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A method is developed for the solution of problems involved in finding the polarization and the electric 
field in semiconducting ferroelectrics near boundaries or inhomogeneities. It is noted that the presence of 
surface states of even high density may not lead to a substantial decrease of the previously predicted 
band bending near the surface of a ferroelectric. 

PACS numben: 77.80. - e, 77.30. + d, 72.20. - i 

1. INTRODUCTION 
assumption usually made1-' that the field E is weak 
compared with the induction does not hold true near the 

The electric field produced in a ferroelectric by its sample boundary. In fact, solutions a r e  possible with 
spontaneous polarization is compensated, a s  is well nonzero polarization P on the sample boundary, and 
known, by breakup of the ferroelectric into domains, from the boundary condition for  the induction it then 
by surface-state charges, by adsorption of lines, etc. follows immediately that the field near the boundary 
In those cases, however, when the concentration of the need not necessarily be small (see below). 
free carr iers  inside the ferroelectric crystal is not 

We note also that the simplifications that a r e  possible 
small, i.e., when the crystal is a semiconducting 

in the case when the polarization deviates little f rom 
ferroelectric (SF), the screening of the spontaneous- its equilibrium value in the volume of a bulky sample 
polarization field may be effected also by these charges. (1 - <<Po) cannot be used, since this inequality is 
It turns out that in this case a peculiar single-domain violated in the case of single-domain states. 
state may turn out to be energywise most favored; in 
this state the screening takesplace in the surface' reg- In addition to  the indicated problems, we shall discuss 
ion, where free carr iers  of the crystal acc~mulate . l -~  below also the influence of surface states on the con- 

sidered group of problems. 
In theoretical investigations of problems of this kind 

it is customary to use the well known equation of state 2. CASE OF SMALL BAND BENDING 

o r  its equivalents. In (I), E, D, and 9- a r e  respec- 
tively the field, the induction, and the total free energy. 
It is not always convenient, however, to use Eq. (I), 
since this calls for knowledge of 9 at  least in the 
equilibrium state a s  a functional of the induction, yet 
the parameters of the equilibrium state a r e  still to be 
determined by solving the problem. For this reason 
it becomes necessary to  make assumptions concerning 
the form of 7 a s  a function of D, for example, to as-  
sume that the density of the free energy is a polynomial 
of the powers and gradients of D. 

It is clear that in the general case this assumption is 
not valid and the free energy of the system [more ac- 
curately, its ferroelectric part, see (2) below] is rep- 
resented in the form of a series in powers of the po- 
larization and its  derivatives. Of course, in some 
cases, for  example in cases when there is no electric 
field, both approaches, a s  is well known, a r e  equiva- 
lent. We call attention below to a rather large class of 
problems in which this assumption is not valid. 

One such problem, which can be used a s  an example 
to demonstrate the correct solution method, is in fact 
the problem of the single-domain state. The impos- 
sibility of expanding 9- in powers of the induction D 
is in this case obvious a t  least from the fact that the 

We consider a uniaxial ferroelectric, in which the 
polarization is directed along one axis (the c axis) per- 
pendicular to the surface of a planar sample, and we 
study the one-dimensional solutions for which a l l  the 
functions depend only on a single coordinate z .  In this 
case the ferroelectric part  of the free energy can be 
written in the form7*' 

where f(P) is a certain polynomial of P2. The first  
term describes the self energy of the ferroelectric, 
which is connected with the presence of spontaneous 
polarization, while the second term describes the cor- 
relation energy. 

Generally speaking, it is necessary to include in (2) 
also expressions for the dependence of F on the resul- 
tant strains. However, as shown by example by 
Z h i r n o ~ , ~  they lead only to a renormalization of the co- 
efficients in (2). 

We shall investigate the case when the solution for  the 
polarization can be obtained in explicit form-the case 
of small band bending in a semiconducting ferroelec- 
tric: qcp/kT<< 1, where q is the absolute value of the 
electron charge, k i s  Boltzmann's constant, and T is 
the temperature. We shall find it convenient to spell 
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out later on the restrictions needed to realize precisely 
this case. 

We note that although the screening by the ca r r i e r s  
was assumed t o  be linear, allowance for  the nonlinearity 
of the screening need not yield qualitatively new ef- 
fects, and a t  the same time the linearity of the Poisson 
equation (3) allows us to ca r ry  the calculation through 
t o  conclusion. 

Let us see  how the spontaneous-polarization field be- 
comes screened in a semi-infinite sample. We assume 
for  the sake of argument that the vector P in the volume 
is directed towards the boundary, and that Oz axis is  
directed towards the interior of the semiconducting 
ferroelectric. Then the Poisson equation fo r  small  
band bending in the SF can be written in the form 

where A=l/R, is the reciprocal of the Debye screening 
radius R, with unity dielectric permeability, -P i s  the 
projection of the vector P on the Oz axis, and cp is the 
potential. We assume also  that there is  no degeneracy 
in the free-carrier gas. 

