
with the one observed experimentally by Trufanov, 
Blinov, and B a r t ~ i k . ~  The threshold characteristics Uc 
and kc are  close to those calculated above in order of 
magnitude and in their frequency dependence. The 
threshold of U ,  sharply increases in experiment a s  o,, /  
o, - 1 and with decreasing o,,. According to Ref. 4 the 
observed domains a re  oriented along the y axis, but the 
inclinations of the director and the perturbation of the 
velocity were registered in the xy plane. The latter 
circumstance suggests two possibilities: the presence 
of oblique orientation on the layer boundaries, o r  non- 
linear deviations of the velocity and of the orientation 
above the threshold Uc. 
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and for a helpful discussion of the present results. 
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We study the spectrum and the damping of longitudinal plasma waves in a degenerate electron plasma at 
the collisionless absorption threshold, o = kv,. We find the electron distribution function and show that 
the modulation of the electron velocity by the wave field leads to a dynamic smearing of the threshold, 
to the vanishing of the electron susceptibility singularities, and to a radical change in the spectrum in the 
neighborhood of the threshold. If the dynamic smearing of the threshold exceeds the temperature and 
impurity smearing, the plasmon spectrum is bounded in o and k with k,,, given by (50). In the strongly 
nonlinear regime when the oscillation period of the trapped particles is larger than the electron collision 
time one can observe in a one-component degenerate plasma an acoustic plasmon with a phase velocity 
below v,. The observed changes in the spectrum in the threshold region when we go from the linear to 
the nonlinear regime are also typical of other kinds of waves that propagate in a degenerate electron gas 
and in a Fermi liquid. 

PACS numbers: 71.45.Gm, 52.35.M~ 

I. INTRODUCTION 

In a degenerate solid state plasma one can observe a 
number of strikingly expressed threshold effects. First- 
ly, the damping of the quasiparticles which interact with 
the electrons changes abruptly at the collisionless ab- 
sorption threshold. Secondly, in the excitation spectrum 
either there occurs a Kohn-type singularity, or  the 
spectrum rearranges itself more radically, i.e., there 
appear new excitation branches. A typical example of 
the excitations which exist near the collisionless absorp- 
tion threshold a r e  the dopplerons which have recently 
been observed in many metals (see, e.g., Refs. 1,2). 
Thirdly, the collisionless absorption threshold deter- 
mine the phenomena of the anomalous field penetration 
into a metal. The effects listed here a r e  connected with 
the singularities of the real and imaginary parts of the 
susceptibility of the degenerate electron gas, while the 
nature of the singularities is determined by the geom- 
etry of the Fermi surface. 

The spectrum and the damping of a wave in the thresh- 

old region can change appreciably when the propagating 
wave has a large amplitude and changes the trajectories 
of resonant particles. It is  well known that in this case 
the collisionless damping decreases if the period of the 
oscillations of the trapped particles w;' is  less than the 
electron collision time, i.e., a = (wOr)-I << 1. Apart from 
this, the modulation of the velocity of the resonance 
particles by the wave field must lead to a dynamic 
smearing of the threshold by an amount of the order of 
magnitude of the velocity in the oscillations of the 
trapped particles b = (cpo/m)1/2, where c p ,  is  the wave 
amplitude and m the particle mass. The singularity of 
the real part of the susceptibility at the collisionless 
absorption threshold must. thus be weakened. As a re- 
sult the wave spectrum in the threshold region can 
change radically. The wave spectrum and the damping 
a t  the threshold change, clearly, only when the dynamic 
smearing i s  larger than the smearing due to the tem- 
perature and impurities, i.e., if the inequality 
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i s  satisfied (k, i s  the Boltzmann constant, P, the Fermi 
momentum, and k the wave vector of the wave)." The 
last inequality i s  equivalent to a << 1. Notwithstanding 
the appreciable rearrangement of the spectrum in the 
threshold region, the shape of the wave may change 
little. For this it is  necessary that there be fewer 
resonant than non-resonant particles. We show below 
that the appropriate condition has the form 

