
The theory of two-dimensional incommensurate crystals 
V. L. Pokrovskii and A. L. Talanov 

L. D. Landau Institute of Theoretical Physics, USSR Academy of Sciences 
(Submitted 17 July 1979) 
Zh. Eksp. Teor. Fiz. 78, 269-295 (January 1980) 

The ground state and the thermodynamics of a two-dimensional lattice of atoms placed in a periodic one- 
dimensional field is investigated. It is shown that at zero temperature there is produced in the 
incommensurate state a one-dimensional superstructure (periodic solitons) whose direction is determined 
by the elastic properties of the initial lattice, and whose period depends also on the potential and on the 
initial incommensurability. The transition from the comnensurate to the incommensurate structure is 
continuous. The solution and, in particular, the critical behavior change substantially if the crystal tends 
to occupy, under the influence of the potential, an area larger than the substrate area. The spectrum of 
small oscillations and questions involving the stability of various phases are investigated. At temperatures 
greatly exceeding the characteristic value of the potential, the periodicity and the asymmetry in the 
soliton direction vanish, but the average incommensurability remains. The thermodynamics of the system 
is considered by the renormalization-group method. At a definite relation between the parameters, the 
problem is solved exactly by a transition to the equivalent Hamiltonian of Fermi particles (solitons). The 
phase diagram of the system is obtained. The diffraction pattern is analyzed. The applications of the 
theory to submonolayers of atoms adsorbed by an ideal crystal surface and to a lattice of Abrikosov 
vortices in a corrugated superconducting film are considered. 

PACS numbers: 61.50.Jv, 61.50.Ks, 64.70.Kb 

INTRODUCTION 

Recently, in connection with the progress in the ex- 
perimental capabilities, interest has increased in two- 
dimensional crystal systems. The simplest realization 
of such a system is a submonolayer of atoms adsorbed 
by a sufficiently perfect surface of a crystal. Such 
monolayers were investigated experimentally on tung- 
sten and molybdenum surfaces and on various graphite 
substrates. Both thermodynamic methods and structural 
methods were used (diffraction of slow electrons or  neu- 
trons, x-ray structure analysis). The experimental 
situation is described in detail in the reviews of ~ol'shov 
et al.,' Nielssen et a1.,* and   ash.^ 

In many cases the observed crystalline phases of the 
adsorbed-atom film were not commensurate with the 
substrate (for example, for Cs layers on molybdenum 
and tungsten,' of Ne and Hz on graphite, etc.). The pur- 
pose of the present paper is  a theoretical study of the 
conditions for the onset of two-dimensional incommen- 
surate structure and of its ohvsical orooerties. - - - 

Another two-dimensional, or  more accurately quasi- 
two-dimensional object in which incommensurate struc- 
tures were observed a r e  chalcogenides of transition 
metals (for example, TaSe,), in which charge-density 
waves appear.4 Our theory does not provide a complete 
description of these structures, since we did not con- 
cern ourselves with the properties of the electron sub- 
system. Nonetheless, many statements concerning the 
lattice properties and the phase diagram a r e  valid also 
for these systems, especially near phase-transition 
points. 

One more object in which incommensurate crystal 
lattices seem to appear a r e  thin corrugated films of 
superconducting aluminum placed in a magnetic field 
perpendicular to their surfaces (Daldini et al.5). The 
film thickness is  of the order of 2500 A and the depth 

of corrugation is -50 A, the corrugation is one-dimen- 
sional, periodic, with a period 2000 A. In the smooth 
film there is  produced a triangular lattice of Abrikosov 
vortices, whose period is determined by the magnetic 
field, the result being a flux quantum +,, per unit cell. 
On the other hand, it is  more convenient for the vortices 
to be located in places where the film is thinner, since 
the vortex energy i s  proportional to its length. A com- 
petition ar ises  between the period imposed by the mag- 
netic field and the period imposed by the corrugation. 
~ x p e r i m e n t ~  has revealed maxima of the critical field 
a t  magnetic-field values corresponding to a prime ratio 
of these two periods. At the present time, a complete 
phase diagram of such a system i s  under construction 
and new effects a r e  being predicted. 

The simplest theoretical model of an incommensurate 
structure was proposed by ~ i n g . ~  By regarding the sub- 
s t ra te  a s  a periodic potential field in which adsorbed 
atoms connected by springs a r e  located, he has shown 
within the framework of perturbation theory that the in- 
commensurate structure is  favored. He has also found 
that in such a structure there a r e  decaying (acoustic) 
oscillation modes. The applicability of perturbation 
theory can be debated, inasmuch a s  in sufficiently high 
order one can have arbitrarily exact commensurability, 
i.e., arbitrarily small denominators. This question was 
analyzed in the papers by one of us  and ~ i m i n , " ~  where 
the spectrum likewise turned out to be complicated (dis- 
continuous a t  each point!). Similar results in some- 
what different form were obtained by ~ u b r e ~ . '  Novaco 
and ~ c ~ a g u e ' O  have noted that within the framework of 
the same approximation the energy depends on the angle 
between the axes of the sublattices of the substrate and 
the adsorbed atoms. As a result, orientational epitaxy 
appears-rotation of the lattice of the adsorbed atoms 
when their concentration is changed. Uimin and - 
~hchur"  have shown that orientational phase transitions 
of f i rs t  order a r e  possible. Burkovi2 has observed the 

134 Sov. Phys. JETP 51(1), Jan. 1980 0038-5646/80/010134-15$02.40 O 1980 American Institute of Physics 134 



possibility of orientational second-order phase transi- 
tions. 

An approach that does not employ perturbation 
theory was proposed for the one-dimensional problem 
by ~ l l a e v s k i i  and ~ h o m s k i i , ' ~  by the authors of the 
present paper,I4 and by Theodorou and  ice.'^ All have 
demonstrated the existence of super-structures (of 
periodic solitons) in the commensurate phase. A 
similar approach is developed in the present paper for 
the two-dimensional problem. Luther and one of usi6 
solved the problem of the phase transition from a com- 
mensurate to an incommensurate crystal for a one- 
dimensional quantum system. Another variant of the 
same problem is that of charge-density waves in a 
two-dimensional system at  finite temperature. The 
methods of Ref. 16 a r e  generalized in the present paper 
to include a description of a more complicated situation, 
the temperature behavior of a two-dimensional elastic 
system on a periodic substrate. The latter problem has 
many features in common with the problem of two-di- 
mensional crystals," considered by ~ e r m i n , ' ~  Jan- 
covici,'* ~ e r e z i n s k i i , ~ ~  Kosterlitz and ~ h o u l e s s , ~ ~  and 
Halperin and  els son.^^ 

Methods of investigating incommensurate structures 
in the immediate vicinity of the transition point were 
developed by Bak et a2.22-25 These studies dealt with a 
system of weakly overlapping solitons.in one or two 
dimensions a t  zero temperatures. We shall discuss 
later on some of the results of these papers and their 
bearing on our results (see Secs. 10 and 11). We pre- 
sent a brief plan of the article. In Secs. 1 and 2 we 
discuss the formulation of the problem and its solution 
a t  zero temperature, f irst  on an unbounded substrate 
(Sec. 2) and then on a bounded a rea  (Sec. 3). In Sec. 4 
we determine the spectrum of the acoustic modes and 
discuss the stability of the obtained solutions. In Secs. 
5-9 we investigate the behavior of the system at  various 
temperatures. Section 10 i s  devoted to the diffraction 
pattern produced when slow electrons, neutrons, or x 
rays a r e  scattered. In Sec. 11 we present a qualitative 
picture of the phenomena near a phase transition. Sec- 
tion 12 is a systematic exposition of the new experimen- 
tal consequences of the theory and contains indications 
of the conditions for their observations. 