For an arbitrary distribution P(z) we can represent 
the solution of (3) in the form 

By varying the free energy with respect to  the po- 
larization, provided that Maxwell's equations a r e  satis-  
fied, we easily obtain in standard fashion an equation 
for P(z), which we can write, using (2) and (4), in the 
form 

a f ( P )  rl'P ~ e - ~ " d ~ ' = - - + ~ - .  
a p  dza 

We consider f i rs t  (5) a t  large z 3* 1 /A.  Then the third 
term in the left-hand side of (5) can be neglected, and 
in the right-hand t e rm we can expand P (z') in powers 
of (z - z') and retain the f i rs t  nonvanishing expression, 
since, a s  we shall presently show, a t  large z the po- 
larization P(z) changes substantially w e r  distances 
much larger than 1 /A .  As a result we get the equation 

From (6) it follows that 

Since the quantity 

a= t f  ( P )  - f  (Po) IlP' 

is usually much less  than unity a t  all IPI s Po (see Refs. 
1 -6), we see from (7) that P(z) indeed changes only 
over distances much larger than 1/A.  

We note furthermore that Eqs. (6) and (7) a r e  valid 
a lso  a t  distances from the boundary much less  than the 

characteristic lengths in (6) and (7). In fact, (6) and 
(7) a r e  valid up to distances such that the third ex- 
pression in (5) is small, i.e., up toz , fo r  which 

From (8), recognizing that a<< 1, we get 

It follows hence that 

Thus, a t  z >zo, according t o  (7) and (8), the polariza- 
tion P(z) is described by the following relation: 

In particular, as z 

- ~ + ~ ~ = ~ e x p ( - a o U ~ z ) ,  

where 

1(~0=8flaP' 1 P-P., 

i.e., we have pure Debye screening. 

On the other hand if in some region of the values of P 
the function f(P) has linear sections 

f (PI -f (Po) =A+atPo (P-Pi) ,  

A=-f ( P I )  -f (PO), aIP0--af ( P )  lap1 ,,, 

then in this region P(z) is given, in accordance with 
(9), by the expression 

We must determine the constants in (9)- (11). They 
can be obtained by matching the already obtained solu- 
tions in the region z >zo  to  the solution in the region 
z < z o  a t  z -zo [see (8)]. It is necessary here t o  use a 
boundary condition that follows from the requirements 
that the total free energy be a minimum: 

As we shall see below, the solution in the region 
z <zo  depends essentially on the value of the parameter 
nA2/4n. We consider f irst  the case 

x h 2 / 4 n c l ,  (1 3) 

when the spatial change of the polarization near the 
boundary is determined by the correlation length and 
not be screening by the free carr iers .  We investigate 
Eq. (5) in the region z << 1 /A, where it can be con- 
veniently written in a form equivalent to (5): 

p-1  G, (Z-2.1 D, (z') &'+Be-"', 

where 

209 Sov. Phys. JETP 51(1), Jan. 1980 S. G. Drnitriev 209 



and GI satisfies the equation and in the region z'<< 1 /A 

It follows from (12) that 

where - - 
P&-L J P (a') e ~ '  dro. P,- P (a') e-"" da'lr. 

0 0 

Since the relation between the parameters r A  and 
a /4r  can be arbitrary, it follows from the f i rs t  equa- 
tion of (15), which is equivalent to  (12), that either 
B -re,, or  B - @,/8~. The second estimate in (15) 
shows that the correct  solution is the first  and 
B - r e , .  In th i s  caseP,-ArP,<<P,. Taking intoac- 
count these estimates, we can write for B the expres- 
s ion 

rh' - 
B = -j P (z') e-"' dz'. 

0 

We note that inasmuch as by virtue of these estimates 
in (13) and (14) the main contribution to  the integral in 
(16) is made by the region z - 1 / A  but not by the smaller 
region z 5 r << 1 / A ,  it follows that (16), accurate to 
within the small  parameter (1 3), is  not an equation for 
B (or PI, but determines the solution of (14) in the 
region z<<l/A in terms of the parameters of the solu- 
tion in the region z - I /& In this region, the equation 
for  P(z) takes, as follows from (14), the following 
form: - 

-2nh exp (-hlz-z' I )  P (z ' )  dz1+4nP ( z )  
0 

It turns out that the solution (9) can be continued into 
the region z -1/A,  where it should satisfy a lso  Eq. (17). 
The requirement that the solutions be matched leads 
then to  the condition 

where P(z) is the solution of Eq. (6), including a lso  in 
the region z < 1 /A. In (1 8) the values of P(z) were taken 
a t  z = O  by virtue of the fact that the characteristic 
lengths over which the solution (9) varies is much 
larger than l / A ,  s o  that we can put with good accuracy 
z =O.  

The condition (8) can be easily rewritten with the aid 
of (9) in the form: 

af (H)  laH+4nH=O. (1 9) 

In experiment usually l af/aPI << P at-all IPI 5 Po. In 
this case (19) has a unique solution P =O. However, (19) 
can have also other solutions, from which it is neces- 
sa ry  to choose the one corresponding to the minimum 
of the free energy. We confine ourselves here to  a - 
case when the solution is unique: P =O. 