We study in the present paper the spectrum and 
damping of large-amplitude plasmons in the degenerate 
electron gas in the threshold region. It i s  well known 
that for waves with a sufficiently long wavelength 
(k << 2P,) the collisionless absorption threshold is de- 
termined by the condition 

We find the electron distribution function and show that 
in the case where the phase velocity of the wave i s  close 
to v, the collisionless damping threshold i s  smeared 
over the velocities by an amount of the order of 45. Due 
to the smearing of the threshold the singularity in the 
real part of the susceptibility is weakened and this leads 
to a rearrangement of the spectrum. In the sub- 
threshold region the plasmon spectrum is bounded in 
frequency and wave vector; the limiting value k,, i s  of 
the order k,,1n"~(v,/5) [see (50)], where k,, is  the in- 
verse of the Fermi-Thomas radius. We show also that 
due to the decrease of the collisionless damping with in- 
creasing amplitude it becomes possible to observe an 
acoustic plasmon in a one-component degenerate plas- 
ma-an excitation with a linear spectrum as k-0 and a 
phase velocity less  than v,. (One does usually not con- 
sider this solution in the linear theory, a s  the damping 
i s  large a t  threshold.) The damping of the plasmon at 
phase velocities w a v, - 26 is smaller by a factor a than 
in the linear case, while at w 3 v, + 2; it equals the 
linear collisional damping. The damping in the thresh- 
old region may be either larger o r  smaller than the 
linear damping. 

Similar changes in the spectrum and in the damping 
in the threshold region must, clearly, also occur for 
other kinds of waves on going from the linear to the 
non-linear regime. The doppleron i s  apparently the 
most convenient one for the observation of such effects. 
The calculation of the distribution function and of the 
non-linear conductivity a t  the cyclotron absorption 
threshold is, however, more complicated than in the 
case considered by us, even though it does not contain 
any new aspects in principle. 

2. DISTRJBUTION FUNCTION 

We find the distribution function f of a degenerate 
electron plasma in the field of a monochromatic wave. 
The kinetic equation has the form 

Here p = -  Vcp, cp(x, t) = - cp,cosk(x - wt) is  the potential 
of a longitudinal wave of sufficiently large amplitude, 

and ~ { f )  is the collision integral. 

We shall look for the solution of Eq. (1) in the form 

where f,(&) is the equilibrium Fermi function and 
F(x, t, p) i s  the correction to the distribution function. 
At low temperatures when the scattering is mainly by 
impurities the collision integral i s  linear F. It will be 
clear from what follows that the non-linear effects a r e  
basically determined by the distribution function of the 
resonance particles. 

To evaluate this function we can write the collision 
integral in (1) in the relaxation time approximation: 

where T i s  the departure time for an electron from the 
region of the effective interaction. Indeed, in the case 
of elastic scattering by impurities the collision integral 
has the form 

I{f) = j d p '  W ( P , P ' )  ( f ( p ) - f ( p T ) ) .  (4) 

As we can separate in the distribution function the reso- 
nance and the smooth part in velocity space, the arrival 
term will, a s  in the theory of the anomalous skin ef- 
f e ~ t , ~  be smaller than the departure term which equals 
~(p)Jdp'w(p,p'). The resonance part  of the distribution 
function will thus be determined by the departure term 
and one can easily show that this is  larger by a factor 
vF/G than the arrival term.2' 

The smooth part of the distribution funclion which de- 
scribes the non-resonant electrons i s  practically the 
same a s  the distribution function found in the linear ap- 
proximation and as T- m it i s  independent of the shape 
of the collision integral. We shall in what follows evalu- 
ate the wave spectrum just in that approximation; the 
damping, however, i s  determined only by the resonance 
part  of F. 

Changing in (1) to dimensionless variables 

and taking (3) into account we get 

Here &, is  the energy of the motion in the plane per- 
pendicular to the direction of k. 

