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We study the current instability of an inhomogeneous plasma, which leads to the excitation of short- 
wavelength drift oscillations with a frequency close to the lower-hybrid resonance. We show that the 
saturation of the instability is C€I~ected with the spectral transfer of the oscillations into the short-wavelength 
ragion, which is due to the modulational instability, and we determine the maximum amplitudes of the 
electrical fields of the oscillations. We evaluate the effective electron collision frequency due to the current 
instability and we show that the Parker-Sweet diffusion model for the reconnection of the magnetic field, 
modified to allow for the anomalous resistivity mechanism studied in the present paper, gives for the width of 
the magneto-pause an estimate that agrees satisfactorily with experiment. 

PACS numbers: 52.35.P~ 

5 1. INTRODUCTION 

The instabilities of the currents flowing across  a 
magnetic field are  important both for laboratory plas - 
mas (shock waves, theta pinch, turbulent heating) and 
for the plasma in the magnetosphere (magnetic field re-  
connection, anomalous resistivity in the boundary lay- 
e r s  of the magnetosphere, and s o  on). One of these 
instabilities-the so-called "tearing" instability -is of 
an electromagnetic type.' It leads to the generation of 
a transverse magnetic field component both in thermo- 
nuclear magnetic bottlesz and in the magnetosphere pri-  
marily in i t s  tail part. 

At the same time, other kinds of instability a re  bas- 
ically responsible for the occurrence of the anomalous 
resistivity; they lead to the excitation of potential or  
close to potential oscillations. The lowest threshold 
for excitation of them corresponds to the current insta- 
bility for short-wavelength drift oscillations which a re  
polarized in the plane at right angles to the magnetic 
field. ~ikhai lovski i  and Timofeev were the first4 to 
study the linear theory of this instability and in Ref. 5 
the fact that the oscillations may be non-potential, 
which in important for a plasma with a finite P (ratio of 
the gas-kinetic to the magnetic pressure),  was taken 
into account. 
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The first time that attention was focused on the im- 
portance of this instability for the Earth's magneto- 
sphere was in Ref. 6, where a qualitative analysis was 
given of the anomalous resistivity mechanism, based on 
it, in the tail part of the magnetosphere. When esti- 
mating the possibility of the occurrence of an instability 
of the short-wavelength drift oscillations one must bear 
in mind that all conditions which a re  fundamental for it 
(threshold current velocity less than the thermal ion 
speed, hot ions T, >> T,, and a large value of B) are real - 
ized in the first place in the frontal part of the magneto- 
sphere-the magneto-pause. Moreover, according to 
recent satellite measurements: strong electrical field 
oscillations are  observed in the magneto-pause region 
with frequencies up to the lower-hybrid one -(w,~w,,,)~/~, 
which agrees with the theoretical estimate of the spec- 
trum of the oscillations excited when there is an insta- 
bility. 

This all gives us grounds to assume that the instabili- 
ty considered exists in the vicinity of the magneto-pause 
and may be responsible for the anomalous resistivity 
and the magnetic-field diffusion in that region. 

The aim of the present paper is the construction of a 
non-linear theory of the instability. We consider the 
mechanism of its stabilization to be the spectral trans- 
fer  of energy into the region of "oblique" oscillations, 
k, #O, where the resonance absorption of the oscilla- 
tions by the electrons becomes important. The transfer 
arises as a result of the modulational instability of the 
short-wavelength drift mode excited by the current. We 
evaluate for that mechanism the maximum amplitude of 
the electrical field of the drift oscillations and the ef- 
fective electron-collision frequency caused by the insta- 
bility. 

The results are  used to elucidate the reconnection of 
the magnetic field lines in the magneto-pause region. 
The reconnection i s  described in the framework of the 
Parker-Sweet diffusion model: modified to  take into 
account the mechanism for the anomalous resistivity 
considered in the present paper. We show that this 
model gives for the width of the magneto-pause an es-  
timate of the order of a few ion Larmor radii, which 
agrees satisfactorily with experiments. 

