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Coulomb excitation of atoms by fast protons 
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A Green's function technique is developed for calculating the dependence of the energy loss of heavy charged 
particles on the impact parameter in the quasiclassical approximation. Formulas are derived for the 
probabilities of bound-bound transitions in hydrogenlike atoms, and for their asymptotic values in the dipole 
approximation and in the strong coupling approximation. Simpler expressions than those previously derived 
are obtained for bound-free transitions. An analysis of the contributions of various Coulomb excitation 
channels is carried out on the basis of the results. An exact calculation of the energy losses shows that the 
mean-frequency approximation is not valid for the inner shell electrons. 

PACS numbers: 34.10. + x, 34.50.H~ 

1. INTRODUCTION ~ = u , / u = h i . / ~ ~ z ~ ~ = Z , e ' l l r u  (1 

is much less than unity (m is the m a s s  of the electron,  
Originally, i n t e r e s t  in  p r o c e s s e s  of Coulomb excita- 2, is the charge  of the nucleus of the t a rge t  atom). 

tion of a toms  arose i n  the study of energy l o s s e s  of f a s t  
e lectrons,  protons and alpha par t i c les  in  the medium. In collisions with the participation of heavy part ic les  

The corresponding quantum theory was  constructed by (M >> m),  the deBroglie wavelength E/MV is, as a ru le  

~ e t h e . '  I t  is applicable in  the case in which the r a t i o  of much less than the charac te r i s t i c  atomic dimensions 

the velocity of the electron i n  the a tom v ,  to the velocity 1/k. T h i s  allows u s  to a s s u m e  the t rajectory of the in- 

of the incoming part ic le  coming par t i c le  to b e  c lass ica l ,  and to consider the ex- 
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citation of the atom a s  the result of the interaction of the Coulomb excitation is developed in the present work. It 
electron with a moving force center. is based on the use of the Green's function of the target 

The classical approach, which is not connected with 
the requirement .$ << 1,  has been widely used for calcula- 
tions of total and partial cross sections of the various 
excitation channels. However, in recent years,  a whole 
series of problems have arisen in the physics of atomic 
collisions, in which the dependence of the excitation of 
atoms on the value of the impact parameter is isolated 
in explicit fashion. The possibility of the experimental 
study of a similar dependence is connected either with 
the inhomogeneity in the spatial distribution of the flux 
of incoming particles, a s  is the case, for example, in 
~hannel ing,~ o r  with the observation of single collisions. 
The latter i s  realized in experiments on the scattering 
of atomic beams by thin films and gases. Here the im- 
pact parameter is determined from the angle of deflec- 
tion of the incoming particle, and the excitation channel 
is identified by the characteristic radiation with the help 
of a coincidence technique. 

In most experimental r e ~ e a r c h e s , ~ "  the dependence on 
the impact parameter of the total probability of ioniza- 
tion of the atomic shells is studied. There a re  also data 
relating to bound-bound transitions in hydrogen and heli- 
um.''' Theoretical calculations of the ionization prob- 
ability as  a function of the impact parameter have been 
carried out in the well-known work of Bang and Hans- 
teent0 (see also Refs. 11 and 12) and bound-bound tran- 
sitions between separate shells have been investigated in 
Ref. 13. 

The problem of the dependence of the probability of the 
different excitation channels on the impact parameter 
has paramount importance for the analysis of the chan- 
neling effect. We a re  dealing with the calculation of that 
part of the energy loss of channeled particles that is 
connected with Coulomb excitation of the atoms of a sin- 
gle crystal. The calculation of the dependence of the en- 
ergy losses on the impact parameter has not been com- 
pletely carried out at the present time. Only the ioniza- 
tion part of the energy losses has been investigated. In 
the calculations of the bound-bound transitions, the dif- 
ficulty due to the necessity of summation of the excita- 
tion probability over degenerate finite states has not 
been overcome. 

In a number of r e ~ e a r c h e s ' ~ ' ' ~  they used for the calcu- 
lation of the energy losses of channeled particles the 
mean frequency approximation, which allows us to carry 
out summation in the formula for the losses over all  the 
intermediate states. In particular, quantitative calcula- 
tion of the dependence of the energy losses on the im- 
pact parameter over the entire region of i ts  variation 
was first  carried out in Ref. 15. It i s  not possible to es- 
timate the limits of applicability of the mean-frequency 
approximation in the absence of accurate results without 
mentioning the fact that in the framework of such an ap- 
proximation, let alone the fact that in this approximation 
i t  is not possible to pose the question of the relative 
contributions to the losses in the individual excitation 
channels. 