AS (5) is  linear in F it is convenient to look for the 
solution in the form 

where F, and F, satisfy the equations 

a F,  aF 
S-- sin + aF, ==for sin 5. 

8 E a s  u" 

aF* aFz  sin E- f aF,=q do's sin E. s - -  
a& 8s 

We shall show below that the function F, in the reso- 
nance region is of the order of cp,wG/; while far from 
resonance it is of the order of cp,wf~/v,. The function 
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F2 is in the whole range of velocities -p0 f;. In the 
resonance region the function Fi is thus for w/G>> 1 
much larger than F2 and it is just this function which 
determines the non-linear effects. In the non-resonance 
region the sum Fi + F2 is the same as  the linear dis- 
tribution function and equal to 

We turn to the solution of Eq. (7). In the system of 
coordinates fixed to the wave the particle trajectories 
a r e  determined by the potential cp' = - cosl,  and 

is an integral of motion. One sees easily that the values 
I X  I f 1 correspond to trapped particles and Ix 1 < 1 to 
untrapped ones. 

The distribution function of the untrapped particles 
must satisfy the periodicity condition 

while the trapped particle distribution function must 
satisfy the condition for specular reflection of the par- 
ticles from the walls of the well: 

Fil(s-++O, Eo,  e l )  =Fit (s+-O, to, e , ) ,  cos E,=2/x2-I. 

The solution of (7) satisfying the given boundary con- 
ditions can be found by the method of characteristics: 

1 af (E,,s,€) 
F~ ( t ,  x ,  E,) = ealr-lb- sin % ( x ,  r )  dr .  

- - a&, 

Here t is the time of the motion along the trajectory 

t = ' r ' d E / s  (E, x )  . (12) 
0 

We shall in what follows by interested in the distribu- 
tion function integrated over the energy c,: 

As we assumed that the spreading out of the threshold 
in the field of a strong wave exceeded both the tempera- 
ture and the impurity spreading out we have for a de-. 
generate electron gas 

( p  =mvi/2 is the chemical potential). Substituting (14) 
into (11) we further find from (13)3' 

where 

For the evaluation of the integral (15) it is necessary to 
expand beforehand the function s inE(~,  K) in a Fourier 
series in 7, after which one can evaluate the integral 
exactly. We give the corresponding calculations in the 
Appendix. 

is strong (a << 1) it follows from Eqs. (A.6) to (A.9) that 
the trapped particle distribution function has for Ix 1 
c ~ /A(A = (w - vF)/5 > 0) the form 

'ow - g1t ( t ,  x)  - - - 
- ( ~ + ~ o ) + a ( E + s o ( t + T 1 2 ) ) .  - T / 2 < t < - %  (16a) 

- q +  A + a ( s o - A ) t ,  - r A < t < r ,  (16b) 
,- ( S  + 80) + a ( E  + so (t - T12)), z A  < t < TI2 ( 1 6 ~ )  

Here s =s(t,x), 5 = t ( t , ~ ) ,  

SO=& ( x )  - (EA+ATA)/X(X- ' ) ,  E~=2arc sin (x-'-AS/4) *; 
rA is defined by (A.5) and K is the complete elliptical in- 
tegral of the first kind. 

One can similarly show that when w a v, (i.e., A a 0) 
the formulae for gi,(t,x) have the form (16a to c), but 
with 

rA-F (arc, sin (1-A2x2/4) ", %-I). 

Moreover, in the region I ul 2 2 / ~  (A > 0) the function 
git(t,n) = 0, and for 1 xl 2 -2/A (A < 0) 

Using the results (A.13) to (A.16) of the calculations of 
the function of the untrapped particles glut we find for 
a < < 1  andA>O: 

In the region x z  0 

g1,t ( t ,  x )  =O. 

When x < 0 everywhere where - B c s(t,x) c -A which 
is equivalent to 

we have 

where s =s(t,x) and 5 = [(t,n) a re  the velocity and co- 
ordinate of the untrapped particles with C'energy" x, - 
s = r/uK(x), r = *t/x~(x).  