52. LINEAR THEORY OF THE INSTABILITY. 
EFFECTIVE COLLISION FREQUENCY 

We consider the instability of a plasma with an elec- 
tron current flowing across the magnetic field (see 
Fig. 1 ). The current maintains a field gradient deter - 
mined from the equation 

d H ,  4neno 
= -  
dz c 

u.n, 
(1) 

u,, is the electron current velocity, and we choose a 
frame of reference in which the ions are  at rest. From 
the condition for a balance between the magnetic and 
the gas-kinetic pressures 

FIG. 1. 

c (T.+TJ 1 dn, 
uey=-----x, x = - .  

eHo no dx (2') 
The condition for the balance of the pressures is vio- 

lated in non-stationary processes, and the electron cur- 
rent velocity is thus an arbitary parameter about which 
we shall assume only that u,, << v,,. 

The electron current leads to an excitation of oscilla- 
tions propagating in the plane perpendicular to the mag- 
netic field (k 1 H,). We look for the electrical field of 
the oscillations in the form 

The frequency of the oscillations lies in the range oHi 
<< w << w,, (w,, = eH,/m,c i s  the cyclotron frequency of 
the charged particles) while the wavelength satisfies the 
condition for the applicability of geometric optics 

For the oscillations which are  built up by the electron 
current, the resonance condition w zkYuey<< kv,, i s  sat- 
isfied. In the limiting case considered (unmagnetized 
&hot* ions) we have for the perturbation of the ion den- 
sity in the oscillations the standard kinetic-theory for- 
mula (see, e.g., Ref.10): 

w,, = (4re2no/ma)112 is the Langmuir frequency, r,, 
= (~,/4re~rt,)l '~ is the Debye radius, and a = e or  i. 

At the same time in the studied oscillations the elec- 
trons are  magnetized and their velocities are  deter- 
mined from the drift theory. 

We restrict ourselves to the terms of second order in 
the small parameter I w, kYuey 1 /w,, << 1. Moreover, 
bearing first of all in mind the application of the results 
to the magneto-pause, we shall consider in what follows 
a plasma with hot ions, T, ,> T,. Neglecting in the 
small terms c c w z  the thermal motion of the electrons 
(zero Larmor radius approximation) we get the follow- 
ing relations for the components of the electron velo- 
citv: 

cT, n.' 
k.U* ] +iknzT, + - E n -  

HO o 

+ i(o-k,u.,) -E,-ik,-- c cT. n.' 
O n e  HO eH, n, ' we find that 
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When obtaining these formulae we used the relation 
for the magnetic field of the wave 

H.'=c(k3,-kJ.)lw, (5) 
which follows from the Maxwell equations. 

From the equation of continuity for the electrons 

i (k,u.,-o) n.'+~,Bn,Jdx+~ div v,=O 

we get, using Eq. (4) for the perturbation of the elec- 
tron density 

div E. 

In this formula 

is the electron drift velocity in an inhomogeneous mag- 
netic field. Restricting ourselves in what follow to 
considering .coldn electrons we shall neglect this drift; 
the condition for this neglect i s  

k,ucaC I a-kUuw 1 . (7') 
The main term in the formula for the electron density 

[the first term on the right-hand side of (6)] vanishes 
for purely potential oscillations. For a plasma with fi- 
nite @ the deviation from potentiality becomes important. 
The degree of non-potentiality of the oscillations can be 
determined using the Maxwell equation 

ikJT;=-bten,v,$c, 

substituting in it Hi from (5) and v,, from (4). As a re-  
sult we get the equation 

We shall consider below sufficiently short-wave oscilla- 
tions with kr,+ 2 1; here rL* = (~,/m,)'l~w',', i s  the 
electron Larmor radius evaluated with respect to the 
ion temperature. In that case the parameter wL/k2c2 
-@where we have written: ,8=4m,Ti/H~. It follows 
from Eq. (8) that even when ,8 z 1 the oscillations con- 
sidered are  close to potential, a s  the rotational part of 
the electrical field is small compared to the potential 
part in the ratio w/w,,. 

