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The elementary excitations of a disordered system with localized electronic states is classified by their 
electric multipole moments. The self-consistent-equation method is used to investigate the energy spectra 
of charged and dipole excitations for a lattice model. It is shown that because of the interaction of the 
dipole excitations with one another their state density decreases logarithmically with decreasing energy. 
This singularity should manifest itself in the low-temperature specific heat and in the high-frequency 
conductivity. The electronic specific heat of a doped semiconductor is considered. The interaction 
between charged excitations and dipole excitations (the polaron effect) is investigated, and the exponential 
decrease of the state density of the charged excitations at very low energies, due to this interaction, is 
investigated. 

PACS numbers: 71.20. + e, 65.40.Em, 71.38. + i, 71.50. + t 

The systems dealt with here include amorphous semi- which i s  genetically connected with Wigner crystaliza- 
conductors a s  well a s  doped crystalline semiconductors tion, was named Coulomb gap. The disorder in the sys- 
in which the Fermi level lies in the region of localized tem causes this gap not to be "hard." The system has 
states. Strict localization of the electronic states, a s  "soft" (low -energy) elementary excitations that a r e  re- 
shown by Anderson, is  a consequence of the scatter of sponsible for the electric and thermal properties of the 
their energies, and the existence of an end-point energy system, and the Coulomb interaction affects them 
(Fermi level), which separates the empty and filled strongly. 
states, follows in this case not from the Pauli principle 
but from the condition that the total energy be a mini- 
mum with respect to electron transfer from one site to 
another. 

Many papers published in the last decade point to the 
need for taking into account the electron-electron inter- 
action in such systems. In a number of papers1v2 an at- 
tempt was made to construct a theory "in the image and 
likeness" of the Fermi-liquid theory, thereby prede- 
termining the end result-a relatively weak renormal- 
ization of the state density in the vicinity of the Fermi 
level. This approach seems inadequate to us. The 
point i s  that the Fermi-liquid theory itself is  applicable 
to systems with Coulomb interactions only at sufficient- 
ly high density, when the kinetic energy of the electrons 
is of the order of the energy of the Coulomb interaction 
or  higher. In the system considered here there i s  no 
kinetic energy a t  all. The system is therefore much 
closer in its properties to a low -density electron gas 
which, a s  i s  well known, constitutes a t  zero tempera- 
ture a Wigner crystal, i.e., a state having nothing in 
common with a Fermi liquid. 

In the present article we propose a general classifica- 
tion of the elementary excitations in the system in ques- 
tion, and consider, for the first  time ever, the prop- 
erties of the dipole excitations responsible for the high- 
frequency conductivity and specific heat. The analysis 
is carried out with the aid of a self-consistent 
equation. 

1. CLASSIFICATION OF ELEMENTARY EXCITATIONS. 
COMPACTNESS PRINCIPLE 

The proposed classification is essentially independent 
of the disordered-system model, but it i s  nonetheless 
convenient to describe it with the aid of a concrete ex- 
ample, which we choose to be the lattice model pro- 
posed by one of us.7 In this model, the electrons can 
occupy only the sites of a periodic lattice, the number 
of electrons is half the number of the sites, and the 
charge of a site i s  half the charge of the electron. Each 
site i s  assigned a random energy @, ,  uniformly distri- 
buted in the interval from -A to A. A site can contain 
either one electron or  none. We have investigated the 

Poll& and Knotek3 have emphasized that because of properties of the ground state, in which the electrons 

the electron-electron interaction the state density (SD) a r e  disposed over the sites in such a way that the total 
should have a dip that separates the empty and filled energy of the system 

states. Kurosawa and Sugimoto4 observed this in a 1 el 
computer experiment. Srinivasan considered a model H=Z Qtn, + Tz 

< A >  
rij ..-, 

with-a large knergy scatter of non-Coulomb character 
and showed that the Coulomb interaction does not make which includes the Coulomb interaction of the charged 

it possible to use the single-electron approximation in sites, i s  minimal. Here ni a r e  the occupation num- 

the vicinity of the Fermi level. bers, equal to $ for occupied sites and -i for empty 
ones. The single-site energy 

Studies by our group6-lo have shown that, owing to the 
eZ 

long-range part of the electron-electron interaction, s ' = @ , + E x n j  (1.2) 
the SD vanishes on the Fermi level.') This phenomenon, i 
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for an occupied site is defined as the work (taken with 
a minus sign) that must be performed to move an elec- 
tron from the site to infinity, where the potential is a s - ,  
sumed equal to zero. For an empty site this energy is  
equal to the work necessary to bring an electron from 
infinity to the empty site. From the charge symmetry 
of the system it follows (see Ref. 7) that the Fermi lev- 
el is equal to zero, i.e., in the ground state n , = i  at &, 

< 0 and n ,=  - i  at E,> 0. 

We are interested in the case y = e 2 / a o ~  << 1, where 
a, is  the lattice constant. In Ref. 7 (see also Refs. 5 
and 11) it was shown that perturbation theory in the 
Coulomb interaction is not applicable if the energy & is 
less than the width A 5Ay3I2 of the Coulomb gap. More- 
over, at y << l one can obtain at low energies a universal 
description of the system (independent of A, a,, and ap- 
parently of the considered model), if A is chosen to be 
the energy unit and r, = e2/0 is chosen to be the unit of 
length. 

