
that the results of Ref. 8, when expressed in terms of the 
amplitudes P i ,  give Eq. (19) for the P2,3,,& however, they do 
not contain the logarithmic term, which is small as compared 

' with m2x2I3, and therefore give ~i!b,= 0 instead of Eq. (18). 
9 ) ~ n  deriving (32) from (31) we used the condition 

( a 2 ~ / 8 9 8 ~ ) l G , o =  0; this condition is easy to understand since 
the quantity concerned is a pseudoscalar expressed in terms 
of G and, since it  is finite, i t  must vanish a s  G-0. 

"In the second of Refs. 12, the PO in a magnetic field was ex- 
pressed in terms of scalar functions x i  related to the P i  by 
the equations ax, =Pi and ax2,3 = Pi+ From (36) and (37) 
we obtain the asymptotic formulas 

which are accurate to terms that are  constant in H and agree 
with the results obtained in the usual manner in Ref. 12. 
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Nonlinear interaction between waves in strongly 
inhomogeneous media 
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Nonlinear three-wave interaction between waves in a randomly inhomogeneous dispersive medium is 
considered. A kinetic equation for the probability distribution of the second-harmonic intensity is obtained in 
the diffusion approximation. It is shown on the basis of the diffusion equation that the random mismatching 
of the wave phases, violating the phase synchronism condition, results in a weakening of the nonlinear 
interaction, which goes over to a stationary regime corresponding to the limiting efficiency value of an optical 
frequency doubler (50%). The dynamics of the transition of the nonlinear interaction to the stationary 
conditions is analyzed. An extension to the case of nondegenerate three-frequency nonlinear interaction is 
presented. 

PACS numbers: 03.40.Kf, 42.65.Cq 

1. INTRODUCTION 

Significant attention h a s  been paid i n  recen t  y e a r s  to 
the analysis  of resonance interact ion of waves i n  dis-  
pers ive  inhomogeneous media. H e r e  the nonlinear in- 
teraction p r o c e s s  is accompanied by regula r  o r  random 
mismatchings of the phases,  the  conditions of phase 
synchronism to which the resonance interact ion of the 
waves is extremely sensi t ive are violated, and this 
leads to a weakening of the nonlinear interaction. 

nonlinear inhomogeneities on  the nonlinear propert ies  
of the c rys ta l .  However, because of the difficulties 
of theoret ical  analysis ,  the analysis  of the bas ic  ques- 
tion of the effectiveness of the conversion of the basic  
radiation into subharmonics  is c a r r i e d  out e i ther  i n  the 
approximation of the given pump field, o r  i n  the ap- 
proximation of the given pump which es- 
sentially reduce the considered problems to l inear  ones. 
The  p a r a m e t r i c  instabi l i t ies  i n  an inhomogeneous plas- 
m a  are considered in s i m i l a r  fashion. m 

The g r e a t e s t  number  of r e s e a r c h e s  has  been devoted For a sys temat ic  analytic consideration of the effect 

to the multiplication of laser frequencies  i n  nonlinear of the inhomogeneities of the  medium on  the process  of 
c rys ta l s  with inhomogeneities. The i n t e r e s t  in th i s  nonlinear interaction, it is necessary  to re jec t  the ap- 

problem in laser physics is due to the fac t  that  the ef- proximations usually employed. An at tempt to go be- 

fect  of generation of light harmonics  allows one to es- yond the  f ramework  of the p a r a m e t r i c  approximation 

t imate v e r y  simply, by experiment, the  effect of the h a s  been undertaken i n  the recen t  p a p e r s  of Filonenko 
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and ~el 'n ik ,~* 'O where a method of obtaining solutions 
of one-dimensional truncated equations for the quasi- 
static interaction of waves in a weakly nonlinear, weak- 
ly inhomogeneous medium has been developed. In 
particular, the problem is analyzed in Ref. 10 of the 
limiting efficiency of parametric frequency doublers 
under conditions of random mismatching of the phases 
of the waves. However, the method is proposed by the 
authors is based on the Born approximation of pertur- 
bation theory for the scattering of a nonlinear second- 
harmonic wave by specified inhomogeneities. At the 
same time, i t  is assumed that the effect of random o r  
regular phase dis-synchronism on the process of the 
nonlinear interaction is small, which significantly re- 
stricts the region of applicability of the results obtained 
in Ref. 10 to the case of optically thin media. Thus, 
only the initial stage of the nonlinear interaction is des- 
cribed in Refs. 9 and 10, and on the basis of this stage 
it is impossible to follow completely the dynamics of 
the nonlinear interaction of waves in a sufficiently long 
inhomogeneous medium and, in particular, to answer 
the important question as to the effect of multiple scat- 
tering of nonlinear waves of the fundamental frequency 
and the harmonic on the effectiveness of the generation. 