A quasiclassical method of treatment of the effects of 

atom. This method allows us to calculate accurately, 
from a single point of view, the dependence on the im- 
pact parameter both in the energy losses and in the 
probabilities of individual transitions in the discrete and 
continuous spectra. We also emphasize that when using 
the Green's func tion, summation of the transition prob- 
abilities over the degenerate finite states is carried out 
automatically. The formulas used below for the prob- 
abilities of bound-bound transitions make i t  possible to 
carry  out a systematic analysis of the dependence of the 
total energy losses on the impact parameter. We also 
note that the expressions for the probabilities of bound- 
free transitions, found with the help of the Green's func- 
tion, is much simpler than that previously known.'' 

2. GENERAL RELATIONS 

We shall assume that the incoming particle moves 
along a classical trajectory R( t ) ,  while the time-depend- 
ent potential of i t s  interaction with each electron of the 
target atom, P ( t ) ,  produces transitions between differ- 
ent states in the atom. The amplipdes of these transi- 
tions a r e  equal, in f i rs t  order in V ( t ) ,  to1' 

Because of the excitation of the atom, the incoming par- 
ticle loses an energy equal to the transition energy A(wf 
- ~i 1. 

The energy losses of a fast- charged particle a r e  de- 
termined by the following quantities: 

A ' E ( ~ )  = (hot-tio,)llRl,12, 1=1,2, (3) 
f 

A'E is the effective retardation of the particle per atom, 
A*E is the broadening of the energy spectrum (s trag- 
gling). 

We shall assume that the origin of the coordinates is 
chosen at the center of the target atom, and the trajec- 
tory is rectilinear: 

The velocity vector of the incoming particle v is con- 
stant and directed along the z axis, while the impact pa- 
rameter b lies in the xy plane. 

Choosing the interaction potential in the form of a re- 
tarded Coulomb potential, 

we write the amplitude of the transition (2) in the form 

01-0 ,  "' 6 ( -  e f  l e i .  (6) 

The mean-frequency approximation, about which we 
spoke in the Introduction, consists in the replacement of 
(of - o f )  in the argument of the 8 function in (6) by some 
value value w. In such a substitution, the losses (3) a r e  
easily calculated with the help of the sum rule.15 

Taking the result (6) into account, we can transform 
the expression for the energy losses, separating out the 
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coordinate dependence of the wave functions of the final 1 e x p ( ~ d . / p )  
J ( ~ . ( I I =  - -m~ .p  state In = qhf(r). The partition function that arises in tt \ P s ~ n  (.xi p )  I 

this case is itself theimaginary part of the Green's 
function of the unperturbed atom: dz z..j.,P ~ ' ( A - P ) ~ - ~ Z  (AZ-2pz) + (h+p)' T' {i[ (A-p) '+qZ]-[  ( j .+p ) '+q2] )A  . (17) 

$A-(rJ 9 s  (12) 
G(r:.rt;  d=c ,-,.+," . (7) We note that integration over the longitudinal momen- 

tum q, is equivalent to summation over the excited 
The final result of the transformation is conveniently states. The real and imaginary values of the parameter 
represented in the following form: p in formula (10) correspond respectively to the bound- 

1 Ze' d3q, c q z  bound and bound-free transitions of an electron in an 
A ~ E ( L ) = -  n ,  (g)zri~u~+~ jj 

I q,'- (qv / c )? l  [q2"- (qv/c)=I  
atom. As a consequence of the symmetry J(ql, q) = J(qz, 

xqZ16 (q,,-qzJ Im {e'(qa-ql)bI(qi, q z ) } ,  (8) q,), the energy losses on an atom of hydrogen a re  ex- 
pressed only by ImJ(qi ,%). The procedureof calculation where 
of ImJ(qi ,%) requires special attention, since poles in 

I ( q l , q Z ) =  [[d3pLdspz$,(p,-q,)G(p?.p,; q , ~ + ~ O @ , ' ( p z - q , ) .  (9) the expressions (12)-(14) in the case of excitation of - - 
Formulas (8) and (9) establish the connection between states of discrete and continuous spectra have a differ- 

ent origin. For this reason, the contributions of the - the energy losses and the convolution of the Green's 
bound-bound and bound-free transitions is considered function, written in the momentum representation, with 
separately. respect to the initial state. 