We proceed now to a classification of the elementary 
excitations. A l l  of them are transitions of electrons 
between different sites, i.e., they are described by a 
change in an even number of occupation numbers rela- 
tive to the occupation numbers of the ground state. To 
calculate the probabilities of the transitions it is  nee- 
essary to know the extent that the wave functions over- 
lap and to identify the interaction that causes the tran- 
sitions (usually, phonons). We, on the other hand, are  
interested in the excitation spectrum, a problem that 
must be solved by using for the total energy the 
classical expression (1.1), in which it i s  only im- 
plied that the quantum overlap of neighboring states 
is negligible. 

The proposed classification is based on the charge 
state of the elementary excitation. The excitations are 
divided into charged, dipole, quadrupole, etc. The 
simplest positively charged excitation is  produced on 
a site i by removing from it an electron and transferr- 
ing the electron to another site j, located at a distance 
much larger than r, away from the site i. This pro- 
duces on the site j a negatively charged excitation. 
We shall name this a single-site excitation. A more 
complicated positively charged excitation is  produced 
if we not only remove an electron from the site i, but 
also permute other electrons with initial and final 
states located in the immediate vicinity of the site 
i. We call such excitations polarons. (The concept 
of electronic polarons was introduced independently 
in Refs. 7 and 12.) From the charge-conservation 
law it follows that charged excitations can be pro- 
duced only in pairs. 

The simplest example of dipole excitation is the 
transfer of an electron from an occupied site to an 
empty site located at a distance on the order of r,. 
We call such excitations paired. A more complicated 
dipole excitation is produced if several permutations of 
electrons are carried out in a small region of space 
(of the order of 4). 

In a disordered system with randomly located sites, 
the excitations can be only dipole or charged. The 

probability of formation of quadrupole etc. excitations 
is  zero. In the lattice model, however, all these ex- 
citations exist. Nonetheless, we shall not consider 
them in detail. They interact weakly with one another 
and with electrically active (charged and dipole) ex- 
citations, so  that they can be disregarded in the analy- 
s is  that follows. However, as  we shall show, the inter- 
actions weakens greatly the state density of elec- 
trically active interactions with low energy, as  a 
result of which the quadrupole interactions (in those 
systems in which they exist) make the predominant 
contribution to the specific heat at sufficiently low 
temperatures. 

Two charged excitations of opposite sign always form 
a dipole and the proposed classification is meaningless 
if we do not explain why the length r, is  the line of de- 
marcation between the charged and dipole excitations. 
The classification is supplemented by the compactness 
principle. It states that if the displacement of the di- 
pole r >  yo, then the probability of the onset of a dipole 
excitation decreases sharply with increasing r. We 
consider paired interactions and introduce the 
function 

such that Y(w, r)dwdr,dr2 is the probability that there is  
an occupied site in the interval dr, and an empty site 
in the interval dr,, and the energy necessary for the 
transition of an electron between the sites lies in the 
interval w, w + do. Mathematically, the compactness 
principle is expressed by the fact that the integral 

has asymptotic convergence on the upper limit at small 
values of w (at distances on the order of yo), so that it 
is possible to introduce the concept of the density @(w) 
of paired excitatiolis per unit volume. 

We note that this statement is  quite nontrivial and is 
valid exclusively because of the presence of Coulomb 
interaction. In fact, if we set the electron charge e in 
(1.1) equal to zero, then y(w, r) W / ~ A ~ ~ Z ,  i.e., it is 
independent of r. This makes the pair density @(w) 
proportional to the volume, which is  absurd. 

The compactness principle is  arrived at from the 
concept of the Coulomb gap. It was shown in Ref. 6 that 
because of the interaction of the charged excitations 
with one another their state density decreases when the 
Fermi level is approached at a rate not less than c2 in 
the three-dimensional case and not less than ( c  / in the 
two-dimensional case. 1t is this which leads to the 
compactness principle. With increasing dipole arm the 
excitation is  gradually transformed from dipole to 
charged. But the density of the charged excitations has 
a Coulomb gap at low energies. Therefore when the 
dipole arm is increased the probability of excitation 
formation decreases sharply. 

We examine now in greater detail the case of paired 
excitations. The work necessary to transfer an elec- 
tron from an occupied site 2 to an empty site 1 is6 

~ = e , - e , - e ~ / r ~ , ,  
(1.4) 
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where r12 i s  the distance between the sites, and cl and 
c, are  the site energies defined above. In first-order 
approximation we can represent the function.F(w,r) in 
the form 

00 a 

p ( o ,  r )  = j d e ,  5 de, g ( e I ) g ( e 2 ) s  (e,-e=-et/r-o), (1.5) 
0 -00 

where g ( & )  is the state density of the single-site excita- 
tions. Since g ( ~ )  vanishes a s  E - 0, the main contribu- 
tion to the integral a t  r= r, and w= 0 i s  made by pairs 
with E~ = A and I & ,  I = A ,  in which a low excitation energy 
i s  achieved by exact cancellation of the positive term 
E~ - c2 by the negative term -e2/r. With increasing r, 
the characteristic values of cl and la2 I decrease s o  
that the Coulomb gap results in a sharp decrease of 
Fo(w, r). This in fact i s  the manifestation of the com- 
pactness principle, wherein, a s  will be shown below, 
the distribution function of any dipole excitationY(w,9') 
consisting of several electron permutations also de- 
creases sharply when the dipole moment B exceeds er,. 

