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Three-dimensional Wigner crystal in a magnetic field 
N. A. Usov, Yu. B. Grebenshchikov, and F. R. Ulinich 

I. V. Kurchatou Atomic Energy Institute 
(Submitted 17 July 1979) 
Zh. Eksp. Teor. Fiz. 78, 296-306 (January 1980) 

We solve the quantum problem of the oscillations of a Wigner lattice in a strong magnetic field in the 
harmonic approximation, taking into account the transverse radiation field. We calculate the energy of 
the zero-point oscillations of the lattice and the dependence of the mean squared displacement of the 
particles from the lattice sites on the temperature and on the magnetic field. We consider the specific 
heat, the magnetic moment, and the dielectric constant of the lattice in a strong magnetic field, and 
discuss the stability of the lattice as a function of the particle density in the limit of a strong magnetic 
field. 

PACS numbers: 63.10. + a 

1. INTRODUCTION 

The question of the ground state of an electron-hole 
plasma in a semi-conductor o r  semimetal in the limit 
of a strong magnetic field (hw, >>Ry, W, is the cyclotron 
frequency of the ca r r i e r s  and Ry is the exciton ioniza- 
tion potential) has attracted considerable interest  re- 
cently. Babichenko and Onishchenkol have shown that 
if the ca r r i e r s  of different type have comparable mass,  
the homogeneous state of the system in a strong mag- 
netic field is unstable to formation of a charge-density 
wave (CDW). ~akhmanov '  has analyzed the case of 
carriers with strongly differing masses (for example, 
electrons and holes in bismuth) and determined the 
conditions under which the heavier particles (holes) 
form a Wigner lattice (WL) against an approximately 
homogeneous compensating background of lighter part- 
icles (electrons). The possibility of formation of a WL 
in a magnetic field was investigated earlier in Refs. 
3 and 4, where it was shown that in a strong magnetic 
field the WL (CDW in the case of high density5) is en- 
ergywise favored over a homogeneous ground state. 
We note, however, that the cited references are qual- 
itative and variational in character, whereas the prob- 
lems connected with the stability of a lattice and with 
the calculation of its equilibrium characteristics must 
be solved on the basis of quantitative analysis of the 
spectrum of the crystal-structure oscillations. We 
report here in this connection a detailed quantitative 
investigation of the vibrational properties of a WL in a 

magnetic field. We confine ourselves to the case  of 
an immobile compensating background. In Sec. 2 we 
obtain the spectrum of the eigenvalues of the Hamil- 
tonian of the WL oscillations in an arbitrary magnetic 
field1); we calculate the energy of the ground state of 
the system, which turns out to depend on the orienta- 
tion of the magnetic field relative to the crystallograph- 
i c  axes. In Sec. 3 we determine the dependence of the 
mean squared displacement of the particle from the 
WL site on the temperature and on the magnetic field, 
and find that the "soft mode" vl - l / w ,  that appears in  a 
strong magnetic field, just as in the two-dimensional 
case,%oes not cause lattice instability. It is shown in 
Sec. 4 that the low-temperature heat capacity depends 
substantially on the magnetic field and is proportional 
to T ~ ' ~  (T is the temperature), as against T~ for ord- 
inary phonons; we calculate also the temperature de- 
pendence of the magnetic moment of a WL and the di- 
electric constant of a WL, the latter being strongly 
anisotropic in a strong magnetic field. 

In Sec. 5 we solve the problem of the coupling of the 
electromagnetic and vibrzitional modes of a WL in a 
magnetic field. An exact dispersion equation is ob- 
tained and the spectrum of the eigenvalues of the sys- 
tem is briefly investigated with account taken of the 
transverse radiation field. It is shown that in the lim- 
it of a strong magnetic field allowance for  the trans- 
verse field does not change qualitatively the results of 
the preceding sections. 
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2. ENERGY OF ZERO-POINT OSCILLATIONS OF A 
WlGNER LATTICE IN  A MAGNETIC FIELD 

We consider a system of N electrons moving in a vol- 
ume V against the background of a homogeneous im- 
mobile compensating charge. It is well known that an 
important characteristic of this system is the electron 
density n = N/V, which i t  is convenient to characterize 
by the dimensionless parameter r, with the aid of the 
relation 4 / 3 r ( ~ , a ~ ) ~  = n-'(aB is the Bohr radius). Wig- 
ner7 has shown that in the low-density limit, r, >> 1, 
the ground state of the system is a bcc lattice made up 
of electrons. The vibrational properties of the WL 
were investigated in Refs. 8- 10. In the present paper 
we consider the influence of a homogeneous magnetic 
field B on the vibrational properties of a WL. 