Further calculations a r e  possible only for a specific 3. BOUND-BOUND TRANSITIONS 
model of the target atom. We shall limit ourselves be- 
low to consideration of a hydrogen-like atom with effec- 
tive nuclear charge 2,. 

The integral representation for the Coulomb Green's 
function was obtained by schwinger18 (see also Refs. 19 
and 20): 

The contour of integration in (10) is taken along a unit 
circle from z = 1 + i O  to z - iO. 

Carrying out the integration over the momenta in the 
expression for J(q,, q2), after substituiton there of the 
Green's function (10) and the wave function of the K 
electron, 

$,6(q)  =c1(8hO) ','(qZ+h') - -  (I1) 

(the mathematical details of the method of integration 
a re  set  forth in Refs. 19 and 20), we find 

L t i  ( i e x p ( i n " p ) )  
I  (q l ,  q?) =- - n8A3p 

h 2 sin (nhly) 

The transition cross sections and the energy losses in- 
tegrated over the impact parameters a r e  determined 
from the following formulas: 

For the hydrogen- like atom, 

According to formula (6), the amplitude !DlzI is ex- 
pressed in terms of the formfactor (f 1 elqr li), the value 
of which is well known for transitions of any type in the 
hydrogen atom.2i Therefore, the principal difficulty in 
finding the probabilities of bound-bound transitions lies 
in the necessity of summation of the squares of the mod- 
uli of the amplitudes (6) over the degenerate final states. 
In the Green's function method, such a summation is 
carried out automatically, because, upon separation of 
the imaginary part the only poles that make a contribu- 
tion to (8)-(9) correspond to the energy spectrum of the 
scattering system. 

We can establish the fact that the imaginary part of 
J(q,, q,) in the case of a hydrogen atom is determined by 
the singularity of the factor in curly brackets in front of 
the contour integral in (12): 

p= (AZ-2mq:u) '". 

The result of integration over the admissible values of 
q,(O < q, < ~ ~ / 2 r n v )  is represented in the form 

W,,(b) is the probability of excitation with transition of 
the electron from theK shell ( n  = 1) to an arbitrary state 
In). For transitions into a state of the discrete spec- 
trum, the roots of the square of the trinomial in the de- 
nominator of the integrand of (12) a re  complex and less 
than unity in modulus. Consequently, the function in 
front of the contour integral in W,(b) has no other sin- 
gularities than a pole of the n- th order a t  the point z 
=O. Therefore, the contour can be closed at the point z 
=1 and the theorem of residues applied to the calcula- 
tion of the integral. As a result, we find: 

o z  sin n(!J A:"-'"' x e f s Q > - c ? , l t ~  

dp. ,,,: t i + I , ., . 
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1 1 the quantity 
A~..= [ ( L ~  pl  ) ' + ~ . ~ + t l ~ ]  [(;F 1,;) ' + Q ? + I ~ ' ] ,  (21) 

4 1 
p=-i(2mq,v-h2) '"=-ihk, 

B = :((),QZ+q2)+ ( p , 2 + ~ , 2 + n '  - F) ( r,'+Q22+q'- 
we obtain 

Here and everywhere below, the impact parameter b b a2 
XJ d$eY '- Im 

1 
is measured in units of 1 / ~ ,  and y = (1 - is the 

o ak, dL iA icor(e-lp)-B+to I,, ;.. Lorentz factor. 
(29) 

Since further simplification of formulas (20)- (23) 
without any limitation is not possible, we turn to the a- 
symptotic estimates for several importantspecialcases. 
Thus, for excitation channels accompanied by transi- 
tions between inner shells (6 >> 1, y = 1), the integrand in 
(20) can be factorized in terms of the variables Q, and 
Qz and calculation gives 

K,,(x) is the modified Bessel function. 