However, the deviation from the potentiality turns out 
to be important in Eq. (6) for the electron density, as  
the main term-the first one on the right-hand side con- 
tributes only to the rotational field. 

Using this, the formula for the electron density takes 
i ts  final form: 

When the condition w, >> ww, i s  satisfied we may assume 
that the oscillations considered are  quasi-neutral. 
Comparing (3) and (9) we then get the following disper- 
sion equation: 

From Eq. (10) we get the following formulae for the 
frequency and the growth rate: 

uar= (cTdeH,) x.  

The condition for the occurrence of the instability can 
be written in the form 

One sees easily that when the last of the conditions (11') 
is satisfied the first term in the formula for the fre- 
quency becomes the main one, the frequency w > 0, and, 
if k,x c 0, the instability arises when 

i.e., for a plasma with a Maxwellian ion velocity dis- 
tribution. Under the conditions of the magneto-pause 
one finds the electron current velocity from the pres- 
sure balance condition, i.e., it is given by Eq. (2'). 
Even when T, >> T, this velocity i s  higher than the in- 
stability threshold (Ill) ,  provided that we consider suf- 
ficiently short -wavelength oscillations with kr,* -s 1. 

Well above the instability threshold, the formulae for 
the frequency and the growth rate are  transformed to 
the following simple form: 

The maximum growth rate i s  reached when krL * =[(I 
+ p)/5]1I2 and equals 

wLH= ( W ~ ~ O ~ , ) ' ~ ~  i s  the frequency of the lower-hybrid 
resonance in a dense plasma, w,, >>w,,. 

The instability described by the dispersion equation 
(10) was obtained in Ref. 10 a s  the high-frequency limit 
of the drift-cyclotron instability (high harmonics of w,, 
when a large number of resonances become important 
at once). The condition for neglecting the effect of the 
magnetic field on the ions has, according to Ref. 10, 
the form y>>w,, and can, by the use of (12'), be reduced 
to the following form: 

[we substituted u,, from (2')]. For the magneto-pause 
where the dimension of the transition layer l/x i s  of 
the order of 2 to 3 ion Larmor radii this condition i s  
amply satisfied. 

Finally, condition (7') for the neglect of the electron 
magnetic drift can with the aid of Eq. (11) be rewritten 
in the form 

297 SOV. Phys. JETP 51(2), Feb. 1980 Sotnikov ef a/. 297 



T. 13-8 
T,'~ 1+p+k2rL.2 ' (14) 

and can also be satisfied in a plasma with finite P pro- 
vided the electron temperature is sufficiently small. 

The instability considered by us is the instability of a 
negative energy wave. Indeed, according to Ref. 11 the 
energy of a wave in a medium with permittivity tensor 
c,, is given by the equatlon 

Using the standard formulae for the components .q, (see, 
e.g., Ref. lo), and recognizing that the deviation from 
potentiality of the wave is important only in the terms 
mr,,,, r,,, we are led after straightforward but cumber- 
some calculations to the following formula for W: 

09.10 ( l - p ~ . ~ / ~ d i !  kYz E' 
W= --. 

O~.(O-~,,U.,,)~ kZ 8n (15) 

When the first of conditions (119, which is necessary 
for the occurrence of the instability, is satisfied the 
energy of the wave is negative. The energy dissipation 
connected with the Landau damping on the ions thus 
leads to  the instability ." 