It turns out that the frequencies v(k, j) of the oscilla- 
tions of a WL in a magnetic field can be expressed in 
terms of the frequencies w(k, j) and the polarization 
q(k, j) of the WL oscillations in the absence of a mag- 
netic field (here k i s  the wave vector; j = l , 2 , 3  is the 
number of the mode). We recall in this connectionii 
that the frequencies w(k, j), calculated in the harmonic 
approximation, satisfy the Kohn sum rule 

where (,J, is the plasma frequency; in the long-wave 
limit k - 0 there exist a longitudinal mode, q(k, 1) 11 k, 
for which w2(k, I) - w;, and two transverse modes 
q(k, t) 1 k, whose frequencies w(k, t) a re  proportional to 
k. Along the high-symmetry directions of the bcc lat- 
tice ([loo], [ill]), the oscillations retain their polar- 
ization also for finite values of k, whereas for an ar-  
bitrary direction at finite k the vector q(k, I) need not 
necessarily be parallel to k. 

Let the initial density of the electrons in the system 
be low enough (r, >> I) ,  so that in the absence of a mag- 
netic field the ground state of the system is a WL with 
lattice sites R, specified in a certain Cartesian coor- 
dinate system. The Hamiltonian of the system in the 
magnetic field B =nB is, in the harmonic approxima- 
tion, 

where v,= -1 .792R~/~,  is the electrostatic energy per 
electron of the bcc lattice, ii,,=r,, - R,, a re  the oper- 
ators of the electron displacements from the sites, i,, 
are  the operators of the electron momenta in the mag- 
netic field, and G :: is the force tensor, equal to 

with R, j= I R , - R ~ I .  The operators ;,,and uf, satisfy 
the commutation relations 

Here A = ( c ~ / e ~ ) "  is the magnetic length, 6,, is the 
Kronecker symbol, +?,,,,, is a unit antisymmetrical ten- 
sor,  and n, is the projection of the unit vector along the 
magnetic-field direction. 

We transform the operators as follows: 

Here k>O denotes the sum over half the states of the 
Brillouin zone of the reciprocal lattice. In addition, we 
choose q,(-k) = q,(k) . The operators i, and 2, are  
Hermitian and have the following commutation relations 
(for one and the same k): 

The Hamiltonian (1) reduces with the aid of the trans- 
formation (4) to a sum of independent Hamiltonians: 

In (5) and (6) we normalize the operators 2 to the mag- 
netic length A, the opera%rs i to E/x, the frequencies 
oi to w,, and the energy H to Ew,. It is seen from (5) 
&d (6) that the magnetic field c ~ u p l e s  oscillation 
modes with one and the same vector k, and leaves in- 
dependen! the oscillations with different k. The Ham- 
iltonian H ,  coincides with the Hamiltonian of a particle 
in a magnetic field and in an asymmetrical harmonic 
potential. 

We can construct fo r  the Hamiltonian kk a system of 
creation and annihilation operators, putting 

The coefficients cu, and @ i  are  determined from the 
condition [H, h c ] =  vhC, where v a re  the natural fre- 
quencies of the Hamiltonian H, (we leave out the index 
k from now on). To determine the natural frequencies 
vj, j = l , 2 ,3 ,  we obtain the equation 

with n the unit vector along the external magnetic field. 

Each natural frequency v, corresponds to a creation 
operator 

- 0, (7) A (v) = det 

where A::'= 4jl(vj) a re  the corresponding cofactors of 
the determinant ~ ( v )  . The normalization coefficients 
a, are  equal to 

- ivn2 ivnl wsa - v' 

uI2 - v2  - ivng ivna 

ivno 0 ~ 2 -  v z  - ivnl 
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With the aid of the dispersion equation (8) we can show 
that A:')u, > O ,  so that the coefficients cr, are  real. It 
can be verified that in the limit as (J, - 0 Eq. (9) goes 

' over into the usual formula for the phonon creation 
operator. " In the actual derivations i t  is useful to bear 
in  mind the following relations: 

which can be proved with the aid of (8). 

