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(He3), van der Waals molecular dimers in solutions of the 
quantum liquids He3-He11 
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Bound states of He3 impurity quasiparticle pairs, produced as a result of van der Waals attraction on the 
free surface in thin films, in narrow capillaries, and on vortex filaments in superfluid He4 are investigated. 
With decreasing temperature, the contribution of the bound states to the thermodynamics of the solution 
becomes decisive. The coefficient of inelastic absorption of first sound due to the bound state in the field 
of the acoustic wave is calculated. It is predicted that a system of impurity excitations in narrow 
capillaries or on vortex filaments can have a resonant singularity (at a frequency corresponding to the 
threshold of the splitting of the bound state) wherein the absorption coefficient for monochromatic sound 
becomes infinite. The temperature of the gas-liquid phase transition and the superfluid transition 
temperature are calculated for a Bose system of van der Waals pairs (He3), on a surface and in thin He11 
films. It is shown that the superfluid transition temperature can be of the order of 35 mK. 

PACS numbers: 67.60.Fp, 67.70. + n 

It i s  known that He3 atoms dissolved in superfluid He4 
form, at sufficiently low concentrations, a weakly non- 
ideal gas with attraction between the quasipartic1es.l-3 
The presence of arbitrari ly weak attraction between 
fermions leads at exponentially low temperatures to the 
formation of Cooper pairs and to a phase transition of 
the dissolved He3 into the superfluid state (see, e.g., 
Refs. 2,4,5). This attraction between the impurity ex- 
citations turns out, however, to be too weak to produce 
Van der Waals bound states of He3 particles within the 
volume of the solution. It appears therefore that no Van 
der Waals dimer (HeS), are produced under ordinary 
conditions. (We note that generally speaking a t  high 
pressures,  when the effective mass  and the radius of 
the interaction of the He3 quasiparticles increase, these 
bound states might appear. 

On the other hand, in a two-dimensional attraction 
field a discrete s-level corresponding to a bound state 
of particles i s  always present. One can regard as two- 
dimensional, for example, a system of impurity excita- 
tions of He3 in a sufficiently thin film of He 11, bounded 
on one o r  both sides by a solid surface. The He I1 film 
can then turn out to be fully macroscopic, i.e., i t s  
thickness can greatly exceed atomic dimensions. In 
fact, let the attraction between the dissolved He3 atoms 
lead in the two-dimensional case to formation of a 
bound-state (He3), with characteristic dimension Y,. It 
is then clear that the interaction of the impurity excita- 
tions in the He11 film can be regarded as two-dimen- 
sional if the film thickness d i s  much less than the dim- 
er dimension, i.e., d<<r, .  The exponential smallness 

of the binding energy A of the dimer compared with the 
characteristic kinetic energy ~ ~ / r n a ~  (m is the effective 
mass  of the He3 quasiparticle and a i s  the atomic di- 
mension) means that ro >> a, i.e., there exists a region 
of macroscopic thickness of the film a << d << r,. Since 
we are confining ourselves only to pair interaction of 
particles, a procedure valid only for sufficiently low 
concentrations, such that ro << 1 (1 i s  the average dis- 
tance between the dissolved He3 atoms), we are dealing 
in fact with a rarefied monolayer of impurity quasipar- 
ticles in a macroscopic film of superfluid He4. 

It should also be noted that under the influence of the 
Van der  Waals forces it is He4 which crystallizes pre- 
dominantly on the solid surface that bounds the solution 
film, owing to the difference between the molar volumes 
of the helium isotopes. According to the phase diagram 
of the solid solutions at temperatures T s 0.318 K, the 
He3 atoms are practically not dissolved in crystalline 
~e~ (see, e.g., Ref. 6). This makes it possible to ex- 
plain qualitatively why the dissolved He3 atoms a r e  not 
localized on a solid wall, and they can be regarded as. 
a gas of excitations with two-dimensional interaction 
between them (in this sense, the interaction of the im- 
purity quasiparticles with the solid wa l l  remains three- 
dimensional). 

A model-based calculation of the dependence of the 
concentration of the dissolved He3 atoms on the dis- 
tance to the solid surface, in a wide temperature inter- 
val, was carried out by ~eshkov."  

Surface impurity He3 states on the f ree  surface of a 
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superfluid solution also constitute a strictly two-di- 
mensional system of Fermi particles. The existence of 
a two-dimensional gas of surface He3 impurities was 
f i rs t  predicted by Andreevs and experimentally con- 
firmed by Zinov'eva and Boldarevg and by Edwards et 
al. (see the review''). Model-based estimates of the s- 
scattering amplitude in the Fermi-liquid region lead to 
contradictory results concerning the sign of the inter- 
action (attraction or  repulsion) in a system of surface 

But even in the case of repulsion, formation 
of (He3), bound Van der Waals pairs with nonzero values 
of the orbital angular momentum i s  possible in s scat- 
tering in principle. A more detailed discussion of the 
experimental data on surface levels in connection with 
the proposed theory i s  contained in the Conclusion. 

Dimerization of He3 in superfluid mixtures occurs, of 
course, also in one-dimensional systems, since a one- 
dimensional potential well always has a bound level. A 
one-dimensional system of He3 impurities is realized 
in sufficiently narrow capillaries whose diameter d sat-  
isfies the condition a << d << yo << 1 considered above 
(rarefied monatomic chain of He3 quasiparticles in a 
macroscopic channel). 