We note that in a plasma with hot ions, T, >> T,, yet 
another current instability is possible-the electron- 
acoustic instability leading to a pumping of "oblique" 
(k,<< k )  oscillations.'s This instability can be obtained, 
if we take into account in the dispersion equation the 
term due to the longitudinal motion of the electrons. 
The corresponding term has the form 

it becomes dominating when 

(The condition given here can easily be obtained from a 
comparison in the dispersion equation of the terms de- 
scribing the perturbation of the density due to  the longi- 
tudinal motion of the electrons and to their drift across 
the magnetic field.) When condition (16) is satisfied the 
electron-acoustic instability develops with a frequency 
and growth rate given by the relations 

The threshold value of the current velocity is 

which by virtue of (16) is appreciably higher than the 
threshold velocity for the mode with k, = 0, which is 
given by condition (1 1'). 

In the conditions of the magneto-pause the current 
velocity u,, = v,, I x I r,, lies, when we use condition (161, 
below the threshold (18) so that i t  is not possible to ex- 
cite directly oscillations with k, + 0 a s  a result of the 
electron-acoustic instability. 

The main macroscopic consequence of the excitation 

of the oscillations considered above is the occurrence 
of an anomalous resistivity, i.e., losses in electron 
momentum transferred to the ions participating in the 
oscillations. Following Galeev and sagdeevL4 we write 
the loss in electron momentum in the form n,m,u,,v,, 
and, using the momentum conservation law, we write 

The right -hand side of this equation is the transfer of 
momentum from the electrons to the oscillations,- y,, is 
the electron contribution to the growth rate, and Wk the 
spectral density of the oscillation energy. The v,  = w / k ,  
transfer of momentum to the oscillations arises from 
the group of electrons and at resonance with the oscil- 
lations, of velocity. The appearance of these electrons 
is connected with the transfer of energy to the region of 
'oblique" oscillations, k, # 0. The mechanism of spec- 
t ra l  transfer is based upon the modulational instability 
of the short-wavelength drift oscillations, and will be 
considered in the next section. In accordance with what 
we have said, @,is the spectral density of the oscilla- 
tion energy in that region of the spectrum where k,+ 0 
and where the resonance interaction with electrons is 
important. 

The resonance absorption by the electrons must lead 
to the establishment of quasi-stationary turbulence. In 
such turbulence the energy transferred by the ions to 
the oscillations (we remind ourselves that we consider 
oscillations with a negative energy) is transferred to 
large kE and in final reckoning is absorbed by the elec- 
trons. The balance condition can then be written in the 
form 

z 7, (k, O) W;+ z 7. (k, a) w k = O .  

k  k  

Using this condition we write for v,,,: 

Substituting into that formula the wave energy W from 
(15), the maximum growth rate of the instability from 
(lZ1),  and the wavelength of the most unstable mode 
kr,* =[(I + fi)/5]'12, we are  led to the following final 
formula for v,,, : 

is the energy of the electrical field of the short-wave- 
length drift oscillations with k, = 0, which are  excited 
owing to the current instability studied in the present 
section. 

The excitation of the oscillations is accompanied with 
a heating of the electrons and ions. The rate of the 
heating of the ions can be found from the energy con- 
servation law (see Ref. 14): 

and by analogy with the evaluation of v,,, we have 
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According to Ref. 14 the ratio of the rates of heating of 
the electrons and ions is determined from the equation 

dT. k u -a w - .  
dT, o (22) 

Sufficiently f a r  from the threshold of the instability the 
ratio on the right-hand side is appreciably smaller than 
unity, i.e., the oscillations lead to a preferential heat- 
ing of the hotter ion component. 