Equations (?)-(lo) solve our problem; the Hamiltonian 
H ,  is expressed in terms of the operators a;(k) and 
a,(k) : 

hk= v, (k) {a,+ (k) 6 (k) +I/,) ,  

Obviously, the wave functions of the Hamiltonian H ,  are  
equal to 

where (0) is the ground state, so  that 2,(0)= 0. 

We now investigate the dispersion equation (8) in the 
limit of a strong magnetic field w,>> w,. From (8) we 
get 

Comparing this result with a solution of the problem of 
particle motion in a centrosymmetric potential in a 
magnetic field [when w: = W: = w:) in (6)], we see that in 
the general case of an asymmetrical harmonic poten- 
tial, in the limit of a strong magnetic field, there ex- 
is ts  a mode v3 corresponding to excitation of the par- 
ticle to Landay cyclotron levels, and a mode vl, an- 
alogous to excitations with different magnetic quantum 
numbers, and by virtue of the fact that vl - l/w, the 
strong magnetic field tends to preserve the degeneracy 
in the magnetic quantum number, which is characterist- 
ic  of a free particle. " Obviously, the mode v2 des- 
cribes the motion of the particle along the field in a 
harmonic potential with averaged frequency a, [see 
also (20) 1. 

Knowing the WL oscillation frequencies, we can ob- 
tain the energy of the zero-point oscillations of the WL 
in a magnetic field. In the limit w, >> wo we have 

Eo_  tiv (k) h *o.cq I = A T -  

6.k 
2 2 +++o(,) 

In principle, on account of the term tiwc/2, the energy 
of the zero-point oscillations of the WL can exceed the 
gain in the electrostatic energy (vo per particle) of the 
WL. This, however, still does not demonstrate in- 
stability of the lattice, since in a strong magnetic field 

the contribution to the energy tiw,/2 does not depend on 
the structure of the ground state of the system. The 
energy vo must therefore be compared with the quantity 
N - ' z A s ~ ~ / ~ ,  which plays the role of the energy of the 
zero-point oscillations. By virtue of the inequality 
$2, Eiwi, the magnetic field only decreases the energy 
of the zero-point oscillations of the WL. This decrease, 
however, ,is negligible, since 52, - w,, and therefore the 
energy of the zero-point oscillations per particle in the 
magnetic field is ar,9'2, i. e. ,  of the same order as in 
the absence of a field. " 

It is interesting to note also that the energy of the 
zero-point oscillations (15) depends on the direction of 
the magnetic field relative to the crystallographic axes. 
Consequently, neglecting surface effects (friction of 
the electron crystal against the sample surface), the 
lattice as a whole will rotate in a strong magnetic field 
so as to minimize zSl1(k). We shall show in Sec. 5 that 
rotation of the lattice is the result of the interaction of 
the induced magnetic moment of the WL with the exter- 
nal magnetic field. 

In the foregoing analysis we have neglected exchange 
and anharmonic terms. In the absence of a magnetic 
field, c a r r i o  has shown that a t  r, >> 1 the contribution 
to the energy of the ground state of the anharmonic 
terms is of the order of ri2 per particle, and the con- 
tribution of the exchange terms is exponentially small. 
The magnetic field only decreases the overlap of the 
wave functions of the electrons of the neighboring sites;  
in addition, a standard calculation by perturbation 
theory shows that the shift of the energy of the ground 
state on account of the anharmonic terms in a magnetic 
field is of the same order as without the field. Con- 
sequently, in our case, too, the contribution of the ex- 
change and anharmonic terms can be regarded as a 
small perturbation. 