We note that a t  r >  e2/w the functionFO(w, r )  ceases to 
depend on r. Therefore the integral (1.3) converges 
only asymptotically. The main contribution to it is 
made by pairs with a displacement on the order of r,. 
Thus, the compactness principle and the entire pro- 
posed classification a r e  meaningful only for excitations 
with low energy (e2/w >> r, o r  w <<A). We note also that 
in the approximation (1.5) the function @(w) obtained 
with the aid of (1.3) has a nonzero limit a s  w- 0, and 
in order of magnitude we have @(O)=g,. 

Thus, the Coulomb gap makes i t  possible to separate 
the branch of dipole excitations. It is  precisely these 
excitations which determine the thermodynamics of the 
system, and also the reaction to an alternating electric 
field. However, a s  already stated, the static conduc- 
tivity is determined by the charged excitations. In 
fact, pairs with low energy w a r e  compact formations 
located a t  large distances from one another (Roc w"I3). 
For the static conductivity we need a "pass-throughJ* 
system of paths from contact to contact, which cannot 
be organized by compact pairs. The length of the hop 
in low-temperature static conduction must inevitably be 
large, and the transition energy must be small. It fol- 
lows therefore, according to (1.4), that the cancellation 
of the positive and negative terms, which is inherent in 
a typical pair, cannot take place in this case and the 
energies E~ and Ic2 1 must be small enough. 

Dipole excitations make an important contribution to 
the dielectric properties of the system. In a weak elec- 
t r ic  field E, the "soft" pairs become polarized and pro- 
duce a polarization P= er,@(O)e~r,. Assuming that @(O) 
=go, we find that the corresponding contribution to the 
dielectric constant is of the order of goe2r~=goe6 /~2= 1. 
It will be shown below that the interaction of the pairs 
with one another leads to @(w) - go[ln(~/w)]'ll a s  w - 0, 
thus decreasing somewhat their contribution to the di- 
electric constant. 

The dielectric-constant contribution produced by the 
dipole excitations influences substantially the state den- 
sities of the charged excitations. If an electron is 
added to an empty site, then it turns out that in the 

presence of this electron a large number of pairs lo- 
cated in the vicinity of this site find it convenient to 
move the electron from one site to another (see Fig. 1). 
The resultant dipole potential lowers the energy of the 
new electron. In ionic crystals this phenomenon is 
called the polaron shift, and we borrow this termin- 
ology but bear in mind that the shift i s  produced not by 
the lattice but by the electronic transitions. If the con- 
figurations and energies of the pairs in the vicinity of 
all  the si tes were the same, then the filled states would 
be separated from the empty ones by a rigid polaron 
gap that contains no states whatever. However, since 
the system in question i s  disordered, there is a prob- 
ability that the polaron shift is small near certain 
sites, i.e., the soft pairs that produced polarization a re  
accidentally absent. The average number of pairs par- 
ticipating in the production of the polaron atmosphere 
i s  large, s o  that the probability of such a fluctuation i s  
exponentially small. It follows therefore7 that the state 
density g(&) of single-site excitations vanishes expo- 
nentially a s  & - 0 (see Fig. 2). Inasmuch as, accurate 
to logarithmic factors, the renormalization of the di- 
electric constant i s  of the order of unity, the width of 
the polaron gap i s  a p i o n  of the order of the width A 
of the Coulomb gap. The form of g ( c )  was likewise cal- 
culated in Ref. 7. The unknown quantity there was the 
fluctuation probability whereby the vicintiy of the occu- 
pied site with energy E does not contain even a single 
pair such that the system energy decreases as a result 
of a process consisting of excitation of this pair and 
simultaneous transfer of the electron from the con- 
sidered site to a remote hypothetical site having an en- 
ergy equal to the Fermi energy. As shown in Ref. 7, 
this probability i s  proportional to exp{-$(A/E)'~~}, 
where /3 i s  a numerical factor. 

In the present paper we prove that the polarization 
gap has a more abrupt form, namely, 

where y is a numerical factor. The right-hand side of 
(1.6) is the probability of a fluctuation such that in the 
vicinity of a si te with energy E there a r e  no pairs that 
create conditions facilitating the transfer of an electron 
from this si te to a remote site having an energy equal 
to the Fermi energy, with simultaneous excitation of 
all the pairs that become polarized in the field of a 
point charge located on the site in question. 

It must be noted that the hard gap (1.6) becomes soft 
if a transition is made from single-site excitations to 
polar on^.^ The energy of a polaron on an empty site is 
defined a s  the minimum work necessary to transport , 

FIG. l. Formation of "polaron atmosphere" when an elec- 
tron is placed on site j . 
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increasing A, the SD tends to a universal function of &/  

A that also agrees well with the SCE solution. The un- 
expected fact was that a similar picture was observed 
also in the three-dimensional case. At small & the fol- 

FIG. 2. State density of single-site excitations without allow- 
ance for the polaron interaction (solid line) and with the allow- 
ance (dashed) in the lattice model at A >>e2/ao. The Fermi 
level i s  equal to zero. I-Region of Coulomb gap, 11-region 
of very weak change of the state density, where the Coulomb 
effects play a small role, In-high-energy reglon, where the 
state density is again determined by the Coulomb interaction. 
Attention: note the break on the abscissa axis ! 

the electron from infinity to this site and simultaneously 
produce the pair polarization to accommodate the new 
electron. Analogously, the energy 9, of a polaron cor- 
responding to an occupied site can be defined as  the 
minimum work (with minus sign) which must be per- 
formed to transport an electron from site i to infinity, 
with simultaneous relaxation of the polarization of the 
pairs in the vicinity of this site. It follows from the 
definition that I lk, I c I c ,  I .  Repeating the arguments of 
Ref. 6, one of us7 found that the state density of the po- 
larons G(9) decreases as  a result of their interaction 
with one another like 

G(\P) =ar\Yz/e8, (1.7) 

where cr, is a numerical coefficient. Since the interac- 
tion with polaron excitations is included in the polaron 
shell, this interaction does not lead to further decrease 
of the state density. 