In the present work, we consider in the diffusion ap- 
proximation the process of degenerate three-particle 
interaction in a one-dimensional medium with large- 
scale random inhomogeneities. A closed stochastic 
integro-differential equation is introduced for  the ran- 
dom intensity of the second harmonic. A diffusion 
Fokker-Einstein equation is obtained on the basis of the 
given equation for the probability density function of the 
second harmonic. It follows from analysis of the latter 
equation by the method of moments that the presence of 
a random mismatch of phases in the nonlinear medium 
leads to saturation of the nonlinear transformation of 
the fundamental radiation into the harmonic, while the 
limiting efficiency turns out to be equal to 50%. The 
expressions obtained for the moments of the intensity 
of the second harmonic in the case of a sufficiently ex- 
tended nonlinear scattering medium correspond to an 
equilibrium stationary probability distribution of the 
intensity. A qualitative analysis is carried out of the 
dynamics of the settling of the generation in a station- 
ary regime, which in particular, allows us to obtain 
the limits of applicability of the method of random 
phases in similar problems. The results a re  general- 
ized to the case of nondegenerate nonlinear interaction 
of three waves. 

2. DERIVATION OF THE BASIC RELATIONS 

The quasistatic process of the generation of the sec- 
ond harmonic in a lossless nonlinear medium" with 
linear large-scale inhomogeneities is described by the 
following set  of truncated equations for the complex 
amplitudes of the f i rs t  and second harmonics Al,z(~)': 

dA,ldz=-i$,A,A,' exp { i l p ( z ) } ,  dA,ldz=-ip,A,Z exp{ - i$ ( z ) } .  (1) 

Here a re  constant coefficients of the nonlinear in- 
teraction,' 

$ ( z )  = l dzrAk ( 2 ' )  

0 

is the phase shift from random inhomogeneities of the 
medium that ar ise  in the interaction of the waves of 
the fundamental frequency wl and the harmonic w2 = 2w, 
for which Ak(z) = 2ki(z) - kz(z) is the local wave de- 
tuning with characteristic spatial scale l(kl, 21 >> 1). 

We transform from the se t  of equations (1) to an 
equation of second order for the complex amplitude of 
the second harmonic A&) : 

Hence the equation describing the generation of the sec- 
ond harmonic in the given-field approximation is ob- 
tained at 13, = 0, while in the given-intensity approxi- 
mation i t  is obtained a t  l 2  = const. We now attempt 
to investigate the equation (2) in self-consistent fash- 
ion, without making any assumptions on the character 
of the nonlinear term in this equation. 

For simplicity, we assume that the second harmonic 
is absent (Az(0) =0) "at the input" to the nonlinear in- 
homogeneous medium (z = 01, and the initial amplitude 
of the fundamental radiation (Alto) =A:'') is given. We 
further allow the condition of phase synchronism to be 
satisfied "in the mean," i. e . ,  ( ~ k ( z ) )  = 0. Then 
= & = P  and, for the normal amplitude of the second 
harmonic a = A2/A1 with account of the Manley-Rowe 
relations 

i t  is easy to obtain the following nonlinear stochastic 
equation from (2) : 

where the dimensionless coordinate C = z/L,, 
is introduced, L, = (21'2p (A! I)-' is the characteristic 
length of the nonlinear interaction in the uniform med- 
ium, A =  L,Ak. 