3. INFLUENCE OF MAGNETIC FIELD ON THE 
STABILITY OF A WIGNER LATTICE 

We discuss now the manner in which the magnetic 
field influences the stability of the WL. It was shown 
in Sec. 2 that, just as in the two-dimensional 
in a strong magnetic field (w, >> wo) a "soft" mode v, 
- l/w, is produced in a WL. This, however, still does 
not indicate divergence of the mean square of the elec- 
tron displacements in the WL sites. In fact, expres- 
sing the operators 2,(k) in terms of the operators B,(k) 
we obtain 

The coefficients 5; and 0: satisfy the relations 

where n, = (n,q,). It can be shown that %,A::) > O ,  s o  
that 5; and 17; are  real. All the quantities in (16)-(18) 
a re  dimensionless, just as in (5) and (6). With the aid 
of (13)-(18) we obtain 
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Here i, are  the corresponding Bose occupation num- 
bers. In thel imit  as wc-Owe have xj-O,vj-w,, and . 
Eq. (19) goes over into the usual expression for  the 
mean squared Fourier component of the displacement 
of the particle from the site. " In the limit of a strong 
magnetic field wc>> wo we get from (19) 

Thus, the contribution of the vl - l / u c  mode to the 
mean squared Fourier component of the displacement 
is of the order of k2 and decreases with increasing mag- 
netic field. 

For the mean square of the (Y component of the elec- 
tron displacement from the WL site we obtain in the 
limit as A - 0 

Here n, is the a-th component of the unit vector along 
the magnetic field in the original Cartesian coordinate 
system, and ;iz(k) a re  the occupation numbers of the 
second mode. As noted in Ref. 2, the magnetic field 
limits substantially only the motion of the electron in 
the site in a direction perpendicular to the field, so  
that the mean squared displacement of the electron in 
the site is determined by the averaged frequencies 
52,(k, n) of the oscillations of the electron along the mag- 
netic field, which depend not on the magnetic field but 
on i ts  orientation relative to the crystallographic axes 
of the WL. By virtue of the inequality ni l  z,wi1 the 
mean square of the amplitude of the zero-point oscilla- 
tions of the electron in the site decreases in a magnetic 
field, but by virtue of 52, - up  i t s  order of magnitude is 
(;2)!/2- -1 /2-y3/4  

w P , , i. e. ,  i t  is of the same order as in 
the absence of a field. l1 

We examine now the change of the mean squared dis- 
placement of the electron in the WL site with increas- 
ing temperature. Inasmuch as in a strong magnetic 
field (ac>> wo) the modes v2 % wp and v3 = wc a re  weakly 
excited up to a temperature T s Fi w,, i t  is clear that 
only the mode vl- l /w ,  contributes to (u2). At not too 
low temperatures T 2 Bvl we have 

where (uZ) I is the mean square of the amplitude of 
the zero-point oscillations [see (20) and (21)]. Since 
u 3  - $4 - up  >> wl, 2, the temperature corrections to (u2) 
are practically independent of the magnetic field under 
the indicated conditions. We have, however, (u2) I,, ,, 
- T, starting with temperatures T Z R y ,  whereas 
(u2) 1 wG30 - T at temperatures T 2 8, where O is the 
Debye temperature of the WL. It can be shown that a 
strong magnetic field decreases the mean squared dis- 
placement of the electron from the site a t  all temper- 
atures, and this apparently increases the stability of 
the WL. 

4. SPECIFIC HEAT, MAGNETIC MOMENT, 
AND DIELECTRIC CONSTANT OF A WIGNER LATTICE 

We estimate the specific heat of a WL in the case of a 
strong magnetic field w, >> w,. Carr  has showni0 that 
the Debye temperature of a WL in the absence of a 
magnetic field is 8-Rw,. Inasmuch as in strong mag- 
netic fields the modes v2 - w, and v3 - w,, i t  is clear that 
a t  T s O the main contribution to the heat capacity of 
the WL is made by the mode vl% w1(d2/w,, where wl 
= wz - k a re  the frequencies of the transverse oscilla- 
tions of the WL in the absence of a magnetic field. In 
the Debye approximation we obtain for  the specific heat 
of the system 

e*, T no, 
N Tho, z"3ezd;: - o - (ez - I)2 

Thus, a t  T s ~ ~ / F i w ,  the specific heat of the system C y  
, @ / Z B 3 / 2  

The magnetic moment of the system, which is con- 
nected with the orbital motion of the electrons, can be 
obtained by differentiating the free energy of the system 
with respect to B. In the harmonic approximation we 
have 

We calculate the magnetic moments of the different mode 
modes in the case of a strong magnetic field, wC>>wp,  
and not too high temperatures T s O. For  the modes 
v3 x W ,  and v2 = 9, we can neglect the temperature de- 
pendence of the magnetic moment. Therefore for the 
mode v3 we have M3=-Np,n, where p, is the Bohr 
magneton and n is the direction of the external magnetic 
field. This term is analogous to the magnetic moment 
of the f ree  electrons in the ultraquantum limit of the 
magnetic field. For  the mode v we get 