When x < 0, in the region where s([ = 0, U )  9 -A 
c s(5 = r, n), which corresponds to <'energiesw 

we shall have 

vow - glut (t.  x)  = - - 
s + A + a ( s - A ) ( t + T / 2 ) ,  - T I ~ < ~ < - ? A  (19a) 

- (19b) 
(- s l +  A + a (sl - A)(t - T/2) .  < t < T/Z ( 1 9 ~ )  

where St = [ - 5, +A?,, +AHX@)]/d(x) and FA is defined 
by (A.14). 

In the region x < 0, 1% (c 2 / ~  we have 

It is easy to generalize these formulae to the case 
A <O. In the case of most interest where the non-linearity 
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We now consider the function F, defined by Eq. (8). 
The procedure for solving (8) i s  analogous to the solu- 
tion of ('7) given here. We have then in the non-reso- 
nance region when there a r e  no collisions (7- m )  from 
(8) after integration over E, 

To obtain this solution it i s  sufficient to neglect the 
second term on the left-hand side of (8) (which i s  
equivalent to the linear approximation) and also to let 
a tend to zero. In the resonance regiong, is  of the 
order (P~$(s, t ) ,  where $(s, 5) - 1. We shall not give here 
the explicit form of the function $(s, 5) a s  in the reso- 
nance region g2 cg,. 

We show in Fig. 1 the regions of phase space in the 
variables (s, 5 )  where the function g1 is determined [ s e e  
(16) to (19)] . In region 1 inside the separatrices the 
function gl, i s  given by Eq. (16b). Similarly in region 
2 it is  given by (16a) and (16c). The untrapped particles 
correspond to the regions 3 to 5. 

We note that in the linear theory in the collisionless 
regime the distribution functiong,(s, 5) has a singular- 
ity of the form l/s a s  s - 0. In the field of a strong 
wave (as follows from the formulae given above) which 
appreciably changes the particle trajectories the sin- 
gularity i s  smeared out. 

3. DAMPING COEFFICIENT AND NON-LINEAR 
FREQUENCY SH l FT 

Using the distribution functions for the trapped and un- 
trapped particles found in the preceding section we can 
evaluate the reaction of the Fermi gas to a strong mono- 
chromatic wave with a phase velocity close to the Fermi 
velocity. After that we can determine the non-linear 
frequency shift of that wave and the non-linear damping 
coefficient. Our calculation will be performed for the 
case of a longitudinal plasma wave in a one-component 
degenerate plasma. 

We turn to the Poisson equation: 

where 6f = f - fo(&) is  the non-equilibrium correction to 
the distribution function. We can solve Eq. (21) in the 
next approximation. We shall assume that all particles 
a re  split into two groups. One group of particles (the 
non-resonant particles for which (v,- w ( 2  2i )  move 
along weakly distorted trajectories. The contribution 
of these particles to the non-equilibrium concentration 
is, a s  in the linear theory, for w-v, proportional to 

FIG. 1. Phase trajectories of particles in the field of a wave 
moving with a velocity w >up.  

cp, C O S ~  (x - wt) ln(v,/fi). This i s  connected with the fact 
that the distribution function of the untrapped particles 
fast approaches the linear distribution function (9) when 
the difference Iw - v, I becomes larger than 2i. Par- 
ticles in the second group (resonant particles) move 
along strongly distorted trajectories. Their contribu- 
tion to the nonequilibrium concentration contains, apart 
from a term proportional to p(x, t), higher harmonics 
of the potential. The contribution from these and others 
to the concentration does not contain a large factor such 
a s  ln(v,/c). If the inequality ln(v,/v) >> 1 is satisfied 
the wave is basically formed by the non-resonant par- 
ticles and one can neglect the higher harmonics on the 
right-hand side of (21) a s  they do not lead to a strong 
change in the potential in the absence of a space-time 
synchronism. 