If the He11 contains in addition quantized vortex fila- 
ments, then the atomic impurities He3 a r e  localized 
with decreasing temperature near the cores of these 
filaments1' and form one-dimensional linear chains of 
impurity excitations with attraction between them. 

Thus, under definite conditions, even weak attraction 
between the impurity quasiparticles leads to the onset 
of bound states of dissolved He3 atoms and to formation 
of a Bose system of (He3), Van der Waals dimers. With 
decreasing temperature, the number of dimers in- 
creases, thus altering substantially the thermodynam- 
ics and the kinetics of the system. At sufficiently low 
temperature, phase transitions due to condensation of 
the dimer gas into a liquid, a s  well a s  the Kosterlitz 
and T h o ~ l e s s ' ~ ~ ' ~  transition of the (He3), impurity into 
the superfluid state a r e  possible in a two-dimensional 
Bose system of (He3), dimers. 

1. DlMER BINDING ENERGY 

The dispersion law of a solitary He3 impurity quasi- 
particle in an immobile superfluid He4 background, a t  
small wave vectors k, can be written in the form1*' 

8, (k) =eo+ii2k'/2m, (1.1) 

where E ,  i s  the finding energy of the impurity a t  rest ,  
and m is the effective mass of the excitation. The en- 
ergy spectrum of the (He3), bound pair i s  then defined by 

8; ( k )  =2eo-A+h'ka/4m. (1.2) 

The quantity A in (1.2) sets the binding energy of the 
(He3), dimer. 

In the two-dimensional case, the SchrSdinger equation 
in the c.m.s. of the two interacting He3 quasiparticles, 
which determines the value of A ,  takes in the k repre- 
sentation the form 

In (1.3), the Fourier components of the interaction po- 
tential u(r) and of the coordinate wave functions $(r) a r e  
determined in the usual manner from the formula 

At not too high temperatures and impurity concentra- 
tions T < f i  2/ma2, k,a << 1 (8 ,  i s  the Fermi wave vector) 
the quasiparticle interaction potential u(k - k') can al- 
ways be represented a s  an expansion in partial ampli- 
tudes 

The expansion (1.4) i s  valid, generally speaking, for a 
field u(r) that decreases exponentially a t  infinity. On 
the other hand, if the interaction potential has a power 
law decrease u(r) r-" a s  r - 00 then the results obtained 
below a r e  valid for such dimer orbital-momentum val- 
ues at which the integral equations (1.4) for u, do not 
begin to diverge, i.e., a t  n> 2(1+ 1). 

For the scattering of the He3 quasiparticles a t  low en- 
ergies, the integral part of the ~ c h r b d i n ~ e r  equation 
(1.3) must be cut off a t  a certain small wave vector kc 
such that k 5 kc << l / a  (this corresponds to the condition 
of "joining together" the wave functions in the coordi- 
nate representation). Let A, be the depth of the level of 
the bound state of a pair of He3 quasiparticles with rel-  
ative-motion orbital angular momentum 1. The corre- 
sponding wave functions in the polar system of coordi- 
nates (k, rp) take the following form: 

We substitute expressions (1.4) and (1.5) in (1.3). Rec- 
ognizing that q2= k2+ kt2 - 2kkf cos0, where O =  rp - rpf is 
the scattering angle we can easily note that when a dim- 
e r  with a given value of 1 i s  made up, the only terms of 
the expansion of the interaction potential u(q) (1.4) in the 
SchrSdinger equation (1.3) that make a contribution a r e  
those of the sum with m = 1 + 2n, n = O,1,2.. . In turn, 
only the terms that contain coszO, with m - I = 2n, will 
enter in Eq. (1.3). Since the series expansion in (1.4) i s  
with respect to small momenta ka << 1, in the principal 
approximation it suffices to retain in the Schrtrclinger 
equation only one fundamental term with m = 1 (for par- 
tial scattering with given 1): 

u (q) - ( -2 )  ' ( k ~ )  lefl(-')u1. (1.6) 

In this approximation the use of the local potential u(r), 
neglecting retardation effects in the interaction, is  jus- 
tified because the dependence of the interaction of the 
quasiparticles He3 on their velocities in each of the par- 
tial scattering amplitudes. i s  of the same order of 
smallness a s  the terms discarded in the SchrBdinger 
equation. 

Following the indicated transformation, Eq. (1.3) in a 
specified partial channel acquires the form 
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and determines the relation between the level depth A ,  

and the wave function of the bound state 

In (1.7), H. = 2m&/Fi ', ckl) = ti2kz/2m i s  the energy cutoff 
parameter for the bound state with angular momentum 
I, and go= m/rii2 is the two-dimensional state density. 

In interaction with zero angular momentum, the bind- 
ing energy of the s-dimer (He3), can be expressed with 
logarithmic accuracy in terms of the zeroth term in 
the expansion of the interaction potential (1.4) in the 
momenta u,. This is possible because of the logarith- 
mic divergence on the lower limit of integration in (1.7) 
with the wave function (1.8) at 1 =  0. Under these condi- 
tions, a t  arbitrarily small attraction u,<O, the solution 
of Eq. (1.7) leads to the known e x p r e s s i ~ n ' ~  for the s- 
dimer binding energy: 

2Aa 4 (1.9) 

(The number 2 in the pre-exponential factor of (1.9) is  
retained, since the Schriidinger equation contains the 
reduced mass of two colliding particles, which in this 
case is equal to m/2.) 