Thus, the density of the charged excitations decreases 
with energy like the square of energy, and at sufficiently 
low energies these excitations should be for the most 
part polarons, while the contribution of the single-site 
excitations decreases with decreasing energy exponen- 
tially. The charged excitations are responsible, for ex- 
ample, for the hopping charge transfer, and relation 
(1.7) leads to ua e x p [ - ( ~ ~ / ~ ) ' ~ ~ ] ( o  is the electric con- 
ductance and To is the characteristic temperature), 
which differs from the known Mott law. 

The classification described above is in essence only 
a more general and more succinct formulation of the 
ideas that were formulated already by 1976. In that 
year there was developed the self-consistent equation 
(SCE) method, which made it possible to take into ac- 
count the interaction of charged  excitation^.^ This was 
followed by a numerical computer simulation of the sys- 
tem in as  well a s  of a system with randomly 
disposed siteslO, and some unexpected results were ob- 
tained. Only the SD of single-site excitations were in- 
vestigated, and in the two-dimensional case the result 
confirmed splendidly the existing theory: a t  small c we 
have the linear law 

g(e)=az le l /e '  (1.8) 

with a coefficient cr, that follows from the SCE. With 

lowing law holds 

g(e) =aSealC. 

wherein the constant a3 and the entire energy depen- 
dence of the SD are well described by an SCE that takes 
into account only the interaction of the charged excita- 
tions. No signs of interaction between charged and di- 
pole excitations, which should lead to a polaron gap and 
to the exponential decrease (1.6), were observed. To 
be sure, the boundary effects that increased with de- 
creasing energy made it possible to investigate only the 
region c 2 0.15A, but in this region the SD decreased 
by approximately a factor of 20 and in essence it is  pre- 
cisely this region which is of greatest interest for mod- 
ern experiments. 

Thus, numerical simulation has shown that for some 
reason the hard polaron gap is much narrower than the 
Coulomb gap, although a priori they should be of the 
same order. The desire to explain this circumstance 
stimulated in fact the present study. Its purpose is to 
investigate the interaction between dipole excitations 
which, as  is clear beforehand, should make these ex- 
citations harder and weaken thereby the polaron gap. 
In the present article we give only the asymptotic re- 
sults, which are valid in the limit of very low energies. 
They state that because of the interaction the DS of the 
dipole excitations has a logarithmic singularity that 
should manifest itself in the specific heat and in the di- 
electric properties of the system. It leads also to a 
logarithmic factor in (1.6), which weakens the polaron 
gap. It is so  far impossible to say whether this is suf- 
ficient to explain the results of the simulation, since 
expression (1.6) is valid only in the limit of very small 
c .  More detailed calculations a re  needed to investigate 
the region c > 0.1A. 

2. THE SCE METHOD AND INTERACTION OF SING 
DIPOLES 

The SCE for the DS was first proposed in Ref. 7. Its 
derivation calls for a number of assumptions which have 
not yet been substantiated. This method, however, is 
the simplest mathematical expression of the ideas de- 
scribed in the preceding section and, in addition, in all 
the hitherto considered cases it yields very good quan- 
titative agreement with the results of computer simula- 
tion.'-lo We present a detailed derivation of the SCE, 
for the purpose of discussing some its aspects to which 
no attention was paid before. 

The SCE can be written in the case A >> 1 and is 
based on an expression obtained in Ref. 7 for the dis- 
tribution function p(c1,. . . ; c"): 

-- 

where B(x)= 1 at x>O and B(x)= 0 at x<O; A::: is the 
work that must be performed to transfer p electrons 
from the sites i,. . . i, that a r e  occupied in the ground 
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state to the empty sites j,. . .j,: 

E::: is the electrostatic interaction energy of a system 
consisting of p positive charges a t  the points i,. . . i, and 
p negative charges a t  the points j,. . .j,. The inequality 
corresponding to the transfer of a single charge i s  of 
the form 

We shall give below a more complete derivation of (2.1) 
than in Ref. 7. 

To each set  {@I,} there corresponds a se t  of occupa- 
tion numbers, which describes the ground state, and a 
set  of single-site energies {c,}. The function (2.1) de- 
scribes the distribution of c, averaged over all t h ~  sets  
{@I,). The product of the 0 functions reflects the fact 
that in the ground state the transfer of any number of 
electrons from site to site increases the total energy 
of the system. The sets {c,} which do not satisfy these 
conditions a re  forbidden. To derive (2.1) i t  suffices to 
prove that in N-dimensional energy space the probabil- 
ity density of all  the allowed sets  {c,} i s  the same and 
is equal to We consider the allowed N-dimen- 
sional interval from {c,} to {c,+ be,), and find the prob- 
ability of observing the system within this interval. It 
must be assumed here that not one of the energies c i  
reverses sign within the interval, since the function p 
is  not defined a t  the points c ,=  0, where the occupation 
numbers n, change jumpwise.') The considered inter- 
val of se ts  {&,} corresponds to an interval of se ts  of 
{4r} from (4) to {$,+ 64,). Therefore the sought prob- 
ability is equal to the probability of finding the set (4,) 
in this interval. By definition, the latter probability i s  
equal to 