We use the abbreviations C and I for the commensurate 
and incommensurate phase, respectively, C-I for the 
phase transition from the commensurate to the incom- 
mensurate phase, and adatoms for adsorbed atoms. The 
results of the present paper were reported in a brief 
communication earlier.26 

1. RESONANCE APPROXIMATION 

The influence of the substrate on the adatoms will be 
described by a periodic potential V(r) which we expand 
in a Fourier series:  

where q a r e  the reciprocal-lattice vectors of the sub- 
strate. The potential V(r) is  assumed to be weak. We 
assume that on an absolutely smooth substrate (V(r) 

=0) the adatoms have a regular lattice. The vectors of 
this lattice will be designated by the letter R, and the 
reciprocal-lattice vectors by the letter b. The potential 
energy of the lattice is  written in the harmonic approxi- 
mation in the form 

where sa(k) a r e  the Fourier components of the dis- 
placements of the adatoms and cU8(k) is  the dynamic 
matrix. The dynamic matrix has the following proper- 
ties: it i s  periodic with periods b and its eigenvalues 
tend quadratically to zero a s  k - 0. Minimizing the total 
potential energy of the adatoms, we obtain the equilib- 
rium displacements s t ( k )  . In the lowest-order ap- 
proximation in V we have 

It i s  obvious that the largest values a r e  possessed by 
those Fourier components s a p )  for which k a r e  close to 
the reciprocal-lattice vectors b. We assume that this 
condition is satisfied for only one pair of vectors, k and 
b. This situation is typical in the case when the sub- 
s t ra te  and the adsorbed atoms have lattices that differ 
in form." The case of lattices having the same form 
will be considered separately. Of course, sufficiently 
large reciprocal-lattice vectors can be made arbi- 
trarily close for incommensurate periods. We shall 
assume, however, that V, decreases with increasing 
q SO rapidly that these effects a r e  insignificant. In the 
situation described above it is natural to neglect all the 
V, in (I) ,  with the exception of those for which q a r e  
close to b. Of course, if q is  close to b, then 2q is 
close to 2b, etc. All the corresponding Fourier com- 
ponents V, should be considered together with V,,. This 
will be called the resonance approximation. 

It i s  natural also to consider in the resonance approxi- 
mation those vectors k in (2) and (3) which a r e  close to 
b. We write the vector q in the form q = b + p, where p 
is  a small vector. The radius vector of the adatom with 
vector number R i s  written in the form R+s,. Then the 
energy of the interaction with the substrate takes the 
form 

where the periodic function f (cp) i s  defined a s  

I--- 

In (4) we have neglected the term pa s, in the argument 
of the cosine. In view of the smallness of p we can as-' 
sume R to be a continuous argument. A similar approxi- 
mation for the one-dimensional model was proposed in 
Refs. 13-15. 

The dynamic matrix&,,(k) determines a t  small k the 
elastic properties of the crystal, and can therefore be 
described by a set of elastic moduli. In all the experi- 
mentally investigated cases, the adatoms in the incom- 
mensurate phase crystalized to form a simple triangular 
lattice. We shall henceforther consider only this case. 
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It is  known that a triangular lattice i s  equivalent in its 
elastic properties to an isotropic elastic medium de- 
scribed by the ~ a m 6  coefficients X and p. 

We direct the x axis along the vector b and denote by 
u/b and v /b  respectively the components of the displace- 
ments along x and y. The potential energy of the ad- 
atoms in the resonance approximation takes the form 

where q = u + p - R .  

2. QUASI-ONE-DIMENSIONAL SOLUTIONS 

The equilibrium condition for the potential (6) i s  of the 
form 

We seek the solution of the system (7) in the form 

cp--cp(b), v=w(g)  +rz+sy, g-z cos 0+y sin 0 .  (8) 

From the second equation of (7) we obtain the connec- 
tion between the functions cp and w :  

(h+p)  sin 0 cos 0 
w=-' p+ (h+p)sin2 0 " (9) 

The solution of Eqs. (7) takes the form 

where 8 and cp, a r e  integration constants. The solution 
(10) is meaningful if I>, 8, = -minf(cp). 

We have found a solution that depends on four pa- 
rameters: r, s, 8, and 8. We note that the vector p 
can be regarded a s  directive along the x axis, since 
the energy depends only on the difference P,-Y. 

Substituting the solution (8)- (10) in (6), we obtain the 
potential energy per unit area: 

where the functions K( I )  and E($)  a r e  defined in analogy 
with the complete elliptic integrals: 

and the quantity h is  connected with the parameters, P, 
r ,  s ,  and 0 by the relation 

Ir - [ (k+2p) (p+  
sins 0 )  '1 ' {(A+') (p-s)cos 0 

+ (p+s)cos 0[k+2p-  (h+p)cos 201-r sin 0 [ ( h +  2 p ) -  (h+p)cos'81). 
(13) 

The problem now is to minimize the energy fi with 
respect to the parameters $, Y, s, and 8. Minimization 

with respect to I is  carried out exactly a s  in the one- 
dimensional case, and leads to an analogous equation: 

Minimization with respect to the remaining three pa- 
rameters is  elementary, although somewhat cumber- 
some. Leaving out the intermediate steps, we present 
the results: a t  u > O  we get tan28=u, 

There exists one other solution of Eq. (7): q~ = cp,,, 
v = @y,  where qo i s  the value of cp a t  the minimum of 
the function f (cp). This solution corresponds to a phase 
that is  commensurate in one direction with the substrate 
(along the x axis). I ts  energy U, is connected with P by 
the relation 

We explain now the physical meaning of the solution 
(8)-(16). The different turns in the Hamiltonian (6) 
correspond to opposing tendencies in the arrangement 
of the atoms. The interaction of the substrate f (cp) tends 
to place the adatoms at the minima of the periodic po- 
tential of the substrate. On the other hand, the inter- 
action between the adatoms tends to place them in their 
own regular lattice, which differs from that of the 
substrate. The system of adatoms at  equilibrium as- 
sumes some compromise arrangement: there a r e  long 
sections with the periodicity of the substrate, alter- 
nating with short sections on which the distances be- 
tween the atoms differ greatly from the lattice. The 
foregoing pertains to the case of sufficiently small com- 
mensurability. In the general case periodic modulation 
takes place of the density of the adatom lattice. 

Thus, a superstructure i s  produced in the incom- 
mensurate phase and has a period that is a continuous 
function of the parameters V and p. The modulation of 
the density i s  directed a t  an angle 0 =  t a n " 6  to the 
almost coinciding reciprocal vectors, and its period in 
terms of the initial units of length is ( 2 p ) 1 / 2 ~ ( g ) .  The 
lattice i s  slightly deformed in the perpendicular direc- 
tion, with a tension coefficient s =up. 

The incommensurate phase exists a t  p ape, where the 
critical value p, is  connected with the minimal value of 
E by the relation 

The minimum of E corresponds to I,= - f,,,. At p <PC 
the minimum of the potential energy is realized by the 
commensurate phase. The energy 8' goes over con- 
tinuously into fi2 at  p =PC., As usual, when P approaches 
P C  from above the periodof the supersubstructure in- 
creases logarithmically, and the boundaries between 
the 6tdomainsss (static solitons) acquire the standard 
form and length.I3-l5 

Within the framework of the approximation assumed 
here, the considered transition i s  a second-order phase 
transition with respect top.  We note some important 
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singularities of the incommensurate phase. The first  is 
that in the two s t ress  components of the incommen- 
surate phase, a,, and o,,, a r e  equal to zero a t  any point 
of space. The initial expression (6) for the potential 
energy i s  invariant with respect to the reflections 
X(x- -x,u- -u) and ~ ( y -  -y,v- - v ) .  The com- 
mensurate state is  in fact also invariant with respect 
to these transformations (accurate to a common phase 
shift 2a). In the incommensurate state, however, these 
symmetries a r e  violated, since the mean values ( &/ay) 
and ( av/ax) differ from zero. 

The ground state of the incommensurate crystal i s  
doubly degenerate with respect to the angle 0. The 
choice of one of the two roots of the equation tan29=o 
violates the initial symmetry. At the same time, the 
symmetry with respect to the total inversion XY is  pre- 
served. We note that for the dipole interaction, which 
apparently predominates in lattices of alkali and 
alkaline- earth adatoms on the surfaces of tungsten and 
molybdenum, we have u = 5/11 and 9 a24". For a lattice 
of Abrikosov vortices A =m and 9=45". 

3. LATTICE UNDER CONDITIONS OF BOUNDED 
AREA 

So far we have assumed that no limitations a r e  im- 
posed on the values of cp and v. Actually the quantities 
x(1 - p / b )  + cp/b and y +v/b a r e  coordinates of the 
adatoms in a real configuration, and x and y a r e  the 
numbers of these atoms o r  their coordinates on an ab- 
solutely smooth substrate. In our problem the role of 
the conserved number (the number of adatoms) is 
played by So= Sdxdy, which can also be interpreted a s  
the area  occupied by the lattice of the adatoms on an 
absolutely smooth substrate. If the a rea  So is smaller 
than the area  of the substrate S, then a small change in 
it (of the order of p/b) is  immaterial, and no limitations 
ar ise  on cp and on v, and the solution obtained by us i s  
realized. This is  precisely the situation if the adatoms 
attract each other a t  large distances and form on a 
emooth substrate their own lattice, while their number 
is sufficient for this lattice to fill the entire substrate. 

The situation is entirely different if the adatoms repel 
each other a s  is apparently the case for adatoms of 
alkali and alkaline-earth on tungsten and molybdenum.' 
In the case the atoms a re  constrained only by the 
boundaries of the substrate, so  that on the absolutely 
smooth substrate they fill i t s  entire a rea  (So = S). 
Exactly the same situation a r i ses  if the adatoms a re  
attracted at large distances but their number i s  suf- 
ficiently large to make So = S. With further increase of 
the concentration of the adatoms, they begin to repel 
each other effectively. 