The contribution from the resonance particles which, 
a s  we shall show below, is  proportional to tp, cosk(x 
- wt) determines the correction to the linear dispersion 
law, i.e., the frequency shift. In this approximation, 
i.e., when the condition ln(v,/;) >> 1 is satisfied, the 
Poisson equation can be solved by the method of slowly 
varying amplitudes and phases. Performing the ap- 
propriate calculations one obtains easily the equation 
which determines the change in the frequency and the 
damping coefficient: 

where 

In the linear theory Eq. (22) is well known to have the 
form4' 

kz=-4nezIIr. (w); (24) 

One finds easily from (22) to (25) the small correction 
to the frequency of the wave and the non-linear damping 
coefficient: 

where 

It i s  necessary to note that our calculation is valid 
only in the case when the damping is small along a 
wavelength and along the mean f ree  path of the par- 
ticles. 

We turn to the evaluation of the function II,(w, cp,). 
First  we find the imaginary part. Separating in (23) the 
imaginary part and changing from the variables 5,  s to 
the variables [,u we get 
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where x(5) = 1/ 1 sin5/2 I .  When a << 1 the main contribu- 
tion to ImIIN(w, q,) comes from that part of the function 
gi(t,x) which i s  linear in a. 

It is convenient for the evaluation of the double inte- 
gral  in (28) to change to the variables t , ~ .  For the 
trapped particles 

For the untrapped particles 

2m25 1 dx E'"' 

Im I I N U f  (w ,  q o )  = --- 5 -;;;- J giUt(t,  x )a inf (u ,  x)du. (30) 
bh) To-, - x ( x )  

Here u =t/x, sin[(u,x) = 2 sn(u,x) cn(u,x); s n  and cn a r e  
the Jacobian elliptic functions. The functions gl,(u, t) 
and gl,,(n, t), linear in a << 1, a r e  determined a s  func - 
tions of the values of t and u by Eqs. (16) to (19). One 
can show, however, that only the functions 

E&)  and ~(5,/2,x) .are the complete and incomplete 
elliptic integrals of the second kind. 

The evaluation of y,,(A), using Eq. (36) was performed 
on a computer. As there is  no damping (ImIIN-a) in the 
non-linear regime when there a r e  no collisions it makes 
sense to compare our result with ImlT, when there a r e  
electron collisions present: 

We show in Fig. 2 the w-dependence of ImII, (curves 
2,3) and of ImII, (curve 1). Curve 1 is drawn for ( k ~ ) "  
= O.O1vF, curve 2 for 5 = O.lv,, a = 0.1, and curve 3 for 
= 0.05vF, a = 0.2. It i s  clear from the graph that the 

imaginary parts of the susceptibility differ only fo r  w 
c v, + 28. mts ide  that region the curves a r e  practically 
the same, since there a r e  no resonant particles for 
w v,+ 26. It also follows from the graph that in the 
non-linear regime the threshold is smeared over a 
region of the order of 25 (such a smearing out occurs 
also in the above- threshold region) where the damping 
can be larger than the linear one. At the threshold w 
=v, (A=O) 

Im IIN(w, q o )  -2a Im IIz(w=vr) give a contribution to lmIIN(w) where the integration in (39) 

(29) and (30) must be taken over the (t,u) region bounded beyond the threshold outside the region of dynamic 
by the condition smearing out an analogous relation 1rnn,/1mllL = 2a is 

-B<s(t ,  %)<-A.  (31) satisf ied.5 

We can put the results of the appropriate calculations The real part of IIN(w, q,) i s  determined from (23): 

for  trapped particles in the form mZ5 " 
Re II,(w, q o )  = -7 J cos f d f  J g(s ,  6)ds.  