In scattering with larger angular momenta I> 0, the 
existence of shallow levels A,  already requires satis-  
faction of several threshold conditions for attraction be- 
tween the He3 quasiparticles. Unfortunately, a t  I > 0 it  
is impossible to exclude from the dispersion equations 
the cutoff parameter E:" (not even with logarithmic ac- 
curacy a s  in the case of s scattering), and by the same 
token express A ,  in terms of u,. The reason i s  that 
there a re  no divergences in (1.7) a t  I> 0. To determine 
the energy of the bound states with zero orbital angular 
momenta it is necessary to have information on the con- 
crete form of the interaction potential u(r). With the aid 
of (1.7) it is possible to obtain only qualitative estimates 
of the minimal threshold values u,: 

1 I - -aa, ur<O. 
go 

At I u ,  I < I u ,  I the onset of bound states with small 
level depth i s  more readily impossible. We emphasize 
that estimates of (u,  I ,, a r e  quite approximate, since 
they a re  obtained by extrapolation to the region ka- 1. 

We shall henceforth confine ourselves almost always 
to the study of the properties of s-dimers (He3),, since 
they can appear without satisfying threshold conditions 
on the attraction between the particles. The normalized 
wave function (l.5), (1.8) for the s-dimer takes in the 
coordinate representation 

where KO(%) is a MacDonald function. The calculation 
of the dimer dimensions with the aid of the wave func- 
tion (1.10) is standard and leads to the result yo= a2/ 

16 vo. 

Since the thickness of the He11 film with dissolved He3 
atoms, a s  noted in the Introduction, may turn out to be 
fully macroscopic, it is reasonable to make a rough es-  
timate of the values of A and yo from the experimental 

data on the properties of impurity excitations in a vol- 
ume: m =  2 . 3 3 ~ ~ ~  (m, is  the mass of the He3 atom), a - 2 A, and 5- 1 K. The value of A, is then not too small: 
A,- 0.1 K, yo- 5 A, s o  that we can study dimerization 
by using solutions with concentrations available for ex- 
periment. It must be emphasized, however, that since 
the binding energy A, (1.9) depends on go (u, I exponen- 
tially, the accuracy of the estimates of A, and r, also 
depends very strongly on the employed values of m, a, 
and ti. 

In the case when He3 impurity quasiparticles a re  a r -  
ranged in one-dimensional chains, it suffices to retain 
in the Schrwinger equation only the zeroth term of the 
expansion of the Fourier component of the interaction 
potential u(r) in small momenta: 

Equation (1.11) is equivalent to the following dispersion 
equation: 

which has, for any attraction Vo< 0, a unique s o l ~ t i o n ' ~  
that determines the depth of the level of the bound state 
of the pair of He3 impurity quasiparticles: 

A=mV,"/4hz. 
(1.13) 

The wave function of this state decreases with distance 
exponentially, with a decrement l /v :  

9 (r) = ~ ' ~ e - " ~ ' ,  v=mVo/Sh'. (1.14) 

The dimer dimension corresponding to the wave function 
(1.14) is r,= frv=Fi2/m~,. Simple estimates with the aid 
of (1.13) and (1.14) and the numerical data indicated 
above yield A - 0.1 K and ro- 4 A. We emphasize that 
the rough estimates obtained here for A and ro are,  
however, more accurate than in the two-dimensional 
case, since the initial equations do not contain an expo- 
nential dependence. 

2. THERMODYNAMICS OF DIMERS 

The thermodynamics of a dimerized system of im- 
purity atoms is determined by the number of produced 
bound pairs of He3 quasiparticles. Thus, from the 
thermodynamic point of view we a r e  dealing with chem- 
ical equilibrium of the form 2 ~ e ~  = (He3),. We introduce 
the degree of dimerization, defined a s  the ratio of the 
number of paired atoms to the total number No of the 
He3 atoms in the system: 

Here N, is the number of the produced (He3), dimers 
and N, i s  the number of unpaired atoms He3. Since the 
number of dimers is not constant but depends on the 
temperature T, the equilibrium value of a is defined by 
the equation ~ F / B N ,  = 0 (where F is the total free energy 
of the system); this i s  equivalent to the chemical-equi- 
librium condition 

CL1=2p, (2.1) 
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[yl and yz a re  the chemical potentials for each of the 
components of the mixture of He3 with (He3),]. 

The free energy F of the mixture is determined by the 
known statistical-physics formula16 

Here the $, are given by (1.1) and (1.2), s is the number - 

of degrees of freedom of the particle in the impurity, 
Z i  is the partition function corresponding to the internal 
state of the particle, and F4 is  the free energy of the 
superfluid He4 background. In the calculations that fol- 
low we shall assume throughout Boltzmann statistics 
for the He3 quasiparticles. Indeed, the condition ro << 1 
for the applicability of the paired interaction approxi- 
mation (see the Introduction) means that To <<A, where 
To is the Fermi degeneracy temperature of the He3 ex- 
citations, which is  calculated for the total number of 
the impurity atoms No, i.e., a s  if there were no dim- 
erized He3 atoms ( a =  0). Thus, in the case of suffi- 
ciently low concentrations and high temperatures To 
<<A << T, when there a re  practically no dimers in the 
system, the impurity excitations form a nondegenerate 
Boltzmann gas. With decreasing temperature to T << A 
the number of unpaired ~e~ quasiparticles decreases 
rapidly exponentially, a - 1 (see below), so  that the de- 
generacy temperature of single He3 impurities always 
remains lower than T. Effects connected with quantum 
degeneracy of a dimerized Bose system (He3), will be 
discussed later. 