If So=S, then the solution to the problem depends 
substantially on the sign of the incommensurability P. 
We shall show that a t  positive p, i.e., in the case when 
the substrate tends to decrease the constant of the 
adatom lattice, the solution obtained by us  i s  realized. 
In the opposite case p <  0 the solution must be modified 
somewhat. 

Neglecting boundary effects (a procedure valid if P 
>> s - " ~ ) ,  we consider only the area  occupied by the 

adatoms. Its change 6 s  can be written in the form 

At p <O we must impose on the solution the additional 
condition 6S=0. This condition obviously does not 
change the Lagrange variational equations (7). There- 
fore  we shall seek their solution likewise in the earlier 
form (8). However, the parameters 8, s, Y and I must 
in this case be determined by minimizing the quantity 

where 0 is defined by Eq. (11) and v is  a Lagrangian 
multiplier. The quantity ~s/s,, can be written in the 
form 

After minimization it is  necessary to put ~s/s,= 0. 
From the obtained system of equations we were able to 
determine all the parameters: 

O=arctgYz, 

In the case of a bounded area,  the commensurate 
phase is also different. Actually, putting cp = const and 
stipulating constancy of the area,  we find that ( av/ay) 
=p. The energy of the commensurate state i s  

Ur=fnrtn+2ppa. (23) 

A second-order phase transition takes place at the 
critical value 

It is easily seen that this value of lp,l is  less than the 
corresponding value (18) for the unbounded area. 

Thus, limiting the area  leads to a certain asymmetry 
of the phase diagram with respect to the point P = 0. 

4. SPECTRUM OF SMALL OSCILLATIONS AND 
STABILITY 

The total Hamiltonian of the system includes the 
kinetic energy and can be written in the form 

where U is  defined by Eq. (6). We put cp = q0(x) + q,(x,t) 
and v =vo(x) +v, (x, t ) ,  where cpo and v, a r e  defined by 
Eqs. (8)-(lo), while cpi and v ,  are  assumed to be small. 
Then, confining ourselves to terms quadratic in cp, and 
v,, we obtain the Hamiltonian of the harmonic system, 
the spectrum of which we shall now investigate. 

It is convenient to change over to a coordinate frame 
5 ,  q obtained from x ,  y by rotation through an angle 9, 
and to consider the displacement vector cp,v in the 
same frame 4,q. In other words, it is  necessary to 
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change over to new unknown functions @ and a, con- 
nected with cpl and vl by the relations 

@=pi cos O+vi sin 0 ,  Y =-cp sin 0+v, cos 0 (tg 0=$).  (26) 

In the new variables, the Hamiltonian becomes 

This Hamiltonian leads to the following dispersion 
equation which is valid a t  small k, q, and w : 

Here a = p ~ 2 / p ,  w is the frequency, k and q a r e  re- 
spectively the [ and v components of the wave vector, 

Equation (28) is  quadratic in a2 and determines two 
acoustic branches of the oscillations. Near the transi- 
tion point, when R is large enough, Eq. (28) breaks up 
approximately into two independent equations, which 
were given in our previous c o m m ~ n i c a t i o n . ~ ~  Near the 
transition point, one of the velocity components of the 
f i rs t  branch vanishes like m2'. Simultaneously the 
region of admissable values of k tends to zero like 
I l/ln(p - P,) I. Thus, the first  branch i s  '.crowded 
out" of the spectrum, whereas the second tends to a 
finite limit. It can be verified that the squares of the 
frequencies, determined by the dispersion equation (28), 
a r e  strictly positive a t  k # 0 and q + 0. This proves that 
the obtained solution is a t  least metastable. 

The spectrum of the commensurate phase can be ob- 
tained in trivial fashion. It is  sensible to return to the 
initial coordinate system x and y. The dispersion equa- 
tion for the oscillations in this phase is of the form 

where f," is  the value of the second derivative off (cp) at 
the minimum point, and k and q a r e  the components of 
the wave vector along the axes x and y. It i s  easy to 
verify that Eq. (29) has only positive roots. At small k 
and q ,  one of the solutions tends to a constant limit 
(f ,$'/p)1/2 (optical band), and the other to zero (acoustic 
band). The existence of the acoustic branch in the com- 
mensurate phase i s  attributed to the fact that the com- 
mensurability is  attained only in one direction. Ob- 
viously, neither the optical band nor the acoustic band 
that exists in the commensurate phase is subjected to 
significant changes on going to the incommensurate 
phase. 

The behavior of the soft acoustic mode that vanishes 
in the commensurate phase i s  similar to the behavior of 

the analogous soft mode in the one-dimensional 
c a ~ e . ~ S l ~  

Our investigations shows that although the transition 
from the commensurate to the incommensurate crystal  
is  of second order, the commensurate phase continues 
to remain metastable in the entire region of existence of 
the incommensurate phase. This possibility of Itsuper- 
h e a t i d  in a second-order phase transition i s  apparent- 
ly a unique phenomenon. On the other hand, it is  im- 
possible to  supercool" an incommensurate phase. 

For a lattice of adatoms lying on a metal surface, the 
small-oscillation spectrum obtained by us  is  suitable 
only at not too low a frequency. At low frequencies the 
ohmic losses play the decisive role and cause the lat- 
tice motions to acquire a relaxation character: w - iq2. 
We estimate now the frequency region w cwo in which 
the ohmic losses prevail. It can be assumed that the 
ions, a s  they glide over the surface, produce an elec- 
tric current in a layer whose thickness i s  of the order 
of the lattice constant. Equating the ohmic losses 
during the period of the oscillations in this layer to the 
stored energy, we obtain for wo in the case of molyb- 
denum and tungsten the estimate 

where a, i s  the room-temperature conductivity and 
o(T) is  the conductivity a t  the given temperature. 

For an Abrikosov vortex lattice in a superconducting 
film, ohmic losses prevail under the following condi- 
tion 

where o i s  the conductivity, H is the magnetic field, n, 
i s  the volume density of the electron, m, i s  the mass of 
the electron, and c is  the speed of light. For fields 
H-100 G the estimate (30) yields wo-lo7 sec-I. Lattice 
vibrations of adatoms on tungsten and molybdenum in 
the high frequency region could possibly be observed by 
using Mandel'shtam- Brillouin scattering of visible 
light. Estimates made by ~ e s h c h u n o v ~ ~  show that such 
observations a r e  feasible in experiment. The existence 
of acoustic branches of the spectrum was confirmed 
only indirectly, although quite convincingly in our 
opinion, in the experiments of Naumovets and 
~ e d o r u s , ~ *  who measured the intensity of Bragg re- 
flections. 

5. MONOLAYER AT FINITE TEMPERATURE 

The symmetry of the Hamiltonian is violated in the 
ground state of an incommensurate crystal in two ways. 
First, the produced superstructure destroys the trans- 
lational symmetry. Second, the deviation of the modu- 
lation direction ( O #  0) from the x axis violates the 
reflection symmetry (see Sec. 2). Therefore a t  zero 
temperature the system i s  characterized by two long- 
range order parameters, which we shall call transla- 
tional and ~r ienta t ional .~ '  At nonzero temperature, the 
orientational long-range order is preserved, and the 
translational one i s  violated. The reason is that the 
orientational symmetry group is discrete, whereas the 
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group of quasitranslations is  c o n t i n u o ~ s ~ * ~ * ~ ~  and it 
corresponds to the Goldstone branches of the spectrum. 
The incommensurate phase forms at T #  0 a two-di- 
mensional crystal without long-range order but with 
nonzero static shear modulus, and i s  thus an object 
which, with certain stipulations, one can apply the two- 
dimensional- crystals theory of Mermin et a1.i7-21 

In the commensurate phase there remains in this case 
one Goldstone branch, s o  that the translational long- 
range order along the y axis vanishes a t  Tz 0, but long- 
range order along the x axis remains. The super- 
structure i s  commensurate in the ground state, but the 
two-dimensionality of the system manifests itself in the 
fact that this one-dimensional order is not upset by 
quantum fluctuations. Our first  task i s  to establish the 
appearance of the phase diagram on the (P, T) plane. 
We use for this purpose the Wilson renormalization- 
group method, f i rs t  applied to two-dimensional sys- 
tems with similar symmetry by Kosterlitz and Thou- 
lessz0 and by ~ o s t e r l i t z . ~ ~  The problem closest to it in 
formulation i s  that of a field that satisfies the sine- 
Gordon equation. The renormalization method for this 
field was developed by ~ i g m a n . ~ ~  We have only slightly 
modified his method to allow for the pecularities of our 
problem. 