W= ( 2 4 ) - " n  64,. 
t 

Since the occupation numbers do not change their val- 
ues, we have according to (1.2) 6@I , = 6 ~ ,  and 

The limitations described by the 0 functions play a 
role in the low-energy region and a r e  responsible for 
the Coulomb gap. At high energies, the values of c ,  
a r e  bounded by the additional conditions 

However, the characteristic values of the electrostatic 
potential a r e  small compared with A. Thus, between 
the region of the Coulomb gap (c 6 A), where the values 
of c ,  a r e  strongly correlated, and the region where the 
additional conditions a re  important (E , = A), there lies 
a broad region in which the probability of finding energy 
in the interval d ~ ,  depends little on the energies of the 
surroundings sites and equals, with good accuracy, 
dci/2A. Therefore the state density g (c) in the region 
A << E <<A is close to go= (2Aaz)" (see Fig. 2, a s  well 

a s  Fig. 7 of Ref. 9). 

When we speak of interaction of single-site excita- 
tions, we bear in mind that only O(A$ is taken into ac- 
count in (2.1), i.e., the only conditions considered a r e  
those that require a minimum of the total energy with 
respect to all  possible permutations of one electron. 
We now derive the SCE corresponding to this approxi- 
mation. By definition we have 

i 
g ( ~ ) = ~ j ~ ( e ~ .  . . e l .  . . e~)f i (e , -e)  II deI-goW.. (2.4) 

1 

where W, can be interpreted as the probability that the 
energies of all the neighbors of the site i assume values 
such that the conditions (2.3) a r e  satisfied. The idea of 
the derivation of the SCE is that W, i s  represented in 
the form of a product of probabilities, each of which is 
expressed in terms of the sought functiong(c). As- 
sume, for the sake of argument, that & >  0 and let the 
origin be a t  the si te i. A certain si te j, located a t  a 
distance r, from the site i and having a negative energy 
c,, must satisfy the condition c - E, - e2/rj> 0. The 
probability of this event (considered independently of 
the energies of the other sites) i s  

l-aoJ I g(er)de' and r1<e2/e, 
e-e*/,, 

and is equal to unity a t  r j >  e2/E. 

The approximation used in Ref. 7 was 

where the product was taken over all  the sites. Sub- 
sequently,' however, this was found to be incorrect. 
In fact, in this calculation it is  necessary to take into 
account only the probabilities of independent events. 
Assume that a situation has been reached wherein each 
site satisfies inequalities that connect it with sites lo- 
cated only to one side of the site. This is sufficient to 
interrelate the energies of all the sites of the system 
by the required inequalities. It follows therefore that 
expression (2.5) takes each inequality into account 
twice and it suffices to include in the products only the 
terms with j>  L3' 

Substituting (2.5) in (2.4), taking the logarithm, and 
recognizing that the integral in (2.5) is small compared 
with unity, we obtain 

The expression in the right-hand side represents (with 
a minus sign) the average number of sites for which the 
inequalities that relate them to the site i a r e  not satis- 
fied. Therefore the right-hand side, in accordance with 
the Poisson distribution, represents the logarithm of 
the probability of the total absence of such sites. At low 
energies, an important role is  played by large dis- 
tances. We can therefore neglect the lattice structure 
and replace the summation by integration. After inte- 
grating with respect to r, we get 
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where v, is the volume of a sphere of unit radius in d- 
dimensional space, and d= 2 or 3 is the number of di- 
mensions of the space. This equation was uased in 
Refs. 8 and 9, but for the reasons indicated above it 
differs from the equation proposed in Ref. 7 by a factor 
of 2 in the argument of the exponential. At low energies 
we obtain the laws (1.8) and (1.9), with a,= 2/77 and a, 
= 3/a. A s  shown in Refs. 9 and 10, these values agree 
well with the results of computer experiments. Ac- 
cording to (2.7), the state density g (e) -go as  &/A - -. 
We see therefore that the SCE is valid only under the 
condition y = e2/a,,~ << 1. At low energies, however, the 
solution does not depend on A at all. A hypothesis was 
advanced in Ref. 6 that the state density of the charged 
states is universal at low energies. It was shown in 
Refs. 9 and 10 that, within the limits of the experimen- 
tal computer accuracy, the state density at low energies 
is independent not only of A, but also of the model of 
the disordered system. All this suggests that at low 
energies the solution of the SCE (2.7) is valid not only at 
y << 1 and not only for the considered lattice model. 

It is of interest further to generalize the SCE to the 
case when the interaction in (1.1) is given not by e2/r,, 
but by lw1e2/r l,, where n 8 1. It is easy to verify that 
the argument of the exponential in (2.7) is of the form 

The value d/n= 1 is in this case critical. If the potential 
decreases just barely more rapidly than fd ,  then the 
SD does not vanish. For example, in an MIS (metal-in- 
sulator-semiconductor) structure the interaction be- 
tween electrons localized on the surface of the semi- 
conductor takes the form e2/ri, if rij <<I, where 1 is the 
distance from the surface of the semiconductor to the 
surface of the metal, and the form e2l2/r;, at r,, >> 1. 
(The image forces transform the charges into dipoles.) 
In the latter case d= 2, the ratio is d/n= $< 1, and at c 
< e2/1 the state density stops decreasing with E and g(0) 
+ 0. 