We note f i rs t  that n. M2 =0, so  that the moment M2 
is perpendicular to the external magnetic field. The 
magnetic moment of an individual k mode is proportional 
to the expression in the curly brackets in (25) and van- 
ishes only when n is parallel to one of the vectors q,(k). 
For  a WL only the vector sum of the moments of the 
individual moments can be made to vanish; this corres- 
ponds to a minimum of the energy of the zero-point 
oscillations (15). In view of the high symmetry of the 
bcc lattice, we can expect the presence of several equiv- 
alent equilibrium positions. At equilibrium i t  is ob- 
vious that (M,),, = 0. 

Next, at T = 0 K, we can neglect the contribution of 
the mode v1 - l/wc, since M ~ W ; ~ .  At not too low tem- 
peratures, T A v l ,  we have coth(tivl/2T)-2T/kvl, 
therefore 

When the WL is at  equilibrium, the term in the curly 
brackets vanishes, so that 

M.,= (M,).,+M,=-NpBn(l-2T/fio.). (27) 
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We note that the characteristic linear dependence of the 
magnetic moment of the WL on the temperature ap- 
pears already at temperatures T ztiv,, whereas the 
magnetic moment of the f ree  electrons in the same 
magnetic field Ew, >> T is constant in this temperature 
region. 

The dielectric constant of the WL in the absence of a 
magnetic field was investigated by Bagchi. IS We now 
compare the dielectric properties of the WL in a mag- 
netic field with Bagchi's results. It is known" that the 
longitudinal dielectric constant can be expressed in 
terms of exact wave functions and energy levels of the 
system. With the aid of (17) and (18) we obtain in the 
harmonic approximation 

where 5:;) =A::) + wz(n. qJ2v;, itj = xj/w:. 

In the limit as w, - 0, this equation goes over into 
Bagchi's result: 

and in the limit w >> v, i t  has the regular asymptotic 
form" 

Next, in the static case (w =O), as expected, the de- 
pendence of the dielectric constant on the magnetic field 
vanishes and the result agrees with Eq. (29) a t  w = O .  
In this case, of course, all the conclusions of Bagchi's 
paper remain valid, and particularly the static dielec- 
t r ic  constant of the WL ~ ( k ,  0) < 0. 

In the long wave limit k-0 we get from (28) 

where c = n  . k/k. Thus, the dielectric constant ~ ( 0 ,  w) 
in a strong magnetic field is anisotropic. 

5. ALLOWANCE FOR TRANSVERSE 
ELECTROMAGNETIC Fl ELDS 

The importance of pointing out the tranverse electro- 
magnetic fields in the analysis of long-wave transverse 
WL oscillations was noted in Ref. 15. In this section 
we consider the more general question of the coupling 
of the electromagnetic and vibrational modes of the WL 
in a constant homogeneous magnetic field. To take into 
account the transverse electromagnetic fields, i t  is 
necessary to replace the momentum operator of the 
electrons in the magnetic field by the operators li + ( e l  
c)A, where A is the vector potential of the transverse 
electromagnetic field (div A = 0), and we must add to 
the Hamiltonian (1) the free-field ~amiltonian'" 

where P is the momentum canonically conjugate to the 
coordinate A. 

We introduce the usual transformation of the oper- 
ators: 

A (r, t )  = (+) Ih {tk,, cos k r + ~ , &  sin k r ~ e ~ , ~ ,  
k>0,L-1 

P b, t )  = ( + ) I h  cos kr+grk,& sin h ~ e ~ , ~ .  

Here e , ,  a re  the free-field polarization vectors, so  that 
k. %,,=0 and ek,,e,,,=6,,,, with e-,,,=e,,,. We use 
henceforth also a unit vector e3-directed along the vec- 
tor k. The operators d,,, and P,, satisfy the commuta- 
tion relations 

[ e , , ,  c , . , , . l = l a . , ,  a . . , . l = o ,  
[ e ,  ,, Prr, rr]=iA8u.6kk.. (33) 

Carrying out the transformations (4) and (32) in the total 
Hamiltonian (11, (311, we represent the Hamiltonian of 
the system, with account taken of the transverse fields, 
in the form of a sum of independent Hamiltonians 

In the derivation of (34) we used the long-wave approx- 
imation k-R,,<< 1, i.e., we did not take into account 
the obvious effect of the periodic structure of the WL 
on the light-wave dispersion law. On the other hand, 
the interaction of the light with the lattice oscillations 
and of the different oscillation modes with one another 
is described correctly by this approximation. 