2  (nf i )  T O  -x  
(40) 

m 2  y . ( A )  A 2 0  
Im IIN' (w,  q,)  =- - 

2 ( ~ h ) ~  1 2 8 / ~ - y l ( - ~ ) ,  AGO ' (32) In contrast to ImII, in ReII, there is  a contribution 

where from the function g(s, 5 )  of 'zeroth order in a. Using (20) 
we can write Ren, in the form 

2 
,.(A)== ( - u + ~ A ' ) M ~ ~  ( I - ; )  "1 Re II,-ppm/ntfiS+Re Il (41) 

7 ,  ( A )  =0, A>2. 
(33) where ReIIL i s  determined solely by the function gl(t,x). 

Furthermore, separating in (16) and (17) the terms of 
zeroth order in a ,  substituting them into (40), and then 

For untrapped particles 
changing to the variables U, t we get for trapped par-  

-maw ( A )  A>O 
(34) 

ticles 
h n N u f ( ~ q ~ @ ) = T a  { 

2(nh)  C-.[,t(-A), AGO ' 
m2w R I ( A ) ,  8 2 0  

where " n N 1 t ( w ' r ) = m { A l ( - A ) ,  n < o '  

Here 

EA ( x )  =2 arc~in(x-~-A' /4 )  ", 
a ( A )  = (1+Az/4) -", 

0 111111111111 
S f. loF f. 20, 

W 

FIG. 2 .  T h e  function ImIIL(w)--curve l - d r a w n  f o r  1 / k r  
(37) = 10" up. T h e  curve  2 corresponds  t o  ImIIN(w, qo) for  a 

= 1 0 ' ' , ~ / ~  = lo", the curve  3 t o  ImIIN(w, rpo) f o r  a 
= 0 . 2 , 5 / ~ , = 5  ~ 1 0 ' ~ .  
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where 
A' A2 'A 

( A )  A ( -3) ( 1  -) +2(A2-3)aroain 
4 

[~(cp, k) i s  the incomplete elliptical integral of the first  
kind]. 

Equations (42) and (43) a r e  valid for  I A  1 s 2; in the 
region IA(2  2 the contribution of the trapped particles 
to nb(w, cpo) vanishes. 

Similarly, substituting the zeroth order terms from 
(18) and (19) into (40) we can find the contribution from 
the untrapped particles when I A  ( c 2: 

where 

The functions fi(x,A) and f , (x)  a r e  defined by the ex- 
pressions 

5 ( x ) ,  a ( A )  are  defined earlier by Eqs. (37)]. When 
\ill 2 

where 

We have constructed in Fig. 3 the graphs of the func- 
tions 

for different values of v'/v,. We give in the same 
figure the graph of the function ReIIL(w) which has a 
logarithmic singularity a t  the threshold. It is  clear 
from the figure that this singularity disappears for a 
finite wave amplitude. The function ReII,(w, cpo) differs 
appreciably from RenL(w) in the interval Iw - v ,  I -4;. 
The maximum of the function ReII, i s  shifted to the 
region of velocities larger than v ,  and it decreases 
with increasing amplitude. Such changes in the electron 
susceptibility lead to a considerable rearrangement of 
the plasmon spectrum near the threshold. We consider 

FIG. 3. The function ReIIN(w, po) for different values of fj/vF: 
curve 1 for V'/vF= 0.025, curve 2 for 8/vF= 0.05, curve 3 for 
5/vF=0.1r and curve 4 for V'/vF= 0.2. Curve 5 corresponds to 
ReIIL(w). 

this problem in the next section. 

4. DISCUSSION OF THE RESULTS 

It follows from the results obtained that due to the 
modulation of the electron velocity in the field of a 
strong wave the collisionless absorption threshold is 
smeared out over a region of velocities of the order of 
4c near v ,  while the logarithmic singularity of the real 
part of the susceptibility of a degenerate electron gas 
disappears. 