In the two-dimensional case, calculations by formula 
(2.2) (with allowance for the fact that no change of the 
internal states of the interacting particles takes place 
under Van der Waals dimerization) lead to the obvious 
expression 

F=FI+N,p,+N2p2-T(Ni+N2), (2.3) 

where R, and %, are respectively the numbers of single 
impurity He3 atoms and dimers (He3), per unit area. 
The chemical equilibrium condition (2.1) determines 
with the aid of (2.3) the equilibrium degree of dimer- 
ization 

a=l+X-  (XZ+3X) ", (2.4) 

where 

!TIo is the total number No of impurity atoms per unit 
area. In the case of high temperatures T 2  A we have 

1 
a r J - - 2 2 i e A , r  

2X T 

with decreasing temperature, T<< A, the degree of 
dimerization tends exponentially to unity: 

axl-(2X)"=l- (T/2T0)"' exp  ( -A /2To) .  

The paramagnetic susceptibility x of the system is  
determined by the number N, of the unpaired impurity 
He3 atoms: 

where @ is the nuclear magnetic moment of He3. Inas- 

much as  in singlet dimerization there a re  produced 
spinless quasimolecules (He3),, the observed deviations 
in the temperature dependence of the magnetic suscep- 
tibility x from the Curie-Weiss law enable us to study 
directly the dynamics of the onset of bound Van der 
Waals pairs. 

The entropy of a two-component mixture of single 
atoms and dimers in a superfluid He4 background is  ob- 
tained by differentiating the free energy (2.3): 

where S4 is  the contribution of the pure He4 to the en- 
tropy. After simple transformations we obtained with 
the aid of (2.1) and (2.2) 

We next obtained from (2.7), taking into account the 
equality 

the final expression for the heat capacity of the solution 
(at constant area) 

Here C4 is  the heat capacity of pure He4. 

We write down also the value of the thermodynamic 
potential 51, which has the meaning of surface tension 
in the case of a free He 11 surface with He3 impurity lev- 
els: 

o r  ultimately 

Equation (2.10) was written out for a system with a 
fixed number of surface excitations, i. e., at  sufficiently 
low temperatures and concentrations, when it can be 
assumed that practically all the He3 impurity quasipar- 
ticles have emerged from the interior of the solution to 
the s ~ r f a c e . ~ * l ~ * "  In the general case the values of N, 
and N,, which determine the surface tension (2.9), can 
be easily obtained from the equilibrium conditions 

P,='/*P.=P 
(2.11) 

and from the constancy of the total number of impurity 
He3 atoms in the solution 

NI+2Nz+fl=No. (2.12) 

In (2.11) and (2.12) the numberxof the impurity quasi- 
particles in the volume of the solution and the chemical 
potential y of the volume excitations are connected by 
the relation61 

where M and Eo are the effective mass and the zero- 
point binding energy of the He3 quasiparticles in the 
volume, and V is the volume of the solution. After 
simple calculations we obtain with the aid of (2.3) and 
(2.11)-(2.13) 
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8 1 
(9% (T) = -- eAJT 

T ' 

where S, is the area  of the f ree  surface of the solution. 

In the one-dimensional case all  the calculations of the 
thermodynamic functions a r e  carried out in similar 
fashion. Thus, we have for the chemical potentials p1 
and 112 

The degree of dimerization is determined here from 
the condition (2.1) by Eq. (2.4), the only difference being 
that X is given in the one-dimensional case by the ex- 
pression 

i.e., a t  high temperatures T2 A it  has a weaker tem- 
perature dependence than in the two-dimensional case. 
In (2.15), T: = (~Pin,)~/2m i s  the "one-dimensional" de- 
generacy temperature for the total number of impurity 
atoms no (per unit length). The paramagnetic suscepti- 
bility i s  in this case also determined by (2.5). 

The entropy of the system of linear chains differs 
from the entropy in the two-dimensional case (2.6) be- 
cause of the change of the heat capaeity per dissolved 
He3 atom as a result of the change in the number of de- 
grees of freedom of the particle: 

We find next with the aid of (2.14) and of the chemical- 
equilibrium condition (2.1) 

The rate of change of the equilibrium degree of dimeri- 
zation a with changing temperature i s  now determined 
by the relation 

aa i-a 1 i A ---a7- 
(2.18) 

aT i+a T (T+T). 
Differentiating (2.17) and taking (2.18) into account, we 
obtain ultimately 

Expression (2.19) determines the temperature depen- 
dence of the heat capacity of a weakly concentrated 
He3-He11 solution that fills a finely porous matrix, o r  
in the presence of quantized vortex filaments. 