83. MODULATIONAL INSTABILITY OF DRIFT 
OSCILLATIONS. MAXIMUM AMPLITUDES OF 
THE ELECTRICAL FIELDS 

To determine the level of WE which occurs in Eq. (20) 
for v,,, i t  is necessary to construct a non-linear theory 
based upon some concrete mechanism for saturating the 
current instability. As we have already noted above, 
we shall assume that such a saturation is connected 
with the spectral transfer to the region of large k, in 
which the resonance absorption of the oscillation energy 
by the electrons becomes important. Usually induced 
scattering is adduced as the mechanism for the spectral 
transfer in the theory of the anomalous resistivity (see 
Ref. 14). However, in our case the spectral transfer 
caused by the modulational instability of the drift oscil- 
lations turns out to  be much more important. One can 
easily understand the mechanism of such a transfer by 
analogy with Langmuir oscillations (see, e.g., Ref. 15). 
Small fluctuations in the intensity of the high-frequency 
oscillations 6 W,(z ) under the action of the high-fre- 
quency pressure leads to a modulation of the plasma 
density 6nk). In the density wells formed in the re -  
gions where the high-frequency field is localized, addi- 
tional portions of high-frequency quanta a re  trapped. 
This leads to an increase in the depth of the modulation 
bW, and as a consequence to a spectral transfer of en- 
ergy of the drift oscillations, which were initially uni- 
form in z, to the region of large k,. 

We shall assume that the slow plasma motions which 
arise under the action of the high-frequency pressure 
force are quasi-neutral and that their characteristic 
frequency SZ satisfies the conditions 

Q t k ~ r i ,  k,~,,. (23) 
For the dispersion law of the high-frequency oscilla- 

tions given by Eq. (lo), the averaging over the fast 
time-scale in the equations for the low-frequency mo- 
tions is, when w ekf iy ,  equivalent to averaging over 
the y -coordinate. We shall therefore assume in what 
follows that all quantities characterizing the low-fre- 
quency mode depend only on the x , z  -coordinates and on 
the slow time t, so that the electron drift with current 
velocity uey is unimportant for that mode. 

When conditions (23) a r e  satisfied we get from the 
equations for the motion of the electrons and ions along 
the z-axis the following formula when the density varies 
slowly : 

On the right-hand side of Eq. (24) we have retained 
the main non-linear term which arises wheh we take 
into account the term m,((veL~,)v,,) in the electron 
equation of motion. The brackets in the non-linear 
term correspond to averaging over the fast time-scale. 
Assuming that the frequency of the slow motions satis- 
fies the additional condition 52 << kv,, we find that the 
density and magnetic field variations in the low-fre- 
quency mode a re  connected by the simple relation 

611,=-4n6nTi/H,. 
(25) 

If we use the equation divBH= 0 to determine the trans- 
verse magnetic field component 6H, ,  we can show 
easily that the last term on the right-hand side of Eq. 
(24) is small in the ratio (m,/mi)11z~~e/#~2,  and we 
neglect it in what follows. The quantity v,, in that equa- 
tion i s  the longitudinal component of the high-frequency 
electron velocity which i s  given by the equation 

To find the field E, we use the equation 

It follows from Eq. (8) that the transverse components 
of the electrical field in the high-frequency motions 
a re  close to being potential and we can in Eqs. (24) 
and (27) substitute approximately 

E.=-aq/a~, ~ , = - a ~ / a ~ .  

If we then use Eq. (27) to eliminate E, from (26) and 
eliminate Hi by using the equation 

we are  finally led to the following equation for v,,: 

This equation together with the equation for 6n: 

gives us the starting set of equations for describing the 
low -frequency mode. 

The equation for the high-frequency motions i s  ob- 
tained by analogy with the derivation of the dispersion 
equation of the linear theory given in the second section. 
Now, however, we must in the continuity equation for 
the electrons take additionally into account the non- 
linearity arising from the modulation of the plasma 
density and the magnetic field of the low-frequency 
mode, and also the density perturbation caused by the 
longitudinal motion of the electrons of velocity v,,, 
which i s  given by Eq. (28). The variation of the ion 
density is found from EqA. (3). Assuming as  before the 
high-frequency oscillations to be quasi-neutral and 
dropping for the sake of simplicity the terms describing 
the pumping of the oscillations by the ions and their 
damping on the electrons, we a re  led to the following 
equation for the "potential" cp of the high-frequency 
mode : 
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In the general case the set of Eqs. (28) to (30) is very 
complicated and we restrict our investigation with i ts  
aid to the linear theory of the modulational instability 
that leads to the creation from a monochromatic wave 
which i s  uniform along z of satellites with k,# 0, and 
we determine the amplitude of the main wave for which 
the satellites produced fall in the region of an effective 
absorption by electrons. We perform our investigation 
in two limiting cases of long and short wavelengths of 
the high-frequency oscillations 