In what follows we shall be interested in the statisti- 
cal characteristics of the intensity of the second har- 
monic; therefore it is convenient to transform to the 
equation for the random function: 

To obtain the latter, we introduce the function P 
= i(a*al - aa* I), Q = ala*' for which, in accord with the 
definition (5), i t  follows from Eq. (4) that 

Z"+A (S )  P+ 2[ (1-Z)Z-Q] =0, P'-A ( 5 )  11=0, Qr+ (1-2) If=O, 

I ( 0 )  =I'(O) =P(O) =0, Q ( 0 )  ='I,. 
(6) 

Integrating the last  two equations of the se t  (6) and sub- 
stituting the resultant expression in the f i rs t  of Eqs. 
(6), we finally obtain a closed nonlinear integro-differ- 
ential stochastic equation for  the random intensity I ( S ) :  

r 
If'+A ( 5 )  J d g . ' ~  ( 5 ' )  1' (5')  -31+$411=0, 

0 (7') 

I ( 0 )  =I' ( 0 )  =o, I" ( 0 )  = l .  

Equation (7) has the stochastic integral 
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from which it follows that the intensity does not change 
too rapidly in each realization, since according to (8) 

11'1 a (8/27)ln and 

For the statistical analysis of Eq. (71, i t  is neces- 
, sary to furnish the statistics of the process Ak(z) and 
consequently, ~ ( 5 ) .  We shall assume that the wave 
detuning Ak(z) is a homogeneous Gaussian random pro- 
cess with zero mean ((A k) = 0) and correlation function 
(Ak(z)Ak(zl)) = BA,(z-2'). Further, let  the dimensions 
of the inhomogeneities 1 can be sufficiently small, i. e .  , 
1 << LNL and 1 << L,, where L, = 2((ak2)1)-I is the char- 
acteristic length of the linear multiple scattering of the 
waves in a randomly inhomogeneous medium. The lat- 
ter assumption is equivalent to the replacement of the 
correlation function BA,(z-z') by the effective correla- 
tion 

Correspondingly, (9) and the function of a random var- 
iable ~ ( 5 )  will be delta correlated, while B:~'(C-5') 
=2y-'b(b-b'), y= L,/LNL. That is, the quantity Y is the 
basic parameter of the given problem, characterizing 
the effectiveness of the nonlinear transformation in a 
weakly inhomogeneous medium. 

Using the correlation properties of the function of a 
random variable A(5) i t  is not difficult to determine the 
range of change of the limiting coefficient of the trans- 
formation of the fundamental radiationinto the harmonic 
q = (I(5)). Actually, averaging with the help of the 
Furutsu-Novikov equation (7) over the ensemble of 
realizations A(t), we obtain 

The limiting efficiency is determined by the stable state 
of equilibrium of Eq. (10) a t  5 = m . Separating the reg- 
ular component (I= (n) + AI, (Af) = 0) in I(5) we find the 
following state of equilibrium of Eq. (10) in the usual 
way: 

One of which is unstable (If). Thus, even a trivial 
analysis of (10) and (11) shows that the random mis- 
matching of the phase synchronism of the waves leads 
to a disruption of one-hundred-percent generation of 
the second harmonic, while "saturation" of the process 
of nonlinear interaction takes place in a sufficiently ex- 
tended scattering medium; the efficiency of the trans- 
formation approaches the stationary value q'"', the 
limits of variation of which a re  determined by the ex- 
pression (11) : 

We note that the approximation of the given intensity. 
of the fundamental radiation, which corresponds to the 
discarding of the nonlinear term in Eq. (lo), leads to 

the limiting efficiency q'"' = 4 .  
We turn our attention to a more detailed investiga- 

tion of the statistics of the intensity Z(5). Using the 
integral (8) we write out the Eq. (7) in the form of a 
se t  of two differential equations of f i rs t  order: 

p'=f ( g ) +  A ( t )  [cp(g)-pzl", g'=p, p(O) =g(O) =O. (13) 

Here the notation g = Z ,  p = I{,&) = 3g2 - 4g+ 1, pk) 
= 2&-1)' has been introduced. By virtue of the de- 
generacy of the problem, (13) satisfies the condition 
of casuality and can be analyzed in the diffusion ap- 
proximation. Actually, using the Gaussian nature and 
the delta-correlation of the process A(b), we obtain 
from (13) by the standard procedure,'i the following 
Einstein-Fokker equation for the probability distrib- 
ution W(g,  p;5) : 

where T = Y-'[ = z / L p  is the optical path in the scattering 
medium. 

The diffusion equation (14) is the starting point for the 
study of the statistical properties of the intensity of the 
second harmonic I@). The statistics of I(c), in turn, 
completely characterize the process of nonlinear in- 
teraction of the waves in a randomly inhomogeneous 
medium. 