3. THRESHOLD ABSORPTION OF SOUND 

By way of example of nonstationary kinetic phenomena 
in a dimerized system of impurity He3 atoms we con- 
sider the threshold absorption of f i rs t  sound in a solu- 
tion with a red boundary w= A/E. The mechanism of 
the threshold absorption i s  connected with the inelastic 

single-phonon process of splitting of a bound Van der 
Waals pair (He3), by a sound wave of frequency w 2 A/& 
In the initial state there i s  a discrete level E,= -A cor- 
responding to the bound pair of (He3), quasiparticles, 
and an acoustic phonon with definite momentum Piq. It 
makes sense to consider the hydrodynamic acoustic os- 
cillations only for wave numbers q<  l / a  or,  equivalent- 
ly, for frequencies w<c/a= 10" sec" (c is  the speed of 
the f i rs t  sound in He 11). The final state corresponds to 
an infinite relative motion of the released single He3 
quasiparticles. Since we a r e  interested in the decay of 
a two-dimensional (or one-dimensional) bound state in 
the field of a longitudinal sound wave, we shall hence- 
forth take q to mean the projection of the wave vector 
of the oscillations on the corresponding plane (or on the 
line in the one-dimensional case) in which the relative 
motion of the interacting particles takes place. 

The transition probability in the c.m.s. i s  determined 
by the usual quantum-mechanics formula 

Here E and p a r e  the energy and momentum of the rel- 
ative m2tion of the particles in the final state. The op- 
erator Villt of the interaction with the phonon field is  of 
the form2-' 

where &I and cs are  the operators of the perturbation of 
the density and velocity of the superfluid motion of He4 
in the acoustic wave, p i s  the density of the pure He4, 
p =  -iEV, 6m= m -m3, and m3 i s  the mass of the He3 
atom. We define the operators 6; and $,q by the equa- 
tions 

In the zeroth approximation in the He3 concentration, 
the continuity equation 

yields the relation 

a=pb/c. 

The intensity I of the sound radiation i s  pcv: 
= $pc 1 b 1'. From this we obtain directly the amplitude 
b normalized to one phonm: 

I b 1 '=-%o/pc. (3.5) 

We consider the reaction of splitting of the dimer far  
from the red absorption boundary Piw >> A. In this case 
we can take the wave function Sf of the final state to be 
a plane wave, i.e., the wave function of the free motion 

Integrating in (3.1) the 6 function with respect to dE 
with the aid of expressions (3.2)-(3.6), we obtain the 
differential cross section of the reaction (in the two- 
dimensional case) 

where $,(k) i s  the Fourier component of the wave func- 
tion of the initial state $,. In the one-dimensional case 
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this procedure leads to the following result for the total 
cross section of the dimer decay reaction: 

The wave functions of the initial ground state in the 
two-dimensional and one-dimensional cases are deter- 
mined respectively by Eqs. (1.10) and (1.14). Their 
Fourier components are in this case 

$r(k) =2v"l(vZ+k2) in the onedimensional case, 

$'(k) =2n"W/ (v2+k2) in the twodimensional case, 
(3.9) 

where v2= rn&/fi2. The cross section for the acoustic 
splitting (3.8) then takes the form1) 

m-'6m(p-'/,iiq) +PC-'deoldp ] . ' (3.10) 

The integration in (3.7) with respect to dB, with ac- 
count taken of (3.9), is elementary, albeit cumbersome: 

here the functions F, B, and D are defined by the ex- 
pressions 

B - 2 ~ a e ,  -I@ 

R o d p  m' 

The sound absorption coefficient r(w) is obtained by 
multiplying the decay cross section o by the number of 
dimers per unit volume, which, obviously coincide with 
the value of '3, (or n2 in the one-dimensional case). To 
avoid cumbersome formulas, we confine ourselves to 
the expressions for r ( w )  in the dipole approximation, 
i.e., neglecting the recoil momentum hq in the opera- 
tors 6; and GS (3.3) and in the cross sections (3.7) and 
(3.8). This is always justified, since the condition for 
the applicability of the dipole approximation qa << 1 co- 
incides in this case with the condition for the hydrody- 
namic treatment of the oscillations of the liquid. Tak- 
ing into account the energy conservation law 

we obtain ultimately from (3.7) -(3.9) for the sound ab- 
sorption coefficient 

A n,a Ro p aeo 
I + ( ~ ) ( u ) - z  (%) - [*rn (-)"'+--I ', $=I ,  

RPC m c ap 
(3.12) 

%a A i h o  p ae ( ) 4 -  - ( m ) - +  - , 8=2. 
iipc ha [ 2 m ( c ,;)'I 

Numerical estimates by means of Eqs. (3.12) show that 
at T <<A an experimental study of the sound damping 

or r(2)/q may turn out to be feasible. We note 
a curious fact: in the two-dimensional case the ab- 
sorption coefficient I"2)(w) tends a s  w - .o not to zero 
but to a constant value 

(6m)' %a I+(') (m) =2nA -7. 

m hpc 

The calculation of the sound absorption coefficient 

near the threshold.of the reaction (Ww -A)/A << 1 already 
calls for knowledge of the exact (or quasiclassical) wave 
functions Jl, of the continuous spectrum, i.e., for know- 
ledge of the concrete form of the interaction potential 
u(r).  However, in accordance with the general rules of 
the behavior of reaction cross sections near thresh~ld, '~ 
the absorption coefficient (in accord with the detailed 
balancing, principle) is proportional to the statistical 
weight of the final states dp/(2?rti)s. Taking the energy 
conservation law into account, we find that in the two- 
dimensional case the splitting cross section near the 
threshold does not depend on the frequency and tends to 
a constant limit u")= C =  const. The value of the con- 
stant C can be determined quite approximately by extra- 
polating expression (3.12) to w = h/W: 

In the one-dimensional case the decay cross section 
0") as tiw - A + 0 becomes infinite like (tiw -A)-"~, i.e., 
it has a clearly pronounced resonant character. 