In this article we study the interaction of dipole ex- 
citations in three-dimensional space, and this corre- 
sponds to the critical situation d/n= 1. In the model 
(1.1) the dipoles have different arms and different or- 
ientations in space, therefore the SCE formalism must 
be modified. We shall do this in the next section and 
consider for the time being the model of identical Ising 
dipoles on a lattice, whose Hamiltonian is obtained 
from (1.1) by replacing e2/r,, by e212/<,, where I is the 
displacement of the dipole. In this case we have in 
place of (2.7) 

At small c the solution takes the form 

where t is a numerical factor. At high energies, g 
tends to g, Defining the gap width A by the condition 
&)=go, we get 

A=tA expi-3/2rrezl'g,). 

Thus, in the critical case g(c) goes to zero logarith- 
mically, and the width of the gap, just a s  in the BCS 
theory, depends exponentially on the coupling constant. 

A similar model was investigated by Kirkpatrick and 
Varma.14 This model is  obtained from our model by 
putting A = 0 and assuming that the interaction takes the 
form b,,e2l2/r~,, where b,, is a random quantity that as- 
sumes with equal probability the value +1 or -1. It is 
this quantity which produces a level scatter of the or - 
der of A= e2b2/a:. It seems to us, that, just as  in the 
case of a Coulomb gap, the solution (2.9) should be in- 
dependent of the model a s  c - 0. It is only necessary to 
recognize that because of the random sign of b,, it is  
necessary to introduce into the argument of the expo- 
nential in (2.8) the factor $ (at fixed i we have b,,> 0 for 
only haU of the sites j) and replace A by A. We then 
obtain 

Kirkpatrick and Varma14 advance arguments that in 
their model g (0) = 0; these arguments a r e  very close to 
the derivation of the Coulomb gap, given in Ref. 6. 
They have also reported numerical simulation by the 
Monte Carlo method, which confirms the vanishing of 
g(O), but claim that the obtained function g (c) is &. 
It seems to us that the accuracy of their numerical ex- 
periment does not make it possible to distinguish be- 
tween & and expression (2.10). 

3. INTERACTION OF DIPOLE EXCITATIONS 

We begin with paired excitations that represent the 
transfer of one electron over a distance r with an ex- 
penditure of energy w: the SCE in this case must be 
written for the function y(w, r) introduced in Sec. 1. 
The interaction is described by the condition that the 
energy be a minimum with respect to simultaneous per- 
mutation of two electrons. As will be shown, the im- 
portant role is  played here by interaction over large 
distances between compact pairs, whose potential can 
be regarded a s  a dipole potential. We consider a pair 
with excitation energy w and displacement r, located at 
the origin. The parameters w' and r' of any pair lo- 
cated at a distance s from the considered pair should 
satisfy the inequality 

o+o'--U>O, 

where U is the energy of the dipole-dipole interaction 

Here 8, is the angle between r and s, 3, is the angle be- 
tween r' and s, and 3, is  the angle between the planes 
(r,  s) and (rt,s). The condition (3.1) follows from the 
fact that the increment of the t qa l  energy of the system 
due to simultaneous excitation of two pairs is  positive. 

The average number of pairs whose parameters w' 
and r' and do not satisfy the inequalities (3.1) that con- 
nect them with the considered pair can be expressed by 
the formula 
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and the probability that not a single pair which does not 
satisfy the inequalities (3.1) is located in the vicintiy of 
the considered pair i s  equal to expi-G(W, r)}. Let 
y-l(w, Y) be the function obtained by substituting in (1.5) 
the state density g(&) which i s  the solution of the SCE 
(2.7). It is  easily seen that the 9-'(w, r )  obtained in this 
manner depends only on the argument x =  w + e2/r. In 
the spirit of the SCE, it must be assumed that i f  one 
takes into account only the interaction of single-site 
excitations, [i.e., if only O(A{) a r e  retained in (2.1)], 
then the distribution function y(w, r )  should coincide 
wi thF(w,r) .  Then the SCE for the interacting pairs 
must be written in the form 

S ( o ,  r ) = F 1 ( o ,  r )exp{ -G(o ,  r ) } .  (3.4) 

Just a s  in the derivation of (2.7), in order not to take 
into account each inequality twice, the integration with 
respect to s in (3.3) should be carried out only over half 
the space. Integrating with respect to a, we obtain 

r f S  dr' do', 

where 
n 

a = - -j f ( e l ,  e 2 ,  eS) d cos d cos 6 2  d03, 
3 (3.6) 

and the integration limits a r e  determined by the inequal- 
ities 

The integral (3.6) was calculated with a computer by 
the Monte Carlo method. We obtained a= 9.1. Defining 
the function cp(w,r) by the equation 

p ( o ,  r ) = S t ( o ,  r )exp{ -m- 'q (o ,  r ) ) ,  (3.7) 

we find that it must satisfy the equation 

5 1  ( o f ,  r') 
cp(o,r)=aroe2jS o f o '  r"dw'drn. (3.8) 

At w >> A the Coulomb interaction is insignificant, and 
the function y(w, r )  should coincide wi thp(w,  r ) ,  while 
the function cp(o,r) should tend to zero. As a result, 
the integral (3.8) diverges with respect to w a t  the upper 
limit. This divergence is due to the fact that values of 
s of the order of r and smaller become significant and 
the dipole-dipole approximation becomes meaningless. 