Integration over Q,,, is materially simplified in the 
case of valence electrons ( 5  << 1) a t  large impact param- 
eters (b >> I ) ,  i.e., in the dipole approximation. The 
basic contribution to the integral is made by values of 
Q,,,<< 1; therefore, 

In conclusion, we give the results of the solution of 
the problem of the cross section of the Coulomb excita- 
tion process. It is simplest to obtain i t  not by turning to 
the general formulas (20)-(23), but by starting out from 
the relations (16) and (17). All the integrals in this case 
a re  evaluated analytically. Thus, a t  y = 1, 

In the limits 5 << 1,  the formula for the cross section 
was first  obtained by ~ e t h e '  by direct calculation of the 
matrix elements in the expression (15). 

4. BOUND-FREE TRANSITIONS 

Although, just a s  in the case of bound-bound transi- 
tions, the imaginary part of the function J(qi,q2) is de- 
termined by the infinitesimally small increment to the 
expression for p2,  for the ionization channels i t  does not 
contain any singularities. The integrand in (12) has 
poles at points corresponding to the roots of the square 
of the trinomial. Transforming from contour integration 
to angle integration (z = ei') and substituting in (12)-(14) 

The choice of the sign in the right side of (28) is deter- 
mined by the requirement Rep > 0 [see (lo)]. The delta 
functions in (29) make i t  possible to carry out integra- 
tion over the angle $ in a simple way. 

The ionization part of the energy loss (8) can be rep- 
resented in the form 

Here the probability of emission of an electron with mo- 
mentum EAk, obtained with account of the relation (29), 
is equal to 

Numerical calculations of the dependence of the ioni- 
zation probability on the impact parameter have been 
carried out in a number of works (see, for example, 
Refs. 10, 12, 22). It must be emphasized that the for- 
mula (31) i s  much simpler than the widely used formula 
introduced by Bang and ~ansteen."  It contains essen- 
tially a triple integral over the transverse transferred 
momenta and the angle between them. 

By analogy with the results of the previous section, 
we write down the analytic expressions for the probabil- 
ity of ionization in two limiting cases. For  excitation 
channels accompanied by transitions of strongly bound 
electrons, and also in the case of large transferred mo- 
menta ( q > > k + l ,  y=l), 

In the dipole approximation (b >> 1) a t  not too large 
transfers of the momentum to the weakly bound electron 
(q<<k+l ) ,  

if x>O 
nf arctgx, if z<0 ' 
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As also in the case  of bound-bound electrons, the use of 
the expression for J(g, q) (17)  a t  y = 1 leads immediately 
to the formula for the ionization cross  section': 

k "dx 3 x t l t k 2  
I - ~ x p ( - 2 x / k )  [ (z+l-k2)'+ik']'  

5. DISCUSSION OF THE RESULTS 

We now turn to the general formula for the bound- 
bound transitions (20)- (23) a t  y = 1 .  In the initial portion 
[a ( (  +I)<< I], the probabilities W,(b) do not depend on 
the value of the impact parameter. With increase in b 
they fall off f i rs t  according to a power law and then (at 
b,> 1) according to an exponential one. In the special 
case ( =1, this is confirmed by the numerical calcula- 
tions represented in Fig. 1 .  In this drawing the curve of 
the total ionization probability is also shown.22 It is 
seen that the probability of excitation of states of dis- 
crete and conti.nuous spectra a r e  quantities of the same 
order. 

Figure 2 shows the dependence of the effective stop- 
ping power on the impact parameter in the caseof strong 
and weak coupling of the electron in the atom. For  com- 
parison, the results of calculations in the mean-fre- 
quency approximation a re  also given.15 We note that 
whereas the e r r o r  involved in the mean frequency ap- 
proximation is relatively small in the region ( << 1, the 
approximation results for the electrons of the inner 
shells can depart from the exact ones by several orders 
of magnitude. This is clear since the value of w was de- 
termined in Ref. 15 from a comparison of the effective 
stopping power integrated over the impact parameters, 
with the Bethe formula, which is valid only a t  5 << 1. 
The energy losses behave in nonmonotonic fashion with 
increase in 5. At small 5 they increase, a t  5 - 1 the 
losses a re  maximal and upon further increase in 5 they 
fall off rapidly. 

In the limit b - 0 our calculations give results that a re  
too high, since we have completely neglected the distor- 
tion of the real  trajectory of the ,incoming particle be- 
cause of i ts  interaction of the target atom with the nu- 
cleus. Nevertheless, the point b =O is of interest a s  a 
tie-in point of the monotonically decreasing (with in- 

FIG. 1 .  Dependence of the probabilities of the separate chan- 
nels of Coulomb excitation of the atom on the impact param- 
eter. ( f  = 1 ,  y= 1 ) .  The dashed curve i s  the total ionization 
probability. The continuous curves are  the probabilities of 
bound-bound transitions. The impact parameter is measured in 
units of 1/A. 

