-os)d5ki  etc. 
m202m,os  4n'Vzcem,o, 

We calculate on the value of J for various possible 
distributions of the centers in  space. 

a. Equiprobable distribution of the centers in space. 
Inasmuch a s  arbitrary mutual dispositions of the cen- 
t e r s  can be encountered in a large volume, the quantity 
(8) must be averaged over all the possible equiprobable 
dispositions of the centers over the cells. We carry  
out the averaging, a s  before,', under the assumption 
that: 1) not more than one center can be localized in a 
unit cell of the crystal; 2) the center can occupy in the 
cell only one position; 3) in all other respects all the 
distribution of the centers over the cells a r e  equally 
probable. Expression (8) must be summed over all  the 
integer lattice vectors r, and rj, with account taken of 
the identity of the centers, and must be divided by the 
number of terms, which i s  equal to (V/A)!N 1 (V/A - N ) !  ; 
here A i s  the volume of the unit cell and N i s  the num- 
ber of centers in the crystal. Recognizing that the num- 
ber  of terms with r j + r j ,  in (8) is N(N - I), and that the 
number of the distributions of all  the centers over the 
cells, wherein the cells occupied a r e  those having co- 
ordinates r, and r,. i s  equal to 

and the summation over all the possible locations of the 
two particles reduces to 

r,+rz 

we obtain 
I=I,+J:,  

1 2 = N [ l - N M V ] ,  

where 

and the fact is used that the dimensions of the medium 
along the axes x and y greatly exceed L. 

The probability (7) is now represented by a sum of 
two terms: 

corresponding to the t e r m s  in  (12). For  simplicity we 
assume that the incident primary radiation propagates 
along the z axis, i.e., k, 11 $. . . I 1  k,ll z . It follows then 
from (13a) that 9, determines the probability of the 
production of a photon with k, strictly parallel to z .  
The integral probability of this process i s  equal to 

Q, as a sharp peak subject to the synchronism condition 
A k,= 0 o r  

.-a 

and tends rapidly to zero  with increasing Ak,. The term 
, determines the probability of production of the pho- 

ton w, with arbitrary direction k,. The probability of 
production of a photon with a wave vector in the solid- 
angle element dS2, is equal to 

Unfortunately, the literature has dealt with coales- 
cence of photons not with impurities, but only with mol- 
ecules of the host material, and this makes it difficult 
to compare our results  with the published ones. A com- 
parison i s  nevertheless possible if: we ignore the re-  
mark made a t  the s t a r t  of the article, i.e., there a r e  
no grounds for  taking the perturbation to be U also when 
processes in the host substance a r e  considered; b) the 
connection (3) between the creation and annihilation 
operators is replaced by a connection used by others, 
i.e., the coefficient (4) is replaced by the quantity &(w)/ 
2ncZ; c) the number N of the impurities is replaced by 
the number V/A of the molecules in the host substance. 
As a result, our formulas yield J, = 0, Q, = 0, and J, and 
Q, a r e  given by expressions cited by others4-' for pro- 
cesses on the host molecules.'~ 

In the case of scattering by impurities, in contrast to 
the host substance, the term Q, (15) makes possible 
the coalescence of photons in those media in  which the 
synchronism condition Ak=O is satisfied. The ratio of 
the probability of production of a photon with k, strictly 
parallel to  z t o  the probability of production of a photon 
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with arbitrary direction of k, is of the form 

- I  

x ( j I B ( ~ , + . Z ~ ~ ~ - ,  . . . , z I o . - ,  ~ z a o , )  . 

Let us  estimate this ratio, assuming approximately 
that the last factor in the right-hand side of (16) equals 
1/4. For  

~ ~ - 2 .  1 0 ' " ~ e c - ~ ,  NIV-10Lkm-' ,  81-10, 

we obtain 

q-lO"g(Ak.) - 
if L is given in centimeters. 

According to Ref. 6, in the case of generation a t  the 
tripled frequency g assumes for various crystals values 
from 1 to It is seen from this that can be con- 
siderably larger  as well as considerably smaller than 
unity. 

b. ~ o n e ~ u i l i b r i u m  distribution of the impurities. We 
consider now the case of a nonuniform distribution of 
the impurities in the crystal. For  example, according 
to a number of studiesL3 the distribution of the impuri- 
t ies  along the growing crystal can be given in real  con- 
ditions not by a monotonic curve but by an oscillating 
one. The calculation of J in the case of a spatial depen- 
dence of the impurity concentration v(r) and subject to 
the inequality r, << Ak-l,r, << L (r ,  is the average dis- 
tance between the impurities) leads to the elrpression 

J=VIvAr12, (18) 

where A k has already been defined, and 

Formulas (18) and (19) should be used if the function 
v(r) is specified. 