As seen from (3.1)-(3.3), a t  small w we have s 
= (~t- 'e~/w') ' /~.  Because of the exponential in (3.8), the 
significant values a re  r1=r0/cp. As we shall see  later, 
cp= I l n ( ~ / o )  Ill4, and we can assume rt=ro with loga- 
rithmic accuracy. Then s becomes comparable with r 
at  wl -  eZr,,/rz. 

We a re  interested in values r- ro/cp, s o  that accurate 
to logarithmic and numerical factors we can set  the 
upper limit of the integration equal to A. At large val- 
ues of w' the dipole-dipole approximation i s  violated, 
and the logarithmic divergence is eliminated if the en- 
ergy U is correctly expressed. 

As already mentioned, the functionyl depends only on 
w+ ez/r  and in the integration region the term w can be 
neglected. Because of the logarithmic factor in q we 
can assume that r' <<yo, and substituting g ( & ) = g 0  in the 
integral (1.5) we obtain 

Thus, the function cp(w, r,) must satisfy the equation 

a A do' r ' 
r 0 = - r e - - o r r r .  4r, o+o re (3.10) 

In view of the weak dependence of cp(w, r) on Y, we re-  
place in the argument of the exponential p ( ~ ' ,  Y') by 
cp(wt, yo). We then obtain 

A 
a do' 

( o + w ' ) q Y o ' ,  ro) 
' 

The solution of (3.11) a t  w <<A (accurate to the number 
under the logarithm sign) is  of the form 

cp(o, ro)  =2'ctXln'(~/o) .  
(3.12) 

It should be borne in mind that the calculation of 
y(w,r)  is a problem in itself. A pair with a rm r 
>> ro/q polarizes not only several neighboring soft 
pairs, but produces a macroscopic polarization in a 
large volume. By a method similar to that described in 
the appendix, it can be shown that in this case the argu- 
ment of the exponential takes the form -rr;'cp(w,r), 
where the function cp depends on w and r logarithmical- 
ly. The exponential dependence a t  large r is in essence 
the consequence of the polaron effect, due to the polar- 
ization of the pairs with r'=ro/q(w,r0). Just  a s  in the 
case of charged excitations, i t  is possible to introduce 
"dipole plarons," for which the distribution functions 
3( w, r )  do not decrease like exp{-rcp/ro} a t  r >> ro/cp, 
but decrease in power-law fashion because of their 
interaction with one another, and it is this which i s  the 
manifestation of the compactness principle. 

So far  we have dealt in this section only with paired 
excitations, but up to formula (3.9) all  the results a re  
valid for any dipole excitation, provided that r and r' 
a r e  taken to mean the a rms  of the dipoles produced a s  
a result of several electronic transitions. In particu- 
lar, the exponential decrease described by (3.5) takes 
place for all dipole excitations having a low excitation 
energy w and a displacement r. 

It can be verified, however, that the "gross" contri- 
bution to the state density ~ ( w )  i s  determined precisely 
by the paired excitations. It can be shown that the 
functionsyl(O, r )  for excitations that cover four or  
more sites and have a dipole-moment displacement r, 
is less than expression (3.9) a t  r <<yo since it does not 
contain the large factor ez/r. Thus, it is  precisely 
paired excitations that make the main contribution to 
the thermodynamics of this system, and also make up 
the shell of the polaron. The Appendix contains a de- 
rivation of Eq. (1.6), that describes the state density of 
single-site excitations with account taken of the polaron 
gap. 

4. SPECIFIC HEAT 

In conclusion we wish to discuss the phenomena in 
which the above-predicted anomaly of the state density 
of the dipole excitations can manifest itself. Fi rs t  to 
be discussed is the low-temperature specific heat. It 
was emphasized in Ref. 6 that the state density (1.9) 
cannot be used to calculate the specific heat, since the 
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dipole excitations make a much larger contribution, 
proportional to T. Nonetheless, in Ref. 13 the specific 
heat was calculated with the aid of the law (1.9) and the 
result C,a TS obtained there is in our opinion in error. 

The logarithmic singularity of the functionflw, r) at 
low energies leads to the specific heat anomaly. The 
state density that enters in the linear law for the spe- 
cific heat is determined by the function @(w) [see 1.3)]. 
Substituting (3.7) and (3.9) in (1.3) and neglecting the 
weak dependence of cp on r, we obtain 

(D (w) =21cge/q12. (4.1) 

Since cp is  a weak function of the frequency, the depen- 
dence of the specific heat on the temperature takes the 
form C,a T@(T). 

The asymptotic ~ ( w )  dependence is determined at low 
frequencies by (3.12) [we note that this equation is valid 
only at very low frequencies and for comparison with 
experiment it would be necessary to solve (3.11) nu- 
merically], and therefore C, has a low-temperature 
anomaly : 

We discuss now the role of quantum effects. The 
overlap of the wave functions of two states localized at 
a distance 7 from each other leads to a quantum "re- 
pulsion" of the levels by an amount I = E, expi-2r/a}, 
where E, is to the order of the binding energy and a is 
the characteristic dimension of the wave function. If 
the replusion energy of the two states separated by a 
distance r, is small compared with the gap width A ,  
then classical theory can be used in a wide range of 
lengths and energies. 

Nonetheless, at  sufficiently low energy w (and ac- 
cordingly at low temperatures) quantum effects become 
significant. An important role in the integral of (3.5) is 
played by lengths r= r,/cp, which decrease with energy 
w. At sufficiently low energy, I exceeds w, after which 
the classical theory no longer holds.  h he condition for 
its applicability is r,,/cp >> r,=+aln(~,,/w).] We note here 
only that the logarithmic anomalies in the specific heat 
are  preserved also in the quantum region. 