We first  performed the calculations for a special form 
of the function f (p) = b4vcosp. We shall show subse- 
quently that the higher harmonics f (p) a r e  insignificant 
at nonzero temperature. We change from the variables 
cp and v to the variables cp6 ,b  and vJi ; /b~??- ,  and 
introduce also the symbol y =  V/T. The temperature i s  
then formally eliminated from the argument of the 
Boltzmann exponential, but does enter into the argument 
of the cosine. In place of U/T we can now write in the 
argument of the Boltzmann exponential formally the 
auantitv 

where /1(= bn/G, 2n/b = a  is the lattice constant. 

The dimensionless quantity y will henceforth be re- 
garded a s  small. This means that calculations by the 
method of the renormalization group a r e  valid at not 
too low temperatures T>> V. The equation for the re-  
normalized quantity y takes the form 

where R labels renormalized quantities and 

We see  that at T,, Ti the quantity y decreases with in- 
creasing .$. The straight line y= 0 is a line of fixed 
points, but these points a r e  stable only at T,> Ti. The 
point Ti is  critical. At T, < Ti the field of the large- 
scale displacements becomes free, and consequently 
the long-range order (along the x axis) vanishes. At 
T, < Ti the coefficient y of cospcp increases asymp- 
totically. 

To justify our conclusions we must analyze the be- 
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havior of the renormalized temperature T, (or of the 
coefficient @). The renormalization-group equation for 
the temperature takes the form 

The system (32) and (34) must be solved with the initial 
conditions 

It is important that a t  T >  T, and (T - T,)/T, >> y2 the 
renormalized temperature coincides with the initial T 
accurate to small quantities of order y2.  Equation (32) 
can therefore be solved by assuming T, = T to be a con- 
stant quantity. 

It should also be noted that, strictly speaking, re- 
normalization gives r ise  to anisotropy of the elastic 
properties, since, for example, the coefficients of 
(a c p / a ~ ) ~  and (a cp/ay)2 vary differently. However, the 
resultant anisotropy is also of order y2 and can be 
neglected at (T- T,)/T, >> y2. 

The general character of the phase portrait of 
the system remains the same a s  in the renormalization- 
group equations of Anderson and yuva13' and of 
~ o s t e r l i t z . ~ ~  At T < TI the solutions of (32) increase a s  
.$ - m. The growth, however, can stop when the non- 
linear terms not accounted for in (32) become substan- 
tial. This takes place a t  y, - 1. 

Let a ,  be the characteristic scale over which a con- 
stant value y, i s  established. The reciprocal of a ,  is  
usually denoted m,. This quantity satisfies the equation 

T 
mRao= (moue) ""F ( T )  3y""F (TI ,  T=I - - 

T* ' (3 5) 

where m,  = y / a ,  and F(T) i s  a slowly varying function of 
the temperature. In i t s  physical meaning, m, agrees, 
within a constant factor, with the gap in the energy 
spectrum of the commensurate phase. . 

We examine now the renormalization of the higher 
harmonics (a# 1) of the periodic function f (cp). In (32) 
the coefficient 2(1- T/T,) for the n-th harmonic must 
be replaced by 2(1- ~ T / T , ) .  Therefore in the incom- 
mensurate phase the higher harmonics decrease a s  
5 - m more rapidly than the first  harmonic, and can be 
neglected. 

We proceed now to consider a nonzero incommen- 
surability parameter P. The scale dimensionality of p ,  
and consequently of PC coincides with that of m. The 
equation for the transition curve then takes the form 

6. THE TRANSITION-MATRIX METHOD 

To calculate the partition function we use the known 
transition-matrix method. We distinguish one of the 
coordinates, for the sake of argument y ,  treat it from 
now on a s  the time, and follow the development of the 
system with variation of this coordinate. To emphasize 
this distinction, following the established tradition, we 
designate differentiation with respect to y by a superior 
dot and differentiation with respect to x by a prime. 
We break up the entire interval of variation of y from 0 
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to 1 into N small segments of dimension A and represent 
the partition function in the form 

where the operator ? is  expressed in terms of the Ham- 
iltonian f i  in the following manner: 

T -1-AH, (38) 

and the Hamiltonian f i  is  obtained from the Lagrangian 
in the usual manner (apart from the sign): 

R =j  (-@P-itQ+P)&. (39) 

The field momenta P= a ~ / a c p ,  Q = ay/a; should be re- 
placed in the final expression for & by the variational 
derivatives P= 6/6cp(x), Q = 6/6v(x). The explicit ex- 
pression for & is 

The problem reduces to calculation of the minimal 
eigenvalue Eo of the Hamiltonian 2, and of the corre- 
sponding state vector @o{u]A. We note that in the initial 
form (40) the Hamiltonian H i s  not Hermitian, since P 
and Q a re  anti-Hermitian operators. 

The non-Hermitian Hamiltonian (40) can be reduced to 
Hermitian in the following manner. We note that the in- 
tegrals with respect to v following functional integration 
of E - y a r e  Gaussian. Therefore integration with re- 
spect to v reduces to finding the extremum of the func- 
tional Y(cp, V )  with respect to v at fixed cp. It is  clear 
that this extremum does not change if we change from 
the real variable to the pure imaginary v =iw.  If we 
simultaneously replace the variable y by it, then the 
LagrangianY remains real, but A must be regarded 
a s  imaginary. As a result the field momentum P be- 
comes a Hermitian operator, Q i s  anti-Hermitian, and 
the Hamiltonian H becomes Hermitian. 

The transition to the imaginary v i s  natural, since v 
i s  the "temporal" components of the displacement vec- 
tor. The ground-state vector of the Hermitian Hamil- 
tonian can be chosen real (even in the case of discrete 
degeneracy). 

The mean value of the arbitrary quantity ~ { u ,  h} i s  
calculated by the formula 

where @,, is  the ground-state vector. 

We calculate now the mean values of the operators 

Since @,{u} is real (see above), we have 

Returning to the initial problem, we can easily verify 
that the quantities P and Q a r e  components of the s t ress  
tensor. Namely, P=u,,  and Q =ayy. The equality (42) 
therefore means that the mean values (o,,) and ( o y y )  

a r e  equal to zero a t  each point of the plane also at non- 
zero temperatures (cf. the end of Sec. 2). 

7. SOLITON REPRESENTATION 

The classical ground state of the incommensurate 
phase (see Secs. 2 and 3 )  can be treated as static 
periodically repeating solitons. At nonzero tempera- 
ture, the solitons begin to move in both directions, and 
consequently the periodicity is  lost. In addition, a ther- 
modynamic-equilibrium number of antisolitons ap- 
pears-inflections in the opposite side (see Fig. 1). The 
physical picture i s  similar to that considered by Luther 
and one of usi6 (see also Ref. 14), who dealt mainly with 
quantum fluctuations of a one-dimensional system. They 
have noted that in the simplest cases the two-dimen- 
sional statistical system can be reduced to a one-dimen- 
sional quantum system, s o  that the temperature of the 
statistical system is proportional to Planck's constant 
of the one-dimensional quantum problem. 

Solitons in the one-dimensional problem can be 
treated a s  particles subject to Fermi statistics. The 
incommensurability p plays the role of the chemical 
potential of these particles. A certain advantage, say, 
ar ises  for particles over antiparticles. The difference 
between the numbers n, and nu of the solitons and anti- 
solitons i s  equal, apart from a constant factor, to the 
gradient of the phase cp. A phase transition from this 
point of view takes place when the chemical potential 
reaches the values of the renormalized mass of the 
solitons. At lower values of p the difference n,- nu i s  
equal to zero, and this corresponds to the commensu- 
rate phase. 

Let us show how to apply these concepts to our prob- 
lem. Since our problem involves two boson fields, cp 
and v, we introduce two different types of fermions, 
described by the spinor operators z),, and xu in ac- 
cordance with the following equations 

i 
x1=--exp -- 

(anal ( 2: -- j ~dr- ;~ ] .  

Here (Y is  an arbitrary real  constant. The operators cp 
and Q a r e  assumed Hermitian and v and P anti-Hermi- 
tian; this corresponds to the imaginary "time" (see the 

FIG. 1. 
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preceding section). 