In the expression for H,, the f i rs t  term coincides with 
(61, the second stems from the free-field Hamiltonian 
and A ~ ,  and the third from the terms +A. The opera- 
tors in (34) satisfy the following commutation relations 
(for one and the same k): 

All the remaining commutation relations a re  equal to 
zero. In (35) we have made k, P, and C dimensionless 
relative to w,/c, tiw,/4nc2, andA(4n~wc~2/w~)1'2,  and 
have reduced the operators ;, n, and H, as well as the 
frequencies, to dimensionless form as in Sec. 2. The 
natural frequencies of the Hamiltonian (34) can be de- 
termined by the method used in Sec. 2. We then ob- 
tain the following dispersion equation for the natural 
frequencies of the system vl(k), j = 1-5: 

(va-02) 'A (v) +v'oP'(va-QZ2) +~~ZV~(v'-ahl) 
x{-2v'+v2[ooZ+Pa~+i- (net)'] +d-p}  =O. (3 6) 

In this equation w,= ck, A(v) is the left-hand side of the 
dispersion equation in Sec. 2; 

P s z = E  etlo,', d-s C E ~ Y ~ ? ,  8,-erpr; 
t s 

and the remaining symbols a r e  the same as in Sec. 2. 

It can be verified that all the solutions of (36) a re  
real, i. e . , the interaction of the lattice oscillations 
with the intrinsic radiation does not make the lattice un- 
stable. We note also that when we take formally the 
limit as w, - 0 the electromagnetic modes and the 
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with the two transverse oscillations with polarization 
perpendicular to the magnetic field: 

FIG. 1. Dispersion of the WL oscillations with allowance for 
the proper radiation field in a high-symmetry direction of a 
bcc lattice: a-external magnetic field perpendicular to the 
wave vector, b-external field parallel to the wave vector. 

modes of the particle oscillations become independent. 

We dwell now on the case o, >> w,, w, >> w,. It is 
easy to find from (36) that in this case the natural fre- 
quencies of the system a r e  

~,=s'/:/Q,a., vlZ+v2=a2+S111+op'(1- (ne3)'), 

vfi;*=o:Q,C, VraOh, V~=UC. 
(37) 

Thus, in a strong magnetic field allowance for the 
transverse fields leads only to corrections to the branch 
sZ, of Sec. 2. The conclusions of Secs. 3 and 4 remain 
qualitatively unchanged, since the asymptotic expres- 
sion for the "soft" mode v l  remain the same as be- 
fore, and in (37) the frequencies v2 - o, and v3 - w,. 

To obtain the character of the spectrum, we examine 
the following characteristic cases: 

1. w,=O; direction [loo] o r  [lll]. In this case the 
bare polarizations a re  preserved: wl, 2 correspond to 
the transverse oscillations and (d3 to the longitudinal 
one. From (36) a t  w1,2 = w we have 

(v2-0:) [ (v'-oh2) (va-m2) -anav'12=0. (38) 

Thus, the radiation does not influence the longitudinal 
oscillation, and the radiation interacts with the trans- 
verse oscillations in the region k < w,/c. In (38) the 
transverse modes a re  doubly degenerate. When a mag- 
netic field is applied, a nonzero right-hand side ap- 
pears in (38). 

2. n lk. The dispersion equation breaks up in this 
case into two: there a r e  two roots in which the trans- 
verse oscillations a re  polarized along the field and 
which the magnetic field does not influence: 

The magnetic field couples the transverse oscillations 

3.  n 11 k. In this case there is an undisplaced longi- 
tudinal oscillation v2 = vi. The remaining modes a re  
coupled by the fieId: 

The qualitative form of the dispersion curves in the 
last  two cases is shown in the figure. 

In conclusion, the authors thank A. A. Vedenov and 
the participants of the seminar under his direction for 
a helpful discussion of the work. 
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