In a real experiment, the nonmonochromaticity of the 
excited sound oscillations leads to a smoothing of the 
singularity in and of the kink in r(2) at Ww = A. 

We note in conclusion that a similar sound-absorption 
mechanism takes place when an impurity He3 particle 
is torn by an acoustic wave away from the axis of a 
vortex filament into the volume of the liquid. The cal- 
culation of this process is  quite similar, all the more 
since we know the exact wave functions of the initial 
and final states.12 The absorption coefficient in this 
case, however, is,proportional to the number of vortex 
filaments, which under real experimental conditions is 
always small. Therefore the observation of this effect 
is  a t  present quite difficult. 

4. PHASE TRANSITIONS IN TWO-DIMENSIONAL 
We3), 
A. Gas-liquid transition 

If the temperature is  lowered enough, a phase transi- 
tion becomes possible in the Bose system (H3),, ac- 
companied by condensation of the gas of Van der Wads 
dimers into a liquid. A characteristic feature of this 
liquid is  that it is rarefied to a considerable degree. In 
fact, in any liquid the average distance between the par- 
ticles that make up the liquid is  determined by the di- 
mensions of the particles themselves. In our case the 
characteristic length is  the dimer dimension Y,, which 
greatly exceeds the atomic distances a. We emphasize 
that in the two-dimensional case, in contrast to the 
three-dimensional case, the condensation of a gas into 
a liquid (at sufficiently low temperatures) is always 
possible, even at arbitrarily low density of the gas. 
The reason is  that in the t,hee-dimensional case the 
expansion of the system energy in the interaction coin- 
cides with the expansion in the density, i.e., at  low 
density the gas never condenses, a s  i s  in fact observed 
in ~e'-He11 solutions. In the two-dimensional case, on 
the other hand, the interaction may turn out to be very 
important even at quite small He3 concentrations. 

The two-dimensional phase transition in a system of 
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surface Fermi states of He3 was first considered by 
Andreev and ~ompaneets. '~ The condensation tempera- 
ture of a Bose system of Van der Waals dimers (He3), 
is calculated in analogy with their work.17 The chemical 
potential p, of the dimer gas i s  determined from the 
normalization condition of the distribution function 

where &(k) is given by (1.2). For any finite tempera- 
tures T#O we have 

which ensures the convergence of the integral in (4.1). 
A direct calculation yields 

pt=2eo-A+T In [ l - e x p  ( - f i z /goT)  1. 

At high temperatures, expression (4.2) coincides with 
(2.3). The equation p,(T,) = p,(T,), where c(, is the 
chemical potential of the liquid phase, determines the 
condensation temperature T,. 

At low temperatures, the contribution of the com- 
pressibility and of other thermal degrees of freedom to 
pL can be neglected. If the dimer interaction is not too 
strong, then the gas-liquid phase transition takes place 
already in the region of the quantum degeneracy of 
(He3),. In this case (p, - 2c0+ A)/T,< 1, and since the 
degeneracy temperature of the dimer Bose gas is T, 
s To<<A, it follows that%,=%d2. Under these condi- 
tions the temperature of the condensation of the dimer 
gas into a liquid i s  

~ , = f i ~ / g o h ~ T 0 / 2 h ,  

where 

The thermodynamic characteristics of the system of 
impurity atoms (surface tension, second-sound velocity, 
and others) should exhibit singularities at the conden- 
sation point T= T, (see, e.g., Ref. 17). We note, how - 
ever, that all the effects connected with the density 
discontinuity at the transition point T= T, may turn out 
to be quite negligible because of the rarefaction (see 
above) of the condensed phase. In a certain sense (He3), 
liquid is a tremendous disordered polymer molecule 
(He3),,(n - .o) with large distance ro >> a between the 
monomirrors. Under conditions when Eq. (4.3) i s  
valid, the dense condensed state of the He3 impurity 
atoms (with distances a between particles) turns out 
to be metastable to a transition to a rarefied Van der 
Waals liquid. 

B. Superfluidity of impurity ( ~ e ~ ) ,  

Since the degeneracy temperature of the Bose liquid 
(He3), i s  high enough, T,-A, it follows that at tempera- 
tures T s  To= %,/g,, both the gas phase and all the more 
the condensed phase of the two-dimensional (He3), will 
exhibit properties of quantum liquids. Since there i s  
no Bose-Einstein condensation in the two-dimensional 
case at finite temperatures, the ordinary superfluidity 
mechanism connected with the formation of a conden- 
sate of (He3), Bose particles is likewise nonexistent. 

In the two-dimensional case, however, a peculiar phase 
transition into the superfluid state i s  possible and i s  
accompanied by a universal jump of a density of the 
superfluid component at the transition point (Kosterlitz 
and Thouless13, and also Ref. 14). The reason for this 
transition mechanism i s  that production of vortices 
with short core lengths is energywise unprofitable at 
sufficiently low temperatures. A very important role 
i s  played here by the condition that the superfluid mo- 
tion of the quantum liquid be potential (since the cor- 
relator of the phase q at short wave vectors diverges 
only logarithmically, it follows that one can always 
introduce a superfluid-motion velocity proportional to 
vq). 