We discuss the changes in the plasmon spectrum. We 
show in Fig. 4 the spectrum of a large amplitude plas- 
mon in a one-component degenerate plasma. The dis- 
persion curve is constructed by means of the graphs 
shown in Fig. 3. In practice one must use  Fig. 3 to 
solve graphically the equation 

to construct the dispersion curve and then to change 
from w (k) to w(t). As ReII,(w, cp,) has no singularities, 
a plasmon exists in the non-linear regime only when 
k s kmm, where 

[k,,= (4fiFme2/lr12 3 ) i / 2  i s  the universe of the Fermi- 
Thomas radius]. The plasmon spectrum in the region 
where there is a solution does not strongly differ from 
the spectrum of a small amplitude plasmon. In the 
threshold region the correction to the plasmon fre- 
quency 6w (k) i s  of the order of kc << w,. 

We discuss the acoustic section of the spectrum. In 

FIG. 4. The spectrum of a large amplitude plasmon in a de- 
generate electron gas. The dashed curve shows Rew(k) in the 
linear regime. 
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the linear theory the acoustic plasmon i s  strongly 
damped (Imw - R w ) .  When the inequality w,r >> 1 is 
satisfied the damping is reduced and it may become 
possible to observe the acoustic plasmon. Assuming 
that the phase velocity of the acoustic plasmon in the 
small k region differs appreciably from the Fermi 
velocity we get from (27) 

The phase velocity of an acoustic plasmon in the small k 
region depends weakly on the wave amplitude and is ap- 
proximately equal to 0.83v,, if the difference w - v, 
> 2;. Figure 3 confirms this. One checks easily that 
the acoustic plasmon spectrum i s  formed by two groups 
of electrons on the Fermi surface which move in anti- 
phase so that as k -- 0 the acoustic plasmon is not ac- 
companied by oscillations of the electron density. A 
small group of resonance particles, which do not affect 
the spectrum, a r e  responsible for the damping. 

Because 60 depends on the amplitude cp, there may 
develop in the resonance region of the phase velocities 
a modulational instability (MI) of the plasma wave which 
leads to a modulation of the wave amplitude and a 
splitting of the wave into packets. The problem of the 
MI of a plasmon in a Maxwellian plasma was considered 
in Ref. 6. It is  well known (see, e.g., Ref. 7)  that this 
instability occurs when the condition 60a2wL/ak2 < 0 is 
satisfied. One easily determines, using Fig. 4, the 
sign of a2wL/ak2 and 6w in the whole range of resonance 
velocities and checks that the MI condition is satisfied 
only in a narrow region near v,. Estimates made by us  
show that the MI growth rate i s  small under realistic 
experimental conditions, i.e., along the length of a 
sample the amplitude cannot change appreciably. 

We give the values of the electric field strength nec- 
essary in order that the inequalities 

a r e  satisfied. For parameters corresponding to bis- 
muth (me =lo-'' g, up=  lo8 cm/s, ~ = 1 0 - ~  s ,  w, 
= 1013s-I) and T = 1 K these inequalities a r e  satisfied, 
if E-0.1 ~ / c m .  We note that the inequality a <<I is 
satisfied already in appreciably weaker fields: E m  
v/cm. 

In conclusion we note that the dynamic smearing of 
the threshold must affect also the spectrum of acoustic 
plasmons in a two-component plasma: if the permit- 
tivity singularity that forms an acoustic plasmon i s  
strongly smeared, the corresponding solution of the 
dispersion equation i s  not present. Similar effects must 
be observed also for dopplerons in metals in a magnetic 
field. 

The authors a r e  grateful to A. A. Andronov, V. D. 
Kagan, V. I. Kozub, B. D. ~alkhtman,  and G. E. Pikus 
for useful discussions. 

APPENDIX 

A. Trapped particles 

For the calculation of the distribution function deter- 
mined by the integral (15) we transform the argument of 

the 0-function to the form 

0 (p -m (sE+w)'l2) =0 (-A-S(T, x)) ,  . (A. 1 ) 

where A = (w - v,)/G. Equation (A.l) i s  valid for 
trapped particles for which I s(t,x) ( S  2. To fix the 
ideas we put A >r 0, i.e., the propagation speed of the 
wave i s  larger than v,. We split the integration region 
in (15) into intervals: 

j +T +... . 
I-T I-IT 

where T(x) i s  the period of the oscillations of the 
trapped particles in the well [T(U)=~K(U"), with ~ ( x - I )  
the complete elliptical integral of the f i rs t  kind]. After 
the obvious change of variables in each of such inte- 
grals we can write (15) in the form 

(-A-s(t. ~ ) ) e " ( ~ - ' )  sin E (T, x)dr. 