By virtue of the commutation relations between P and 
cp and between Q and v ,  the operators #,, #,+, xu, xu+, 
taken a t  different values of x anticommute with each 
other. Equations (43) and (44) a r e  a modification of the 
Mandelstam representations3, of fermion operators that 
generate solitons and antisolitons. In a somewhat dif- 
ferent form it was obtained by Luther and ~ m e r y . ~ ~  

The boson operators a r e  expressed in terms of the 
fermion operators in the following manner: 

and 

Substituting (45) and (46) in the Hamiltonian (40) and re- 
placing cosbcp by nu$$, we obtain the Hamiltonian for the 
f ermions 

H-H*+Hx+HQx, (47) 

where 

The constants c,, c, ,g,,,g,, 5 a r e  connected with the 
parameters of the boson problem by the relations 

BZ 8 n  I.+ p c*=-+-- 
8 n  8 3 + 2 p  ' 
16nz h f p  BZ g,, = - - - 

B" a+2p 4 ' 

Finally, m = 2nZyb. We put henceforth a = @/6. 
The fermion field $ has a bare mass that becomes re- 

normalized by the interaction. The renormalized mass 
was determined in Sec. 5 [ see  Eq. (35)]. The fermions 
x remain massless also when the interaction is turned 
on. 

8. EXACT SOLUTIONS 

At certain values of the parameters, the fermion 
problem admits of an exact solution. Namely, we im- 
pose on parameters o and f i  the condition that the ve- 
locities C, and cx coincide [ (see (51) and (53)] : 

h h + p  
p-h b + 2 p  ' 

In addition, we stipulate that the coupling constant g,, 
vanish [see  Eq. (52)]. Then B and o a r e  determined 
uniquely: 

The interaction in this model reduces to scattering 
processes of the type I)-)( and X-X. We consider first  
the processes of the first  type. The energy and mo- 
mentum conservation laws can be satisfied only if the 
momentum of each particle i s  conserved in the scat- 
tering. It i s  easily seen in the case of unequal veloci- 
ties c, and c, scattering with change of the value of the 
momentum becomes possible, and this makes for an 
extremely complicated problem. A problem with this 
scattering cannot be solved exactly. In the case c, = c, 
the scattering can lead only to a multiplication of the 
wave function by a certain phase factor. A simple cal- 
culation shows that this factor is  equal to e*'/', where 
g=n/ f l .  The fact that the change of the phase does not 
depend on the momenta of the colliding particles greatly 
simplifies the solution of the problem. The scattering of 
particles xi by X, leads to multiplication of the wave 
function by (- 1). 

Let the number of the x fermions be N,, and N,,. Then 
transport of the particle $ from left to right along the A: 

axis causes the phases of the wave function to change by 
an amount 

where k i s  the momentum of the $ particle. 

We stipulate satisfaction of the cyclic boundary condi- 
tions 

(n i s  an arbitrary integer). Since g does not depend on 
the momentum k, we can assume with arbitrarily high 
accuracy that the number (N,, + ~ , , ) ~ / 2  is a mutliple of 
ZIT. Then the cyclic boundary conditions (56) take the 
form 

kl=2nn. 

But this i s  precisely the form that they have also for 
the f ree  particles 7). Consequently the $-x scattering 
does not change the energy of the fermion system. Ob- 
viously, the same can be said also of the X-x scat- 
tering. 

Thus, in our case the fermions $ and x can be re- 
garded in a certain sense to be non-interacting. Their 
energies a r e  given by 

where c = 2&%. All the $-fermion states with energies 
less  than 5 = m p ,  a r e  occupied, a s  a r e  also all the 
X-fermion states with energy less than zero. If p ex- 
ceeds the critical value P, = m m ,  then 

differs from zero (incommensurate phase). 

The quantity ( acp/ax) ,  which characterizes the incom- 
mensurability, is  of the form 

In accordance with the general considerations (see Sec. 
6), the quantities 
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a r e  equal to zero. In the exact solution, however, it i s  
seen that 

from which and from the fact that ( P ) = O  it follows also 
that ( aV/ay) = 0. 

We consider now a more general situation, when Eq. 
(54), which guarantees equality of the velocities c, and 
c,, is  satisfied but /3 i s  arbitrary. In this case, just a s  
in the one considered earlier, the $-x collisions lead 
only to multiplication of the wave function by an ines- 
sential phase factor. The z,b fermions, however, inter- 
act with one another. The spectrum of the $-particle 
system is the same a s  in the Thirring massive model. 
The model was investigated by Berkgnoff and ~ h a c k e ~ - 2 4  
who found the exact ground state and the excitation 
spectrum for a zero chemical potential. The case of 
interest to us differs from that considered by them in 
that the chemical potential 

differs from zero. Obviously, in the case 5 <m,,  
where m ,  is  the renormalized fermion mass, the 
ground state of the system does not change. At 5 -> m ,  
there arises,  a s  previously, a nonzero quantity (n,), 
which i s  proportional to ( acp/ax). Since the x particles 
do not interact in fact with $, we have in the ground 
state ( n,) = 0. 

We a r e  unable to write down for (acp/ax) an exact 
formula similar to (57), since the presence of a non- 
zero (n,) changes the spectrum of the particles. At 5 
close to m ,  (p  close to P,), however, when ( n,) is  
small and the change of the spectrum can be neglected, 
we obtain again 

Just a s  in the case considered above, 

An exact solution can be obtained also in the limit X 
=m. This is precisely the limit realized in the vortex 
lattice in a superconducting film (see the introduction). 
In this case cX =gxx = O  [see Eq. (53)]. Therefore the x 
fermions a r e  immobile. Their energy does not depend 
on the momentum. Using this, we construct a vacuum 
state such that the x fermions a re  at the si tes of a one- 
dimensional periodic lattice with period a, but there 
a r e  two on each site. The wave function z,b at  the colli- 
sion point is  multiplied by the phase factor exp(iga/c,), 
where gh( = 2 ~ 1 6 .  Just a s  in the preceding case, the $ 
and x fermions do not interact in fact. Therefore the 
problem was reduced to the solution of the same 
Thirring model a s  in the preceding case. The only 
difference lies in the correlation properties of the x 
f ermions. 

We note that the double degeneracy that occurs at T 
= 0 does not appear a t  finite T. The transition tempera- 
ture can lie only in that region where neither the clas- 

sical nor the renorinalization-group approaches a r e  
applicable, i.e., a t  T- V. We thus arr ive  a t  the con- 
clusion that a t  a certain temperature To- V there oc- 
curs  an orientational phase transition that causes 
vanishing of the symmetry breaking due to the deviation 
of the direction of the modulation in this superstructure 
from the x axis. 

9. BRAGG REFLECTIONS 

The form factor SF) measured in experiments on the 
scattering of neutrons, x rays, and electrons i s  the 
Fourier component of a correlation function of the form 

G~(X, x') =<exp [ik(u.-u..)]) ,  (58) 

where u, is  the vector of the displacement a t  the point 
x. We a r e  interested in momentum transfers k close to 
the reciprocal-lattice vectors of the adsorbed atoms 
k= b+ H ,  and in distances Ix- x' I, considerably ex- 
ceeding the lattice constant. 

In the C phase (we recall that it i s  commensurate only 
in one direction) the x coordinates of the atoms a r e  
ordered and fluctuations cause only a Debye-Waller 
decrease of the peaks, inasmuch a s  there is  a gap in 
the spectrum of the fluctuations. Oscillations along the 
y axis lead to the vanishing of the long-range order 
along this coordinate at finite temperatures. 

In the I phase, the long-range order vanishes also 
along the x axis. However, at sufficiently low tempera- 
tures T << V the fluctuations of u can be neglected and 
we can substitute in (58) the solution obtained in Secs. 
2 and 3. In the commensurate phase in this tempera- 
ture region we have u,=-px/b, u,=opy/b. It is also 
legitimate to neglect the fluctuations in the C phase a t  
T << f.ia2. 

In the region T>> V, the mean value (58) can be re- 
duced in the I phase to a certain fermion mean values. 
The form factor SF)  is  connected with G,(x) by the re- 
lation 

S ( k )  = x e x p  { i k  (x-x' )  ) G~ (x, x') , (59) 
X,Xf 

where the summation is over the sites of the adsorbed- 
atom lattice, and x is the vector number of the lattice 
site. 

We consider first  the classical case T<< V, when the 
fluctuations can be neglected. In this case the corre- 
lator ( exp{iku(x)) exp{- ikuo (x')}) depends on the two 
coordinates x and x', and not merely on their difference. 
We can substitute in (58) and in (59) the solution u(x) ob- 
tained in Secs. 2 and 3. We can then represent S(k) in 
the form 

We assume k to be close to some reciprocal-lattice 
vector b=n,b, +n2b2, where bi is  directed along the x 
axis. The basis vector a, of the crystal lattice has only 
a y component, whereas both components of a, a r e  in 
general different from zero. Calculation of the sum 
CF) for specified n, and n2 yields 
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Here F,,,,, a r e  the Fourier components of the periodic 
function exp{ (ik,? +ik,,G)/b} (q,  5 a r e  the periodic parts 
of cp and v ) ,  and a; a re  the basis vectors of the de- 
formed lattice, whose coordinates af, a re  connected 
with the coordinates a,, of the initial basis vectors by 
the relations 

with a,, = a ,  a,, = 0; the vector v is  a unit vector of the 
direction of modulation with coordinates cos6 and sin6, 
where tan26=o. 