We first study the case of long wavelengths. We can 
then easily split off from the total expression for the 
potential of the high-frequency oscillations the time- 
and y -coordinate-dependence of all the waves in the 
form 

tq"/rtq(t, 2,Z) exp [i(kuoy-kuo (u.,+udfr) t )  ]+.c.c., 

p(t, x ,  z )  i s  the complex amplitude of the potential, I' 
= (1 - &,,/u, i)(l  + By1. We consider the instability in a 
four-wave system. For the main wave the complex 
amplitude of the potential equals 

6,= k,,u,,k~r~*r/(l+ B) i s  the dispersive correction to 
the frequency w determined from (10). The instability 
leads to the pumping of two high-frequency satellites 

q~ (t .  2 ,  z )  =exp ( - n o t )  { q+ erp ( i  ( j (k-+k=) dz-tkzz-Ql 11 
+p- exp [ i  ( j  ( k , - k z ) d r - k Z z + ~ t  

and of a low -frequency wave 
)I1 

One can easily find the dispersion equation for the 
modulational instability from (28) to (30), using stand- 
ard procedures; i t  has the form 

where we used the notation 

, r k . 2 ~ ~  I 
A+=k,,ud, -(k,'rL.2-k,2r,.2) + -- 

I+@ me k,,,ud,rA+ 

for the frequency difference between the main and the 
test waves, the wave vector k, = k, ik .  The quantity 
A, = 1 + o;,/k:c2. 

When solving the dispersion equation we shall assume 
that k << k, and correspondingly A+ =A-. The solution of 
the dispersion equation then has the form 

Using the fact that k,ji,, < 0, this solution corresponds 
to  the following condition for the occurrence of an in- 
stability : 

It follows from (33) that as a result of the modulation- 
al instability oscillations with k, + 0 are, indeed, ex- 
cited. The region of resonance absorption of such os- 
cillations by electrons corresponds to  those k, for 
which the following condition is satisfied: 

The parameter a! > 1 due to the fact that the oscillations 
are  absorbed by the "tail" of the electron distribution 
function; a more exact value of a! will be found below 
by using the balance equation (19). From the condition 
(33) for the occurrence of the modulational instability 
it follows that such large values of k, are reached for 
pumping amplitudes cp,: 

e 2 l O l  T i  otr.lud? 1 -m--- 
4m.' T.a2 k.l If $ ' 

(34) 

This estimate is obtained for the instability of a 
monochromatic wave, but one can show that it remains 
valid also, as  to order of magnitude, for a not too 
wide (A k/k 2 1) packet of oscillations. The relation 
(34) corresponds to the following electric field energy 
level of the short-wavelength drift mode: 

We note that the mechanism considered by us of the 
spectral transfer due to the modulational instability is 
the most effective one. Estimates show that the spec- 
tral transfer caused by induced scattering on electrons 
becomes appreciable at levels WE which are  approxi- 
mately m,/m, larger than the one determined by Eq. 
(35). 