We can expand sin[(r,n) in a Fourier ser ies  in T using 
the equation of motion: 

- 
sin (T, x )  =-dsldz = b,o. sin oar, 

"-* 

As gl(t,x) =g,(t + T,n) we can consider, without loss 
of generality, t in (A.2) to be in the interval -T/2 s t  
s T/2. The following cases a r e  then possible (Fig. 5): 

a )  2/ 1% 1 = s, <A, i.e., 1x1 3 2 / ~ .  Everywhere in the 
integral in (A.2) we have then 0(- A - S) = 0 and, hence, 
g,,(t,x) = 0. We note that for A 2 2 this condition holds 
for all J x l a  I;  

b) ~ / ( u ) > A  and 8 ( - A - s ) = l  for - T/2c 7s- rA and 
rA s r c T/2 (in the period), where 

zA=2K (x-') -F(arcsin(i-x2A'14) ", x-') (A.5) 

[~(cp,  k) i s  the incomplete elliptic integral of the f i rs t  
kind]. The function g,,(t,x) will be different in three 
intervals. 

1. Let - T/2 C t c - rA. We then have from (A.2) 

Substituting here (A.3) we find the trapped particle dis- 
tribution function: 

x [-a sin @.?A ch aTA+ol ws sh , 1 (A.6) 
a sin o.t-o, COS o,t 

g" ( t )  - a'+onl 

We note that the first  term in (A.6) i s  the same a s  the 
trapped particle distribution function found under the 
condition w <<v , .~*~  

Similarly we have for - rA 6 t s rA 
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y(7, ;IA= I x 1 F(arcsin(x-'-Aa/4)", x). (A.14) 

FIG. 5. 

3. For rA a  t C ~ / 2  

x [-asin o,tr ch arA+o. cos ~ , T A  sh arA1 . } (A.  9) 

B. Untrapped particles 

When w > v,  the untrapped particle distribution func- 
tion i s  non-vanishing only when u < 0 and when 

we have 

a sin kt-a. cos a t  
b (t) - a'+@." 

(A.12) 

where the function gi,,(t ,  U) has the same form a s  when 
w << v , . ~ . ~  In the case  

2.  When -7, s t  C 'i, 

2 exp (-at+aT/2) 
g , . , , a x , = - ~ ( ~ ~ . a m ~ n ( t ) +  a Up(al)-l 

0-1 

x 2% [a sin a,,?. ch a (-rAtT/2) +a,, cos 13.l~ 
ae+o, 

(A. 15) 

3. In the interval ?A c t s ?/2 

(pow 2 exp (-at+aT) 
gjur(t, %I=--- 

ii I - exp(aT) 

x g* [ -a  sin a.tA C!I .rA+an cos anyA sh a?&]. (A. 16) 
a2+E " 

"1n order that a classical discussion be valid it i s  necessary 
that the condition 2kv' >> k2/2m be satisfied. 

"1n the theory of the anomalous skin-effect the corresponding 
small factor is equal to l/krvp. 

" ~ n  papers devoted to the non-linear theory of wave absorp- 
tion4g5 the trapped and untrapped particle distribution func- 
tions are  found under the conditions w <<vF ,v' <<up.  The 8- 
function in (15) can then in the whole integration domain be 
replaced by unity. 

4'The function IIL(w) determines the dielectric permittivity of 
the electron gas: 
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'v. G. Skobov, L. M. Fisher, A. S. Chernov, and V. A. Yudin, 
Zh. Eksp. Teor. Fiz. 67, 1218 (1974) [Sov. Phys. JETP 40, 
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where Translated by D. t e r  Haar 
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