We consider now the case when the concentration 
fluctuates randomly in space. We put 

v ( r )  =v ,+Av( r ) ,  v O = ~ o m t  (20) 

and, regarding A v(r) as a random quantity, we intro- 
duce the correlation function 

1 
F ( R )  = -5 drAv(r)  Av (r+R). (21) 

v 
Specifying F (R) in Gaussian form 

F ( R )  (22) 

and using (18),(21), we calculate J: 

J=Jl+J,, (23) 

where J, i s  given by (13a), Q by (141, and 

{ (Ak=)2;;AkJ2 1; j ~-Bz2+idk.z~. I,= l Avak lava= VF, exp - 
-L 

(24a) 

or,  if the inequalities L >> P-'I2, L >> A k-l, hold, 

1,-VFo(n/p)" exp {- ( A k )  "48).  (24b) 

Substituting J3 in (7) we obtain, after integrating with 
respect to the frequency, the probability of production 
of a photon w, in a solid-angle element dS1,: 

If the number of impurities N is replaced by the num- 
b e r  of molecules of the host material V/A, then Fo=Q3 
= 0. 

If the concentration is homogeneous only along z ,  
e.g., in the crystal growth direction, then 

i.e., only a photon with k, 1 1  z is produced. The prob- 
ability of i t  production per unit time i s  

At a k 2 =  48 we have 

According to Ref. 6, in this case of frequency tripling 
Ak assumes for various real  crystals values from 1 to 
lo4  cm-'. Therefore, depending on the value of F,L, 
the ratio q' can be both much larger and much smaller 
than unity. 

We note that the perturbing macroscopic field that 
does not vary smoothly in space, which enters in the 
Schr6dinger equation and in (5) should be _chosen to be 
not A(r), but the local microscopic field A(r)=x(r)A(r) ,  
where the tensor x ( r )  has the same periods of the lat- 
tice if the impurity does not force out a molecule of the 
host substance from i ts  site. The macroscopic field i s  
obtained from the microscopic one by averaging the 
lat ter  over the volume of the unit cell of the crystal, 
i.e., the mean value of x over the cell volume i s  %=I .  
It i s  shown in Ref. 14 that the mean value of x along any 
straight line passing through the cell parallel to the 
edge of the cube is also equal to unity. It can be shown 
that the mean value of x along any curved line that joins 
equivalent points of adjacent cells i s  also equal to unity. 
Therefore if the radius of the center i s  much larger 
than the lattice constant, then x can be replaced by 
unity, i.e., ignored. If the radius of the cell is small, 
then n must be introduced, and this leads to a some 
change in the numerical values of the matrix elements 
D i j  in Eq. (31). 

APPENDIX 

We use the following notation: X is the number of 
modes (phonon species) participating in the process; S 

is the number of the mode (1 s s x); I ,  is the number 
of vanishing o r  produced photons of mode S ;  
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is the total number of photons of all modes participating 
i n  the process;  q is the number of photon and numbers 
in  succession f i r s t  the photons of mode s = 1, next of 
mode s = 2, and s o  on (1 6 q F ) .  For  example, in  
W(w;,2w;,5wJ we haveX=3,  1,=1, 1,=2, 13=5, and 

F =  8; the f i r s t  photon of the third mode h a s  q = 4. We 
note that the q that satlsfy the inequality 

number the photons of one mode s . 
We put next 

We designate the multidimensional quantum numbers of 
the mechanical subsystem by i,,i,, . . . , where i, are the 
initial and i,, . . . , iF- ,  a r e  the intermediate subsystems. 
Then the quantity !Dl(. . .) in (7) and in other equations 
takes the form 

Here P denotes the permutation of the numbers of two 
photons from different modes, say q N  and q". This in- 
terchanges the indices of the polarization vectors,  
ep,,teq,,,, and of the frequencies, W ( ~ " ) = W ( ' J ~ ) .  The 
sum C,P i s  taken over all the permutations of the 
numbers of photons from different modes, but the num- 
b e r s  of the photons of the same mode are not permuted. 

For  example, for  generation of a photon w, at double 
the frequency of the incident radiation w,: A =  2, 1,=2, 
F  = 3, q = l , 2 , 3  (q = 2,3  number the photons of one mode 
~ ~ 2 ) ;  w ( ~ ) = - w , ,  ~ ( 2 ) = ~ @ ) =  w,, e, =e3. In th is  case Eq. 
(31) takes the form 
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