Thus, the solution in the region z 2 1 /A is of the form 
P dl" ! ( Z I f ( P f ) - f ( P . )  I ) "  -Pz9 

0 - 

and in the integrals that determine B and K in (21) it is 
necessary t o  replace P(z)  by the solution (20). The ex- 
pression (21) can be easily obtained from (14) in the 
limit z - 0. 

The function F P )  is invariant to the replacement of 
P by -P and has therefore an extremum a t  P =O. We 
consider the case when this is a maximum, which is 
realized if the ferroelectric undergoes a second-order 
phase transition. Then (9) a t  small  P takes in the reg- 
ion z > r the form 

We note that an  important factor in the derivation of 
the boundary conditions (12) and (18) was the use of the 
fact that n f 0. If we were to  assume n = O  from the 
very outset, a s  is sometimes done in the case of small  
r, then the boundary condition which is the analog of 
(18) would have to be found from the condition that the 
f ree  energy be a minimum. This procedure, a s  can be 
shown, leads to Eq. (20) for P(z)  and consequently 
makes it possible to  obtain the correct  solution only 
in the region z > r. 

It is a lso  of interest to  note that P, =P(O) is a small  
quantity not of the order of @,, as might be expected, 
but of the order of rAdhpo, which generally speaking 
may be larger than CYP,. 

We consider now the case inverse to (13): 

when the smallest length in the problem is 1 / A ,  and the 
change of P(z) near the boundary is determined by the 
screening by the intrinsic carr iers .  The estimates 
analogous to  (15) assume here  the form 

The investigation of (24) is more cumbersome than that 
of (15), because of the larger number of solutions that 
must be verified. We write out directly the answer, 
the validity of which can be checked by direct sub- 
stitution. In the region z C- 1 / A  

Matching (25') to the solution in the region z >> l / A ,  
which satisfies a s  before Eq. (6), leads to the following 
boundary condition-the analog of (18)-for the long- 
wave part  of the solution in the region z - 1 /A: 

In (261, for the same reasons as in (18), we put z =0, 
while P(z)  in (26), just as in the derivation of (20) from 
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(9), satisfies Eq. (6). Bearing this in mind, we easily 
obtain from (26) the following equation for  P(0): 

Since the relation between the parameters a, and 
xA2/4n [the latter satisfies (23)] can be arbitrary, Eq. 
(27) can with full justification have solutions even of the 
order of Po. It is necessary for this purpose that the 
Debye radius l / h  be small enough. It is easy to show 
that in this case the solution a t  z > l / A  takes the form 
(10). 

Using the obtained equations for P(z) and Eq. (4) we 
easily obtain the restrictions needed to  make the band 
bending small, a s  assumed. In the case (13), for  ex- 
ample, this requirement leads t o  the inequality 

3. CONCLUSION 

The polarization field can be screened a lso  by 
charges in the surface states. In the case when P =Po 
all  the way t o  the surface, the charge density for  com- 
plete screening should be equal to Po. However, the 
surface-state lexels can be located outside the volume 
forbidden band or  near i t s  b o ~ n d a r i e s . ~  Then their 
contribution to the screening of the polarization field is 
negligible. 

There exist, of course, a lso  inverse situations, when 
the surface-state bands a r e  sufficiently narrow and lie 
close to  one another in the volume forbidden band. The 
displacement of the Fermi level on the surface is in 
this case limited by the dimensions of the surface 
bands and by the distance between them. In this case 
practically the entire screening is produced by the 
charges in the surface states. Such a picture, however, 
is fa r  from always observed: on the surfaces of co- 
valent semiconductors (Si, Ge), on contacts of individual 
semiconductors with metals, when submonolayers of 
certain substances a r e  evaporated on semiconductors, 
etc.' On the other hand, in ionic semiconductors the 
influence of the surface states on the screening is 
small: although even here the appearance of vacancies 
o r  of an excess of atoms on the surface as the result 
of some process can lead to formation of surface states 
in the forbidden band. 

Little is known on surface states in ferroelectrics, 
but by analogy with other ionic wide-band substances9 
i t  can be assumed that in a semiconducting ferroelec- 

t r ic  the f i rs t  variant is more probable, and the influence 
of the surface states is small. 

We emphasize in conclusion that the boundary condi- 
tion for the polarization on the boundary of a semicon- 
ducting ferroelectric, a condition needed for a correct 
formulation of the boundary-value problem, is a simple 
consequence of the requirement (12) that the free ener- 
gy be small, or  can be obtained from this requirement 
in a more complicated manner in the case H. =O. A 
study of the screening of the spontaneous-polarization 
field by free ca r r i e r s  has shown that the polarization 
in the field on the boundary of a semiconducting ferro- 
electric a r e  generally speaking not equal to zero, a s  
had been assumed previously, and their actual values 
a r e  determined by the requirements that the free energy 
be minimal. A change of P, involves a change of the 
polarization and of the field near the surface of the semi- 
conducting ferroelectric. 

We note also that the character of the change of the 
polarization near the surface of the semiconducting 
ferroelectric is determined not by one length, a s  might 
be expected, but by two lengths; the minimal length 
determines the dimensions of some transition layer in 
which the polarization varies with distance much more 
rapidly than in the principal layer [see, e.g., (20) and 
(21 )I. 
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