Thus, the diffraction pattern is represented by an 
aggregate of principal Bragg extrema, which a re  de- 
termined by vectors a; and by a linear set  of satellites 
which a re  determined by the period of the superstruc- 
ture ( 2 p ) i / 2 ~ .  We note that at large p the values of a;, 
coincide with the components of the basis vectors of the 
adatom lattice on a smooth substrate a,,, whereas at p 
close to the critical value a;, go over into the com- 
ponents of the basis vectors of the substrate lattice. 

We proceed now to the temperature region T>> V. 
Putting k = b +n and assuming n to be small enough, we 
obtain approximately 

A s ( k )  - --I exp ( i x x )  G, ( x )  dEx, 
AO (63) 

where A. is  the unit-cell area and A is  the adatom area;  
it was assumed that G,(x, x') depends only on the dif- 
ference x- x'. Let k=nb,, where bt i s  the basis vector 
of the reciprocal lattice along the x axis. We obtain 

exp (iku.) -e-fnpie'n81,e-tn~= ( b a )  ". 
Consequently a t  T>> V, for k directed along the x axis, 
only two Bragg reflections with n = *l "survive." All 
others a r e  small by virtue of the smallness of the 
smallness of the parameter V/T. 

This conclusion is equally valid for the C and I phases. 
The only difference lies in the behavior of Gk(x-x') a t  
large Ix- x' 1. For the C phase (n = 1) we get 

G, (x-x') =exp (-BZ<cp')} exp (-ip (x-x') ] ~ m n a  exp { - ip  (x-x') 1. 
(64) 

Equation (64) can be obtained by assuming cp to be a 
quantity with a Gaussian distribution up to a certain 
distance of the order rn i'. It is of interest, from this 
point of view, to estimate the reflections with n +  1 in 
the C phase. Their intensity turns out to be propor- 
tional to (rnp)n2. This is  in fact the accuracy of the 
fermion (and renormalization-group) approximation. 
The result means that in the C phase in Bragg reflec- 
tions of the substrate a r e  replaced by a quantity -m,a 
which is assumed in our approximation to be small. 

In the Iphase  at n=1 ,  o=1/5 and 4 = 8 n m ,  the 
neutrons a r e  scattered by the $ fermions a s  on free 

k i  

FIG. 2. 

fermions. Under the condition p, = (t2 - rn2)i/2/c << m, 
and 1% 1 << m, the Fourier component of the correlator 
Gk(x- x') takes the form 

The diffraction pattern i s  the following. The princi- 
pal Bragg peaks decreased rapidly [like (ma)n2] with 
increasing number. Near the first  principal peak there 
a r e  two weak satellites a t  ux =*2pF. Their intensity 
decreases and their width increases with decreasing 
u;'. The diffraction pattern is shown schematically in 
Fig. 2. We note the logarithmically large background 
intensity. 

10. GENERAL CHARACTER OF THE PHASE 
DIAGRAM 

The phase diagram in the (P, T) plane consists of 
alternating regions of commensurate and incommen- 
surate crystalline phases, a s  shown in Fig. 3. It is  
known that the widths of the sections of the commen- 
surate phase at T =  0 a r e  proportional to 
where N is the commensurability order (by definition, 
the commensurability order N is the denominator of 
the ratio d/a, where d is  the period of the substrate 
and a is  the period of the lattice of adatoms on a 
smooth substrate). Therefore high commensurability 
orders correspond to very narrow strips on the phase 
diagrams. It was shown in Refs. 14 and 15 that in the 
case  of the N-th commensurability order the interac- 
tion with the substrate is described by a potential of the 
type vNcosNp, where 40 is  the coordinate of the center 
of the unit cell. Repeating the renormalization pro- 
cedure (see Sec. 5) for such a potential, we find that 
the critical temperature TN of a commensurate phase 
of N-th order is  equal to T, /N~,  where Ti is  the criti- 
cal temperature of the commensurate phase of the 
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lowest order [ ~ q .  (33)]. Obviously the substrate 
defects which violate the coherence a t  distances of the 
order of Na destroy the commensurate phases with 
large commensurability order. Another reason why 
commensurate phases of high orders cannot be ob- 
served is the finite value of v/pa2. In fact, in the re- 
gion of existence of commensurate phases of low orders 
one cannot observe commensurate phases of high 
orders, which a r e  formally located inside this region. 
With increasing ~ / ~ a ~ ,  the widths of the commen- 
surable phases increase. A situation is therefore pos- 
sible, for example, wherein there is  only one region of 
commensurate phase and there a r e  no incommensurate 
phases at all, o r  else, say, there exists only a single 
region of incommensurate phase. 

As shown by Halperin and  els son,'^ above the melting 
temperature T,,, of the incommensurate phase the two- 
dimensional system acquires the properties of a liquid 
crystal, and at a still higher temperature Ti it goes 
over into an isotropic liquid. The general form of the 
phase diagram i s  shown schematically in Fig. 3. The 
anisotropy of the substrate causes the orientational 
order in the film to be preserved also at high tempera- 
tures. Therefore the phase transition at the tempera- 
ture Ti becomes smeared out, with A T  proportional to 
v2/pa2. 

The 'bare" incommensurability is  an inconvenient 
quantity for use a s  a thermodynamic characteristic. 
This raises the question of the conversion from the 
quantity p to experimentally obtainable parameters. 
This i s  simplest to do in the case of a corrugated 
superconducting film in a magnetic field (Ref. 5; see  
also the Introduction). In this case the reciprocal- 
lattice vector of the "substrate," whose role is  as- 
sumed by the corrugation, i s  fixed while the vector of 
the reciprocal lattice of the vortices in the smooth film 
i s  proportional to fi. We can therefore plot H instead 
of the ratio of the reciprocal vectors. The points cor- 
responding to initially commensurable lattices a r e  

where M and N a re  relatively prime integers. Near 
each of these points, according to our theory, there 
should occur an incommensurability region whose width 
AH relative to the field is  proportional a t  T=O to tjNl2, 
where 6 is  the depth of the corrugation. 

The melting temperature and the critical temperature 
of the commensurate phases a r e  determined by Eq. (33), 
in which we must put X = m, a2 = 2q0/H&. In addition, 
it must be recognized that p -  H2a- There- 
fore  the critical temperature dependence on the mag- 
netic field like T~(H) c c ~ ' / ~ & ' ~ ,  i.e., T~(H) -2. 1 0 5 ~ ~ 1 ~  
[Kl. 

The obtained estimate shows that the vortex lattice 
is extremely rigid and i ts  melting is not determined at 
all  by the dislocations, but simply by the vanishing of 
the superconductivity. This means that at practically at 
any H < He, the lattice vanishes at the superconducting- 
transition temperature. Consequently, the state of the 
vortex lattice is practically independent of the tempera- 

FIG. 4. 

ture up to T,, and depends only on the magnetic field. 
The phase diagram is shown schematically in Fig. 4. 
At X = the regions of the existence of the commen- 
surate phases a r e  symmetrical about the straight lines 
H = H,,. 

Daldini et  al. investigated in their experiments the 
critical current a s  a function of the magnetic field. If 
corrugation and film a r e  ideal the critical current 
should vanish in the incommensurate crystal. A sche- 
matic plot of the critical current a s  a function of H at a 
fixed temperature T i s  shown in Fig. 5 (the dashed 
curve). In a real situation the defects of the crystal 
under the corrugation produce additional pinning centers 
for the vortices, s o  that the critical current is  not zero 
even in the incommensurate phase (solid curve of Fig. 
5). Experiments on diffusion in submonolayers of ad- 
sorbed atoms yield for motion over the surface potential 
barriers of the order of 0.1-0.3 eV (Refs. 35, 36).4' 
Since incommensurate phases have been observed in 
many cases, the characteristic values Xa2 and pa2 at 
sufficiently high concentrations c of the adatoms turn 
out to be of the same order of magnitude or  larger. 
Therefore the commensurate phases with small con- 
centrations go over directly into liquid with increasing 
temperature. 