In the presence of two potential superfluid motions 
for HeII and the (HeS), dissolved in it, an important role 
i s  assumed by the effect of dragging of the two compo- 
nents of the solution by each of the superfluid  motion^.'^ 
When the dragging effect is taken into account, the 
change of the density of the total energy of the solution 
as  a result of the superfluid motions of both components 
can be represented in the form1* 

where vl = (A/2m3)~q?, is the superfluid velocity of the 
(He3),,v,= (A/m,)~q, is the superfluid velocity of the 
~ e ~ ,  m is the mass of the ~e~ atom, and P:;((u, B=  1,2) 
is the matrix of the superfluid densities of the solution. 
We neglect for simplicity the superfluid motion of HeII, 
i.e., we put v,= 0. Although the values of the elements 
of the matrix phi) were calculated in Ref. 18 for BCS 
pairing of impurity He3 quasiparticles, a process that 
cannot occur in the two-dimensional case, nonetheless 
the expressions obtained for p:; remain valid also for 
superfluid motion of Van der Waals (He3), pairs. In 
this case d:)= m,2 fJls/m, where FRs is the number of 
"superfluid" ~e~ atoms per unit area (the formula for 
pi;) can be regarded a s  a phenomenological definition of 
the quantity ills). 

The velocity field of a vortex filament of unit circula- 
tion i s  defined by the relation 

where r i s  the distance from the vortex axis. With the 
aid of (4.4) and the expression for pi;) (see above) we 
obtain the change of the free energy 6F= 6E - T6S (S is 
the entropy) due to vortex formation: 

where b is the radius of the vortex core. Equation (4.6) 
determines the temperature T, of the two-dimensional 
superfluid transition in (He3), (cf. Refs. 13 and 14): 

T,= (nRY8m) 93.. (4.7) 

The form of Eq. (4.7) for Ts does not depend on the 
phase, gas or condensed, a t  which the Kosterlitz- 
Thouless transition takes place. Therefore if the tem- 
perature of the superfluid transition in the gas phase 
T:') is less than T, (4.3) (i.e., at  p, - 2s0+ A -  ~ , / 2 ) ,  
then superfluid two-dimensional drops of (He3), will be 
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produced even a t  the condensation point T= T, (since 
the temperature of the superfluid transition in the liquid 
phase T:L)s A exceeds T,). A region where a two-di- 
mensional nonsuperfluid (He3), can exist would occur 
only in the case of an anomalously small jump of the 
superfluid density at T = T:~). On the other hand, if 
TiG)> Tc i.e., at  (pL - 2c0+ A)/T, << I), then a two-di- 
mensional superfluid gas of (He3), is produced at the 
phase-transition point T= T:~). 

The temperature of the superfluid transition in two- 
dimensional (He3), may turn out to be quite high. Thus, 
for a solution with surface concentration 0.2 x 1014 
cm',, which corresponds to a volume concentration 
0.5% (in which case To << A). The temperature of the 
superfluid transition is  of the order of T, = T, 6 35 mK 
(if T:~)< T,) and T, = T:~) 6 mK (if T :~)>  T,). 

5. CONCLUSION 
The principal experimental difficulty in the investiga- 

tion of the dimerized state of He3 is that the number of 
impurity atoms contained in the rarefied two-dimen- 
sional monolayer or linear chain is  too small. There- 
fore, to observe the phenomena considered in this pa- 
per, it is necessary to use systems containing a large 
number of narrow channels or capillaries (for example, 
a finely porous material such a s  Vycor glass). The 
maximum effect due to dimerization corresponds to a 
decrease in the number of particles of the dissolved 
matter by a factor of two. 

The presence of a clearly pronounced singularity at 
t iw= A in the absorption coefficient of the first sound 
by (He3), dimers localized on quantized vortex filaments 
makes it possible in principle to measure A at any He3 
concentration (such as  resonant peak exists even in pure 
He4 in the presence of vortex filaments, inasmuch it 
always contains up to lo8 cm-3 of He3 impurity atoms.) 
The small number of dimers leads, however, to an 
appreciable narrowing of the resonance region, another 
substantial obstacle to experimental observation. 

Very sensitive to even a small amount of He3 impuri- 
ties is the surface tension on a free He 11 surface. At 
sufficiently low surface-impurity concentrations, at- 
traction between the He3 quasiparticles would lower the 
temperature and produce an additional change of the 
surface tension by dimerization. An experimental con- 
firmation of the presence or absence of dimerization of 
the surface He3 at very low concentrations would iden- 
tify unequivocally the character of the interaction (at- 
traction or repulsion) between the quasiparticles. The 
existing experimental data, although very well de- 
scribed by the equations for an interacting Fermi gas," 
cannot deny completely the possibility of dimerization, 
since they have been obtained for relatively high con- 
centrations of the surface impurities in the Fermi-de- 
generacy region. (We note also that these data do not 
contradict the dimerization in that region where it is  
feasible.) In addition one cannot fail to disregard the 
possibility of formation of Van der Waals pairs with 
higher moments. 

The experimental data of Edwards et al.lQ point to a 
linear dependence of the impurity part of the surface 

tension on the chemical potential a s  T- 0, a property 
possessed by a two-dimensional condensed liquid.17 
Extrapolation of the results of Ref. 19 makes it possi- 
ble to determine the surface density of the impurities 
in the liquid at T = 0, which turns out to be R = 1.3 - 1  014 
cm- 2 . 11,17 So small a surface density, compared with 
a dense monolayer, is a direct indication that a rare- 
fied Van der Waals (~e ' ) ,  liquid exists. In this case 
A,- 30 mK, and the condensation temperature T, (4.3) 
turns out to be less than 30 mK. 