When the spectral transfer along k, caused by the 
modulational instability is present the condition for 
the energy balance in the source region (k,= 0) can be 
written in the form 

(the energy influx into the turbulence with ks= 0 due to 
the current instability with a growth rate y,k,  w) is 
compensated by the spectral transfer caused by the 
modulational instability ). In Eq. (36) ym,(k, w) i s  the 
modulational instability growth rate. When the ampli- 
tude of the main wave is given by Eq. (34) we have the 
following estimate for the growth rate: 

and it follows from (36) that we then have the following 
approximate relation for the oscillation energy in the 
absorption region: 

Apart from (36), the balance condition (19) must also be 
satisfied-the energy transferred to large k, i s  in final 
reckoning absorbed by the electrons. The damping rate 
of the resonance absorption by the magnetized electrons 
is equal to 
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In obtaining this last relation for ye we assumed that 
the electron distribution function i s  Maxwellian and we 
substituted for w from the dispersion equation of the 
linear theory, (10). Using the balance condition we 
then easily get a simple equation for a: 

aae-oz/t- -(-/n)'/'[ 9 (1+p)  (1+6T./5T1) I-'. (40) 
We can consider the case of short wavelengths of the 

high-frequency mode, k%i* >> 1 + B in a completely 
analogous manner. In that case we can also split off 
the fast time-dependence-in the potential 9: 

q='/,q(t, z, z)exp[ ik , , (y-u. , t ) ]+c.c . .  

As before, the complex amplitude cp(t, x,z) is in the 
form of a superposition of the main wave -and test waves 
(satellites), where in the present case 6, = k,,u, , r ( l  
+ B)/kir:*. We then still have for the determination of 
S2 the same dispersion Eq. (31), with the only difference 
that now 

The regions of absorption in the case considered corre- 
spond to k ,  given by the formula 

Transfer to such k# becomes possible at a level WE: 

m. ma.' , Tc(f+B)  
WE-noTi -7 x'r~i  

mi  a,, T.aak;rL.' ' 

At k i ~ i *  -1 + 0 this level is of the same order of mag- 
nitude as  the estimate (35). 

In the conditions of the magneto-pause (no= 10 ~ m - ~ ,  
H= (4to5)x 1W4 Oe, T, 2300 eV, T,=eV, xr,, =1/3), 
Eq. (35) gives for the mean square of the electrical 
field of the lower-hybrid oscillations the estimate ( E 2 )  
-1U6 V 2 / m 2 .  We note that satellite measurements per- 
formed by Gurnett et al? indicate the existence in the 
neighborhood of the magneto-pause of a maximum in 
the spectrum of the electrical field oscillations at fre- 
quencies close to  the lower-hybrid one (f-30 to 50 Hz) 
and the experimental value of (E2) -1O-'to lr7 V 2 / m 2 .  

Substituting the estimate obtained for W E  into Eq. (20) 
for v,,, we find that the effective collision frequency for 
electrons caused by the current instability of the drift 
oscillations i s  equal to 

1 Ti v.,,=(lOn)'"ors(xrL,)'-- 
(1+B)" Tea2 ' 

4. MAGNETIC FIELD RECONNECTION IN THE 
FRONTAL PART OF THE MAGNETOSPHERE. 
ESTIMATE OF THE MAGNETOqAUSE 

We have already noted in the Introduction that the re-  
connection of the magnetic field lines in the frontal part 

of the magnetosphere can be described in the framework 
of the Parker-Sweet diffusion model.' In this model 
one considers the reconnection as  the result of the mu- 
tual diffusion of oppositely oriented magnetic fields ,at 
the boundary of the magnetosphere and the solar wind 
(see Fig. 2). We then get for the width of the transi- 
tion layer the following formula: 

c Lv,,, '" 
d=-(:) O P .  . (44) 

In this formula L is the dimension of the inhomogeneity 
along the transition layer of the magneto-sphere, i.e., 
a quantity of the order of 5 to 10 Earth's radii, v, is 
the Alfven velocity. 

Basic for the diffusion model is the determination of 
the effective collision frequency v,,, in the transition 
layer. It is most obvious to connect the anomalous re-  
sistivity in the transition layer with the instability of 
the short-wavelength drift oscillations considered 
above. The reasons for this are the following: the 
current velocity of the electrons in the layer is given by 
Eq. (2'), i.e., it is above the threshold for the occur- 
rence of the instability, the plasma in the boundary 
layer i s  non-isothermal: Ti >> T,, and, finally, the in- 
stability considered i s  possible also for large values of 
the parameter 0. 