The melting of the commensurate phase is, generally 
speaking, a first-order phase transition if there a r e  no 
special causes that lead to continuous melting (Alexan- 
der,37 Domany, Schick, and and Domany and 
 ide el^^). So far, experiments with submonolayers have 
revealed only one phase-diagram region corresponding 
to an incommensurate crystal.40 The boundary of the 
region of the incommensurate phase is, with high ac- 
curacy, the straight line c = ~ o n s t . ~ )  We regard this a s  
natural, inasmuch a s  the temperature T in the entire 
region of the existence of the crystal is  low compared 
with V, Xa2, and pa2. Melting of the incommensurate 
phase takes place a t  the temperature 

FIG. 5. 
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(Halperin and  els son^'). Therefore the melting curve 
in the plane (T, c) determines the dependence of the 
elastic moduli on the concentration. Naturally, T,,, in- 
creases with increasing concentration, while the ratio 
v/Cla2 decreases. For C phases of higher order, the 
role of the effective interaction i s  assumed by the 
quantity v ( v / ~ ~ ~ ) ~ - ' ,  where N is the commensurability 
order (i.e., the number of adatoms in the unit cell). 
Therefore the theory predicts the appearance of narrow 
sections of complicated C phases inside the region of 
the I phase. The search for these phases is  an inter- 
esting experimental problem. 

Usually the experimental situation becomes more 
complicated, since the restructuring of one phase into 
another proceeds via diffusion, which is greatly slowed 
down in dense phases. In the region of the existence of 
the C crystal, however, the I phase i s  absolutely un- 
stable. In this case, therefore, the restructuring will 
occur rapidly enough. The observation of small com- 
mensurate sections in an incommensurate phase seems 
to us feasible in principle. Our theory should yield a 
quantitatively correct description of such transitions. 

11. QUALITATIVE APPROACH TO THE PHASE- 
TRANSITION PROBLEM 

In a small vicinity of the phase transition in the I 
phase, the distances between the solitons become large 
and it is  this in fact which makes it possible to speak 
of isolated solitons. In this situation we can describe 
the entire picture of the phase transition qualitatively 
by introducting certain phenomenological parameters in 
the spirit of the Landau theory. The approach de- 
scribed in the present section was used by Bak et  aLZ5 
to describe phase transitions on graphite substrates a t  
T = O .  

We denote by r: the energy of the individual soliton. 
We assume c to be a variable quantity that depends on 
the concentration and on the temperature. In the region 
of negative g, the solitons appear spontaneously, i.e., 
this is  the region of the existence of the I phase. We 
identify similarly the region of positive E with the re- 
gion of existence of the C phase. The quantity Eplays 
the same role a s p  -PC in our theory. We consider f i r s t  
the one-dimensional case and a zero temperature. Let 
n denote the number of solitons per unit length (the 
density of the number of solitons). The energy density 
of the system of solitons is  written in the form 

E ( n )  =~n+Ae-~l*, (66) 

where A and B a r e  certain constants. The first  term in 
the right-hand side of (66) is  the energy of the individual 
solitons, the second is the energy of interaction of the 
neighboring solitons. The exponential describes the 
effects of the weak overlap of the solitons. The mini- 
mum of the energy E (n) corresponds to nonzero n only 
at c <0,  and the equilibrium value no i s  determined by 
the equation 

no=-B/ln (-e). (67) 

This result agrees with the classical results of Sec. 2 
near PC. 

The considered simple phenomenological approach, 
however, yields utterly incorrect results in the case of 
a bounded area. An analysis of the exact solution (22) 
shows that in this case n -p -PC and c- (P - This 
result can be obtained by assuming that the energy of 
the system of solitons is 

where, a s  before, c -P-PC is the soliton energy. The 
term quadratic in n characterizes the soliton- interac- 
tion energy. It can be interpreted a s  a result of long- 
range repulsion with an energy proportional to 1 -3, 
where I i s  the distance between the solitons. It ap- 
pears that this interaction is connected with the nonzero 
components o,, and o,, of the elastic-stress tensor, 
which ar ise  under conditions of bounded area. 

TO obtain the answer for the one-dimensional quan- 
tum problem, we allow the solitons to move.16v14 It i s  
then necessary to add to the energy (66) the kinetic en- 
ergy of the solitons. We regard the solitons a s  Fermi 
particles. That this can be done has been proved by 
Luther and ~ m e r y , ~ ~   olem man*^ and   and el st am.^^ The 
Fermi momentum P, of the solitons is  connected with 
the density by the relation p, = m, and the kinetic-en- 
ergy density i s  

where rn i s  the soliton mass. 

Thus, the total energy density takes the form 

E (n) =en+Ane-B'n+l~,Cns. (69) 

In the immediate vicinity of the transition point (small 
n) the exponential can be neglected compared with the 
power function c n 3 / 3 .  In this case minimization 
yields no= ( - c ) ' / ~ . ' ~  If the quantum effects a r e  small, 
then a t  relatively small n the classical potential term 
becomes the principal one and we again obtain for no 
the classical result (67). We can interpret Eq. (69) a s  
an interpolation formula that connects the classical 
and quantum regions. 

In the two-dimensional problem the quantum fluctua- 
tions do not disturb the order given in an incommensu- 
rate crystal, but thermal fluctuations do disturb the 
order. We have considered the one-dimensional poten- 
tial of the interaction with the substrate. At zero tem- 
perature this interaction leads to the appearance of 
linear periodic soliton superstructures whose energy, 
just a s  in the one-dimensional case, is determined by 
expression (66). 

The transition to a finite temperature can be effected 
by using the known connection between the quantum 
mechanics of a one-dimensional system and the sta- 
tistical mechanics of the two-dimensional problem. 
One of the coordinates plays here the role of the time 
(for example, y). The motion of the soliton in time in 
a one-dimensional quantum system corresponds to 
bending of the solitons in the two-dimensional statisti- 
cal system (see Fig. 6). The fermion behavior of the 
solitons means that we can disregard soliton intersec- 
tions, since such configurations have a small statisti- 

V. L. Pokrovskii and A. L. Talanov 145 



Similar phenomena were observed in cesium lattices 
on tungsten and molybdenum.' More detailed investiga- 
tions a re  needed, however, before agreement between 
theory and experiment can be asserted with assurance. 

FIG. 6. a) Soliton superstructure at T =  0; b) the same at T 
>> v. 

cal weight. This means that a t  finite temperatures the 
energy of the two-dimensional system is described by 
expression (69), where C is proportional to the tem- 
perature and G i s  proportional to p - P,(T) or  T - Tc(P). 
Therefore near the line of the transition we have 
n - [p -  P,(T)]'/' o r  n - [ T -  T,(P)] 'I2 (cf. Ref. 26). A 
more careful analysis (see Sec. 7 of the present paper) 
shows that the energy of the solitons can be regarded 
a s  local only when one introduces their interaction with 
the displacement field v or  with the massless fermions 
X, but this does not change the earlier results. 

Recently Bak et al.25 have found that in a certain 
vicinity of the phase-transition point (if this is  a 
second-order transition) quasi-one-dimensional super- 
structures a r e  energywise favored over two-dimensional 
ones. The reason is that in two-dimensional classical 
superstructures the principal interaction of the solitons 
is  connected with their intersection. If we denote by the 
latter n the number of solitons that cross a segment of 
unit length, then the energy density of the two-dimen- 
sional system of solitons is equal to 

For the system to be stable, the constant b in (70) must 
be positive. Minimizing (70) with respect to n and com- 
paring the result with the energy of one-dimensional, 
superstructure (66) a t  the minimum (67), gak et al.25 
reached the conclusion that near a second-order phase 
transition the one-dimensional superstructure is  
energywise favored. 

This conclusion patently contradicts the existing ex- 
perimental data. Chinn and Fain43 used the method of 
diffraction of slow electrons to investigate krypton ad- 
sorbed on a graphite substrate, in equilibrium with 
krypton gas. The C-I transition for this system pro- 
ceeded continuously. No disturbance of the symmetry 
of the substrate was observed. Recently Stephens et 
aZ.44 observed by x-ray structure analysis, in the same 
system, a superstructure having a hexagonal substrate 
symmetry. We can attribute this result to the fact that 
the transition took place under bounded-area conditions. 
Comparing (68) with (70) we find that the symmetrical 
superstructure i s  favored if D> d. 

The coefficients 13 and 5 depend strongly on the de- 
tails of the interaction with the substrate. In principle, 
the case D < k is  also possible, wherein a one-dimen- 
sional superstructure i s  realized near the transition. 
Observation of one-dimensional CO superstructures on 
the (111) surface of cobalt, palladium and platinum 
close to a concentration c = 1/3 i s  reported in Ref. 45. 

12. CONCLUSIONS 

In this section we present a brief summary of the ex- 
perimental consequences of our theory and of the con- 
ditions under which the appearance of new effects can 
be expected. 

1. Commensurate structures exist on an ideal sur- 
face in small vicinities (relative to the number of 
adatoms) of all the commensurability points. These 
vicinities become narrower with increasing tempera- 
ture and vanish at T, = T,/N'. At low temperatures 
the width of the region of existence of the commensu- 
rate phase decreases exponentially with increasing 
number of adatoms per unit cell. 