We recall that in the lattice model there exist quadru- 
pole etc. excitations which in fact do not participate in 
the interaction and therefore have a state density that 
does not depend on energy (although it is small at high 
values of A). These excitations yield a strictly linear 
specific heat at sufficiently low temperature. However, 
a s  already emphasized, in a disordered system with 
randomly distributed centers there a re  no such excita- 
tions. 

We discuss now the electronic specific heat of a doped 
semiconductor under the assumption that the electronic 
states are  localized and that compensating impurities 
a re  present. For the sake of argument we assume that 
the donor density N ,  exceeds the acceptor density NA. 
According to the foregoing, the specific heat is deter- 
mined by the electron transfer within donor pairs con- 
sisting of empty and filled donors. It is first necessary 
to calculate the function p ( w ,  r), which determines the 
number of pairs with a displacement r smaller than the 

average distance between the donors and with low exci- 
tation energy under the assumption that these pairs do 
not interact with one another. 

The scatter of the levels in the system i s  due to the 
random fields of the charged donors and acceptors, 
whose electrostatic potential changes little over dis- 
tances r < N ;'IS. Therefore the pair excitation energy 
can be represented in the form w =  eEWr,  where E is the 
random electric field at the location of the pair. Then, 
for example at ND = 2N,, we have 

where F(E) is the distribution function of the electric 
fields and the averaging i s  over the angles between the 
field E and the vector r. The integral with respect to 
the angles can be calculated, and 

The function F(E) is bell-shaped with one character- 
istic scale EN= e~ 'I3/%, i.e., F(E) = E','@(E/E,) (u is 
the dielectric constant of the lattice). In the case of 
interest to us w << erEN, so that we can put w =  0 in (4.4). 
We obtain ultimately 

where 

is a dimensionless constant. We note now that (4.5) co- 
incides with (3.9) if we put 

Therefore the theory that describes pair interaction 
does not differ from that developed above and leads to 
the same behavior of the specific heat. 

At the maximum impurity concentration that leads it- 
self to the classical treatment, the width of the Cou- 
lomb gap can reach 5 meV in silicon and 1.5 meV in 
germanium. Therefore the anomalies of the specific 
heat should be sought at helium temperatures and be- 
low. We know of experiments of this type with sili- 
con,'5 but unfortunately the samples used there were 
uncompensated and practically all the donors were 
neutral. 

The functionF(w,r) plays an important role in the 
theory of high-frequency electric conductivity. In par- 
ticular under relatively low-frequency relaxation condi- 
tions16 this function, taken at w =  KT, determines the 
temperature dependence of the electric conductivity. 
The singularities indicated in the present paper for low 
energies can become impartant in this case. 

APPENDIX 

DERlVlATlON OF EQUATION (1.6) 

Just a s  in the derivation of the SCE, we assume that 
the fluctuations of the density of the paired excitations 
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are  described by Poisson statistics and that the method 
of optimal fluctuations is applicable (see Ref. 17). The 
probability of the fluctuation is proportional to 
exp( -~{5}), where 

and [(Y, w, s )  = to+ 5' is the density of pairs with dis- 
placement Y and with excitation energy w per unit vol- 
ume, [OrF(w, Y), and e ' ( ~ ,  Y, s )  is the deviation from 
the mean value and depends on the spatial coordinate s. 
It is required to find the probability that an empty elec- 
tron level with energy E <<A i s  present a t  the origin. 
The necessary condition for the existence of such a lev- 
e l  in the ground state i s  that the process consisting of 
the landing of the electron on this level with simultan- 
eous polarization of pairs in its vicinity is  energywise 
not favored, i.e., c - E >  0, where 

is the energy gain resulting from the polarization of 
the pairs and the field of a point charge located a t  the 
origin. The average value of E is of the order of A 
and greatly exceeds E ,  and we shall therefore be inter- 
ested in low-probability fluctuations, in which 5 << to. 
To determine the argument of the exponential we must 
put E = E ,  which leads to the following variational prob- 
lem: find the function 5 that minimizes 0{5} under the 
condition that E{[}= E.  Introducing the Lagrange multi- 
plier A,  we obtain from the condition 6(Q+ hE) = 0, that 

where x =  e2r- s/s3 - W. Substituting (A.3) in (A.2) and 
equating (A.2) to &, we get 

In the derivation of (A.4) we have neglected the log- 
arithmic dependence of f l w , ~ )  on o, putting o= 1 / A  in 
the argument of this function. Substituting (A.3) in (A.l) 
and making an analogous replacement, we obtain (1.6), 
with y = 1.5. 

"1n this most important problem our point of view does not 
agree with that of Pollak and Knotek," who admit of a non- 
zero state density on the Fermi level. 
For this reason, the state density g (&)  need not necessarily 
be an analytic function at small &, as i s  stated in Refs. 11 and 
13. An example of non-analytic behavior is provided by Eq. 
(1 -8). 

3)In essence, this rule is  only empirical. For example, in the 
region I F, I >>A, where g(&)  differs little from go, we can use 
perturbation theory and show that the first correction to go, 
which follows from the SCE, is  undervalued by a factor of 
two. However, a t  low energies the result of the SCE agrees 
well with the computer experiment. In the limit a s  &/A 
-.o it, of course, also yields g ( & ) = g o  and therefore approx- 
imates g (&)  well a t  all  energies. 
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