We have spoken so  far only of (He3), Van der Waals 
dimers. In the presence of attraction between the cor- 
responding particles in the solution, there can exist 
also polymer Van der Waals (He3), formations with not 
too high values of n. (At large n it is energywise more 
profitable for the polymers to condense into liquid 
drops in the two-dimensional case or to break up into 
smaller fragments in the one-dimensional case.) Since 
we neglect the probability of collisions between three 
and more particles, the process of formation of the 
(He3), polymers goes through a stage of production of 
bound (He3), pairs. If the corresponding binding ener- 
gies turn out to be close to A,  then a noticeable number 
of polymers can exist in the solution at low tempera- 
tures in addition to the (He3), dimers. 

I am grateful to A. F. Andreev, L. P. ~itaevski;, and 
G. E. Volovik for stimulating discussions and for clari- 
fying a number of questions, and to V. P. Peshkov, 
K. N. Zinov'eva, and S. T. Boldarev for a discussion of 
the experimental aspects of the work. 
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Expressions for the acoustoelectric current and the acousto-emf are derived without any assumptions 
concerning the conduction-electron collision mechanism or dispersion law. The calculation is carried 
through for the case of a sound wave whose wavelength is considerably smaller than the electron mean 
free path. The resulting formulas permit the effect of a magnetic field to be taken into account. 

PACS numbers: 72.50. + b 

When sound is absorbed by a metal, the transfer of 
momentum from the sound wave to the conduction elec- 
trons may give r ise  to a current (called the acousto- 
electric current) o r ,  in the case of an open circuit, to a 
potential difference between the ends of the specimen 
(the acousto-emf).' 

When the wavelength A =  2n/q of the sound is consider- 
ably shorter than the electron mean free path I 
(when ql>> I ) ,  the sound wave can be treated a s  a packet 
of coherent phonons having a 6-function distribution 
N(k) in wave-vector space1': 

where k is the current phonon wave vector, @ i s  the 
sound energy flux density, and w, and s, are  the fre- 
quency and group velocity of a sound wave with the wave 
vector q (if the elastic anisotropy of the metal can be 
neglected, the group and phase velocities s, and S, of the 
sound will be equal). 

To calculate the dragging force exerted by the phonons 
on the electrons one can use the usual collision integral 
for the electron-phonon interaction: which also takes 
the presence of nonequilibrium phonons into a ~ c o u n t . ~  
Such an approach was used in Ref. 6. The expression 
obtained in Ref. 6 for the acoustoelectric current dens- 
tiy jA (see (7)) is applicable for an arbitrary conduc- 
tion-electron dispersion law, but, as is shown in this 
paper, it is limited to the T approximation. The pro- 
blem addressed here is to construct a theory of the 
acoustoelectric effect that would be free of this approx- 
imation. In addition, the formulas obtained here make it 
possible to take account of the part played by an exter- 
nal magnetic field (within the limitations of the theory 
of galvanomagnetic phenomena7). 

We shall use the operator l@ to describe the collisions 
of the electrons with thermal phonons and lattice de- 
fects. - ---. The kinetic equation for the addition f(p) to the 
equilibrium Fermi distribution function F(E,) for the 
conduction electrons, linearized in +, has the form 
(see Refs. 8 and 9) 

where 

2n cD 
~JA=-- {lgp-,q.,I'[F(e,-n,) -F(e?) 18 (e?-nq-ep+A@,) 

A hoqsq 
+lgp+nq.,lz[F(~p+nq) -P(e,) 16 (e,+r.-ep-hoq)), 

and g,.,, is  the electron-phonon interaction matrix ele- 
ment. The first  term on the left in Eq. (2) was intro- 
duced to describe the part played by an external mag- 
netic field H. The electric field E may be applied to 
the conductor independently, but it may also be induced 
by the sound flux, and in that case it is determined from 
the condition j = 0 and represents the acousto-emf (the 
equation has been linearized in E a s  well a s  in +). We 
neglect the term v. af/ar that represents the space 
dispersion of the electronic properties since the sound 
attenuation length s/I' is usually considerably longer 
than the electron mean free path I .  

We note that the collision operator fi may also de- 
scribe the dragging of phonons by e l e ~ t r o n s . ~  In this 
case,  by ~ we must understand the operator that is ob- 
tained after eliminating the nonequilibrium addition to 
the Bose distribution for the thermal phonons from the 
two kinetic equations (those for the electrons and for the 
phonons-see Ref. 8, Sec. 25). In what follows we shall 
not consider specific collision mechanisms, but shall 
only make use of very general properties of @. 

Because of the 6-function factors in the quantity .!IA on 
the right-hand side of the kinetic equation (2), it might 
seem that in calculating the acoustoelectric effects one 
could ignore the integral character of the operator l@ 
i.e. that one could neglect the arrival term in ~ and (in 
analogy with the theory of the anomalous skin effect'') 
introduce a relaxation time T,  that depends on the quasi- 
momentum p [see formula (5) of Ref. 61. However, this 
is not the case. Although electrons of the q v =  w, 
strip actually contribute to the acoustoelectric current, 
to the extent that the operator W i s  of integral charac- 
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