3. LIMITING MOMENTS OF THE INTENSITY OF THE 
SECOND HARMONIC. STATIONARY SOLUTION OF 
THE DIFFUSION EQUATION 

It is very difficult to obtain the solution of the bound- 
ary value problem (14). We therefore transform from 
Eq. (14) to the equations for the moments q,,,(~) 
= (pmg"), m, n = 0,1,2. . . . Integrating (14), we find: 

q:.n=-rn2q,.,+2m(m-1) (q,-r,.+s-2qm-r.n+~ 

+qm-,..+,) +~nq~+~.,-~+y~(3q~-~,.+~-4q~-~..+~+q~-~,~), (15) 
40. 0 ( 0 ) = 1 ,  q,,. , (0 )  =0, m+n>l. 

The system (5) represents an infinite set  of coupled 
equations, while the moments of the intensity that a re  
of interest a re  determined in the following way: 

The kinetic equation (14), and the se t  of equations (15) 
following from it  have the stationary solution 

I*) 
W ( P ,  g; .r=m)=W(')(p, g) and qm.n(~=m)nqm,, 

which is independent of the initial conditions. We shall 
show that the infinite se t  (15) has a stationary solution- 

q : ; ' = ~ / ( ~ + ~ ) ,  N = I , Z  ,..., (17) 

that is consistent with the values q::: = 0, n= O,1,2. . . . 
For this, we must establish the fact that the last two 
equations do not contradict the stationary equations (15) 
and unambiguously determine all the remaining mo- 
ments qi:J in this case. In fact, let us return, for ex- 
ample, to the two equations (15) a t  m = 1 and m = 2. 
With account of the obvious relation q::; = 0, we have 
two independent equations for the determination of g:ri: 
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Using (l7), and after uncomplicated transformations, i t  
is easy to establish the fact  that the relations (18) and 
(19) lead independently to the same value of q:;' 

The consistency of the solution (17) with the other equa- 
tions of the system (15) is shown in analogous fashion. 
In the stationary case, this system divides into a finite 
number of independent subsystems. 

Thus the limiting values of the moments of the inten- 
sity of the second harmonic are, in accord with (16) 
and (l7), equal to 

In particular, the stationary value of the efficiency of 
the nonlinear transformation of the fundamental radia- 
tion into the harmonic then follows: 

Knowledge of all the moments (20) allows us to deter- 
mine easily the stationary probability distribution of the 
intensity 

which turns out to be uniform: 

w(--)(Z) =11 ( I )  -q ( I - I ) ,  (22) 

where q(x)  is the Heaviside function. 

Equations (15) enable us also to describe qualitativcly 
the dynamics of the setting of the nonlinear interaction 
process in a stationary regime in two limiting cases: 
y << 1 and y >> 1. Actually, let  y << 1; then L, >> L, and, 
consequently, the shift of the relative phase difference 
of the waves because of the inhomogeneity of the med- 
ium over the length of the nonlinear interaction is large. 
In this case, the nonlinear interaction of the waves is 
greatly weakened and the average intensity of the har- 
monics approaches the stationary value in relaxational 
fashion (see the drawing, curve a). The latter cor- 
responds essentially to the random phase approxima- 
tion, since the coherence length is determined by the 
quantity L, and the mismatch of phase takes place rath- 
e r  rapidly. Here the characteristic length over which 
the limiting value is reached is z* - .L''~,. In the other 
limiting case, y >> 1, we have LNL << L,, the shift of the 
difference in phase of the waves over the nonlinear 
length is small and in the initial stage of the interac- 
tion we can expect a high effectiveness of the transfor- 
mation of the fundamental radiation into the harmonic. 
However, a s  the wave progresses into the inhomogen- 
eous nonlinear medium, multiple scattering begins to 
play an ever larger role, leading to a local develop- 
ment of the decay instability of the second harmonic; 
here the random phase dis-synchronism plays the role 
of a priming perturbation. The oscillatory character 
of the establishment of the stationary regime is shown 
in curve b of the figure. Here the period of oscillation 
A is determined by the nonlinear length A- L,, while 
the characteristic establishment length is z*- yLNL. 

Z/LNL 

FIG. 1. 