The instability is eliminated in the region of small 
magnetic fields (neutral layer) where the condition that 
the electrons be magnetized, w << w,, is violated. 

Since w = const in the propagation in an inhomogeneous 
plasma, we find, substituting w and H= H, xx, that the 
size of the layer where there is no instability is 1, EY,* 
(the Larmor radius is evaluated for the maximum field 
H,), i.e., it is appreciably less than the wavelengths in 
the neutral layer region. The oscillations drift to the 
region where there i s  no instability and are damped by 
interaction with resonance ions. The damping length is 

1 Dri vr, 1 ldamD - - - - - -- Br,., 
Imk w OLH IxIrLi 

i.e., there is no appreciable damping in the neutral 
layer region. Under those conditions the presence of a 
neutral layer can in no way appreciably affect the mag- 
nitude of the anomalous resistivity. 

Substituting in Eq. (44) for the width of the magneto- 
pause v,,, from (43) and assuming that the characteris- 
tic length of the plasma inhomogeneity I x 1'' is of the 
order of the magneto-pause width d, we get a final for- 
mula for d: 
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In the conditions of the Earth's magnetosphere d -(2 to 
3 ) x  lo7 cm, which agrees with the observational re- 
sults. 
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Photon coalescence in a dispersive medium when 
scattered by impurity centers without a change in its state 

G. \r. Vikhnina and S. I. Pekar 

Semiconductor Institute. USSR Academy of Sciences 
(Submitted 18 March 1979) 
Zh. Eksp. Teor. Fiz. 78,600408 (February 1980) 

The probability of scattering multimode light by impurity centers, with absorption of an arbitrary number of 
photons and production of a single photon (photonaalexmce probability) is calculated for an isotropic 
medium with frequency dispersion but not with spatial dispersion of the dielectric constant in the 
transparency region. It is shown that the probability depends not only on the total number of centers but also 
on their distribution in space. The following eases are considered, 1) uniform concentration of the centers, 2) 
specified coordinate dependence of the concentration, 3) center concentration randomly fluctuating in space. 
The previously derived equations for the coalexmce probability of two or three photons (uniform 
concentration of the scattering centers) differ from those obtained in the present paper, which makes use of 
consistent quantization of the field in a dispersive medium [S. I. Pekar, Sov. Phys. JETP 41,430 (197511. 

PACS numbers: 42.10.Ke, 78.50. - w 

Multiphoton processes  i n  a dispersive medium must 
be treated by quantizing the electromagnetic field in the 
medium. This  quantization was considered in a number 
of papers on the basis  of crystal  mi~ ro theo ry . ' -~  In 
these papers they used not the complete system of the 
crystal  basis  functions, but only i t s  excitonic excita- 
tions. The resul t s  of these papers are therefore valid 
only in a narrow spectral  region near the exciton reso-  
nance. When photons coalesce, however, the frequency 
of the light wave changes severalfold, and to analyze 
the coalescence we must  be able to quantize the field in 
a wide spectral  region. This is why the resul t s  of Refs. 
1-3 are not used in the theory of photon coalescence, 
and in  part icular  in the present  paper. 

The coalescence of photons (the generation of multiple 
harmonics) on molecules of the host substance was p re -  
viously considered a number of t imes (see, e.g., Refs. 
4-8). In these studies the field was quantized in a wide 
spectral  interval, the light waves were considered 
macroscopically, and the dielectr ic  constant of the 
crystal  ~ ( w )  was introduced phenomenologically. The 
field quantization, however, was not consistent: the 
electromagnetic-field energy operator  w a s  postulated 
in the form 

but the form of the operators a; and a, was not derived 
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