2. In the incommensurate phase, at low temperatures, 
there is  a superstructure whose period depends con- 
tinuously on the temperature and pressure. Near the 
C- I transition point this superstructure is a periodic 
sequence of one-dimensional standing solitons, the 
normal to which makes an angle 8 = * tan- 'G with the 
coinciding reciprocal-lattice vectors. 

3. The diffraction pattern at low temperatures con- 
stitutes an assembly of principal extrema shifted rela- 
tive to the extrema of the substrate (see Sec. lo),  and 
linear ser ies  of satellites whose position makes it pos- 
sible to determine the direction of the wave vector and 
the period of the superstructure. 

4. At sufficiently high temperatures, the direction 
of the superstructure in the incommensurate phase 
coincides with the direction of the nearby reciprocal 
vectors. At a certain intermediate temperature T- V, 
where V is the characteristic energy of the interaction 
with the substrate, an orientational phase transition 
takes place with a change in the orientation of the 
superstructure. The higher harmonics of the periodic 
potential of the interaction with the substrate do not 
play any role a t  T > V. 

5. At a finite temperature; the solitons begin to bend, 
and this leads to a destruction of a long-range order. 
In the temperature region T >  V the diffraction pattern, 
in both the commensurate and incommensurate phases, 
differ from the diffraction structure of the substrate in 
that the intensities of the principal Bragg extrema a r e  
changed. The difference of the intensities of the sub- 
s t ra te  with the adatoms in a pure substrate has a max- 
imum for the diffraction peaks with n =  1 and decreases 
sharply with increasing n. In the incommensurate 
phase, two satellites a r e  located along the x axis near 
the principal peak. 

The C-I phase transition i s  of second order. Near the 
transition line, the incommensurability (i.e., the 
distance from the principal Bragg peak to the satellites) 
increases like [ T - T,(P)] 'I2 o r  [P - P,(T)] '/' at 
(T - T,)/T , (P - P,)/P, << (T/T')~ and like I l n ( ~  - Tc) I -', 
I ln(p - pc)l -' on an unbounded area  and like T - Tc, 
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P - P, on a bounded area at (T - T,)/T,, (P  - P,)/P, 

>> (T/T,)~. 

At sufficiently l a rge  incommensurabilities, orienta- 
tional phase transitions of f i r s t  o r  second o rde r  can  
occur. The peculiarity of the C-I transition i s  that the 
C phase can be superheated but the A phase cannot be 
supercooled. 

7. In the I phase there exists  a zero-gap (Goldstonel 
mode of smal l  vibrations of the adatom lattice relative 
to the substrate. The component of the velocity of this 
sound along the x axis tends to ze ro  near the C- I tran- 
sition. In principal, the existence of this mode can be 
observed by means of ~ a n d e l ' s h t a m -  Brillouin scat  - 
tering. 

8. Another possible type of experiment fo r  the ob- 
servation of the "supermobility" of a f i lm of adatoms 
relative to a substrate i s  s imi lar  to the experiment of 
Bishop and ~ e p p ~ ~ ~  with helium films. Observation of 
the singularities of the response of a sys tem that 
executes smal l  oscillations in the region of low fre- 
quencies would be proof that the adatom lattice sl ides 
relative to the substrate. 

9. We have assumed the interaction with the substrate 
to be weak compared with interatomic interaction of the 
adatoms. This does not s eem to be very valid for  most 
known systems of atoms adsorbed on graphite o r  on 
molybdenum and tungsten. Therefore the phase dia- 
grams of the C-I transition for  the lowest o rde r s  of 
commensurability are determined in practice by the 
equation c =const, where c i s  the concentration of the 
adatoms. In this ca se  there simply i s  no region T >  V, 
and the commensurate phases melt directly into liquids 
at sufficiently high temperatures. It i s  possible, how- 
ever, to expect the discovery of new commensurate 
phases in the region where a t  present  there  i s  only one 
incommensurate phase. For this hypothetical com- 
mensurate phases, the phase diagram takes the theo- 
retically predicted form shown in Fig. 3,  where P 
should be taken to mean the concentration and T, should 
generally speaking be regarded as dependent on p .  

Another possibility i s  to study the propert ies of 
adatoms on the surface of solidified noble gases. In 
this case  the interaction with the substrate i s  weaker 
than the interaction between the adatoms even a t  rela- 
tively low concentrations. 

10. For a lattice of Abrikosov vortices in a corru- 
gated superconducting f i lms placed in a magnetic field, 
the melting temperature turns out to be much higher 
than the cri t ical  temperature than the superconductor 

T,. In this c a s e  the C-I transition i s  determined only 
by the magnitude of the magnetic field. The theory pre-  
dicts the appearance of commensurate phases and a 
growth of the cri t ical  cur rent  in the vicinities of the 
values of the magnetic field HUN. The dimension of the 
region I (H- H,,)/H,,(, in which the C phase exists 
equals, accurate to a numerical factor  of the order  of 
unity, (6/d),/', where 6 i s  the depth of the corrugation 
and d i s  the thickness of the film. The cri t ical  current  
at the maximum is  I,,- (6/d)N/2. 
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Three-dimensional Wigner crystal in a magnetic field 
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We solve the quantum problem of the oscillations of a Wigner lattice in a strong magnetic field in the 
harmonic approximation, taking into account the transverse radiation field. We calculate the energy of 
the zero-point oscillations of the lattice and the dependence of the mean squared displacement of the 
particles from the lattice sites on the temperature and on the magnetic field. We consider the specific 
heat, the magnetic moment, and the dielectric constant of the lattice in a strong magnetic field, and 
discuss the stability of the lattice as a function of the particle density in the limit of a strong magnetic 
field. 

PACS numbers: 63.10. + a 

1. INTRODUCTION 

The question of the ground state of an electron-hole 
plasma in a semi-conductor o r  semimetal in the limit 
of a strong magnetic field (hw, >>Ry, W, is the cyclotron 
frequency of the ca r r i e r s  and Ry is the exciton ioniza- 
tion potential) has attracted considerable interest  re- 
cently. Babichenko and Onishchenkol have shown that 
if the ca r r i e r s  of different type have comparable mass,  
the homogeneous state of the system in a strong mag- 
netic field is unstable to formation of a charge-density 
wave (CDW). ~akhmanov '  has analyzed the case of 
carriers with strongly differing masses (for example, 
electrons and holes in bismuth) and determined the 
conditions under which the heavier particles (holes) 
form a Wigner lattice (WL) against an approximately 
homogeneous compensating background of lighter part- 
icles (electrons). The possibility of formation of a WL 
in a magnetic field was investigated earlier in Refs. 
3 and 4, where it was shown that in a strong magnetic 
field the WL (CDW in the case of high density5) is en- 
ergywise favored over a homogeneous ground state. 
We note, however, that the cited references are qual- 
itative and variational in character, whereas the prob- 
lems connected with the stability of a lattice and with 
the calculation of its equilibrium characteristics must 
be solved on the basis of quantitative analysis of the 
spectrum of the crystal-structure oscillations. We 
report here in this connection a detailed quantitative 
investigation of the vibrational properties of a WL in a 

magnetic field. We confine ourselves to the case  of 
an immobile compensating background. In Sec. 2 we 
obtain the spectrum of the eigenvalues of the Hamil- 
tonian of the WL oscillations in an arbitrary magnetic 
field1); we calculate the energy of the ground state of 
the system, which turns out to depend on the orienta- 
tion of the magnetic field relative to the crystallograph- 
i c  axes. In Sec. 3 we determine the dependence of the 
mean squared displacement of the particle from the 
WL site on the temperature and on the magnetic field, 
and find that the "soft mode" vl - l / w ,  that appears in  a 
strong magnetic field, just as in the two-dimensional 
case,%oes not cause lattice instability. It is shown in 
Sec. 4 that the low-temperature heat capacity depends 
substantially on the magnetic field and is proportional 
to T ~ ' ~  (T is the temperature), as against T~ for ord- 
inary phonons; we calculate also the temperature de- 
pendence of the magnetic moment of a WL and the di- 
electric constant of a WL, the latter being strongly 
anisotropic in a strong magnetic field. 

In Sec. 5 we solve the problem of the coupling of the 
electromagnetic and vibrzitional modes of a WL in a 
magnetic field. An exact dispersion equation is ob- 
tained and the spectrum of the eigenvalues of the sys- 
tem is briefly investigated with account taken of the 
transverse radiation field. It is shown that in the lim- 
it of a strong magnetic field allowance for  the trans- 
verse field does not change qualitatively the results of 
the preceding sections. 
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