4. NONDEGENERATE NONLINEAR INTERACTION 

We generalize the results obtained above to the pro- 
cess  of nondegenerate resonance interaction of three 
waves in a randomly inhomogeneous medium. This 
problem, in particular, evokes special interest in con- 
nection with the problem of the heating of plasma by 
laser  radiation. l2 

The equations of the three-particle quasistatic wave 
interaction ol + w2 = w3 in a medium with large-scale 
inhomogeneities have the form' 

where the phase shift 
* 

cp(z)'= dzrAk (z'), Ak (a)  =k,  (a)  -k, (a)  -k, (a)  
0 

is the random wave detuning ( ( A k ) =  0) with character- 
istic scale 1 >> k;,12, 3. 

As an example, we consider the process of genera- 
tion of the field of the sum frequency, assuming that 
i t  did not exist on the boundary of the nonlinear medium, 
i . e . ,  ~ ~ ( 0 )  = O , A ~ , ~ ( O )  =A:::. Similar to the above, we 
transform from Eq. (23) to the equation for the complex 
amplitude A3(z) : 

Further, using the Manley-Rowe relation 

IA I' A IA101' A IA I' IAI"Ia A + ,  -+A,- 
PI Pa PI Pa $a $1 

and introducing the dimensionless variables 

we can reduce Eq. (24) to the following form: 

It is seen that the nonlinear stochastic equations (4) and 
(26) have different initial conditions. This circum- 
stance leads to the result that the equation for the in- 
tensity of radiation of the sum frequency I =  ) aI2 differs 
somewhat from Eq. (7) for the random intensity of the 
second harmonic. Actually, i t  follows from (26) that 

t 

Z"+A (t) d 6 ' ~  (6')Z' (6') -3P+4Z-l'=-0, 
0 

(27) 
I ( 0 )  =I'(O) -0, I"(0) =I'=2fi182P31 1 AtoI+JAII 12LNL'. 
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It is easy to see  that upon satisfaction of the relation 

fil (A;  1 = I A! 1 Eq. (27) is identical with Eq. (7), 
since here = 1 and, consequently, the results obtained 
in the previous section a re  valid here. At I?# 1, an- 
alysis of Eq. (27) in the diffusion approximation leads 
to the following stationary values of the moments of 
the intensity: 

<IN(-')=[I-(4-l?)"'JN/(N+l), N = f ,  2,. . . , (28) 

where O S r ~ l .  

The result (28) shows up most graphically in the var- 
iables O,,= ~ A , ( z )  ('/pi, i =  l , 2 , 3  which determine the 
measure of the photon density of frequency w ,  in the 
stationary regime. In this notation, we get from (281, 
with account of (26)-(27): 

<€I?'"' >=min(BiON, OZoN)/(N+lj, N=1,2,. . . . (29) 

In particular we have for the "average number of quan- 
ta" of frequency w g ( N  = 1) : 

<8:"'>=min(0,~, OZO)/2. (30) 

We note that, using the Manley-Rowe relations, i t  is 
trivial to determine the limiting values of the inten- 
sity of the radiation of the other frequencies with the 
aid of (30). 

5. CONCLUSION 

The method of analysis of processes of three-wave 
interaction in a nonlinear weakly inhomogeneous med- 
ium developed in the present work on the basis of the 
diffusion equation allows one to investigate arbitrary 
resonance interaction. Actually, only the specifica- 
tion of the initial conditions a t  the boundary of the non- 
linear medium separates, within the framework of the 
general three-wave interaction described in the case of 
an inhomogeneous medium by the equations (231, the 
special types of interactions corresponding to different 
processes: upward transformation of frequency (coal- 
escence), generation of difference rrequencies (decay), 
parametric amplification. The presence here of ran- 

dom mismatch of the phases of the waves for any type 
of nonlinear interaction leads to the stationary regime 
of interaction independently of the initial conditions. 
The specific type of interaction determines only the 
character of the establishment of the limiting level of 
three-particle nonlinear interaction. An important 
feature of the stationary regime is that the steady- 
state values of the intensities of the interacting waves 
are  independent of the value of the wave detuning fluc- 
tuations, which determines only the duration of the es- 
tablishment process. 

')we note that, in the presence of absorption in the medium, the 
resul ts  a r e  generalized in  trivial fashion to the case of equal 
linear decrements of the attenuation of the first  and second 
harmonics. ' 
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