FIG. 2. Dependence of the effective stopping power per atom on 
the impact parameter (y= 1 ) .  E B =  k / 2 m ~ , 2 .  The continuous 
curves a re  the exact results. The dashed curves are  calculated 
in the mean frequency approximation.'5 The impact parameter 
is measured in units of l / h .  

crease in the impact parameter) transition probabilities. 
The dependences of the probabilities of the separate 
channels of excitation on 5 at  b = O  a r e  shown in Fig. 3. 
The curve for the total ionization probability is obtained 
by extrapolation of the data given in Ref. 22. It is seen 
from Fig. 3 that the relative contribution of the ioniza- 
tion part of the energy loss falls off rapidly with in- 
crease  in (. This circumstance takes place also a t  ar- 
bitrary impact parameters. 

At f i rs t  glance i t  may seem that the Green's function 
method, developed in the present paper, is applicable 
only in the approximation of rectilinear trajectories. 
However, this is not the case. At y = l ,  the 6 function, 
which leads finally to the imaginary part of the Green's 
function, also appears in expression (2) for arbitrary 
form of the quasi-classical trajectories R(t). It is sim- 
plest to separate i t  by expanding the interaction poten- 
tial V(t) into a Fourier integral in the time. Then the 
Fourier components of the energy losses will be deter- 
mined by the formulas (8) and (9). 

The allowance for the relativistic effects reduces to 
the fact that the dependence of the probabilities of Cou- 
lomb excitation on the impact parameter changes signif- 
icantly with increase in the Lorentz factor y.  In the 
range of values b( << y the time of flight of the proton 

FIG. 3. Probabilities of the separate excitation channels at b 
= 0 as a function of the parameter t(y= 1). The dashed curve 
i s  the total ionization probability. The continuous curves are  
the probabilities of bound-bound transitions. 
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past the atom is much less  than the characteristic times 
of atomic transitions. At v - c in the range b 1 the 
transition probabilities do not depend on the impact pa- 
rameter. The role of relativistic effects a t  b>> l re- 
duces, generally speaking, to the appearance of the 
scale factor l /y  in front of the impact parameter b, a s  
is seen from the expressions (25) and (26). This cir- 
cumstance also leads to the experimentally observed 
logarithmic increase in the cross sections (- lny2) (see, 
for example, Ref. 23). 

For light atomic targets, the limitations connected 
with the use of the quasiclassical approach and the 
choice of a definite trajectory of the impinging heavy 
particle reduce to the satisfaction of the inequality ym 
<<M (E << 1 0 ~ ~ e ~ / n u c l e o n ) .  The latter means that the 
maximum energy transferred in a collision with a free 
electron at rest ,  2y2mv2, is much less than the energy 
of the particle y ~ c ~ .  

The region of applicability of the approximation of 
rectilinear trajectories a t  5s 1 is extraordinarily large: 
bMy>> 5%. For  electrons of the inner shells ([>> I), 
when the transition probabilities a re  exponentially small 
in view of the adiabatic character of the excitation, an 
insignificant change in the classical trajectory of the 
impinging particle can affect substantially the value of 
the excitation probability. Correspondingly, the condi- 
tions of application of the approximation of rectilinear 
trajectories becomes more severe: t3 << ~ / m .  

A s t r ic t  account of the spin effects In the cross  sec- 
tions of Coulomb excitation of heavy atom targets on the 
basis of numerical solutions of the Dirac equation has 
appeared recently .24'25 

In conclusion, a few words on the use of the results 
obtained in this research for the analysis of the energy 
losses of channeled particles. Although the losses take 
place in the crystal and not in hydrogen-like atoms, our 
results and the results of Refs. 15,  16 a r e  the f i rs t  and 
necessary step in the quantitative estimate of the energy 
losses in localized electrons. The difficulty of the pro- 
blem i s  such that at this very day, the hydrogen-like 
model used by us is the only one that admits of a com- 
plete calculation, which was carried out for the f i rs t  
time in this paper. 

We thank 0. B. Firsov and V. A. Bazylev for useful 
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