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Theory of pure short S - c S  and S-c-N microjunctions 

(Submitted 11 July 1979) 
Zh. Eksp. Teor. Fiz. 78, 221-233 (January 1980) 

A theory is developed for the nonstationary Josephson effect in pure S - c S  junctions (mean free path 1 
much larger than the constriction radius a) ,  and the current-voltage characteristic (CVC) of such a 
junction is obtained. The model considered for the construction was an opening of small radius 
a <G-'(O) + 1 -I)-' in a thin impermeable partition [Kulik and Omel'yanchuk, Sov. J. Low Temp. Phys. 
3, 459 (1977); Omel'yanchuk, Kulik, and Shekhter, JETP Lett. 25, 437 (1977)l. A linear response from 
an S-c-S junction was obtained with a direct current smaller than the critical value, and the resistive 
regime was investigated in the voltage region V<A near T, and in the region V>A at arbitrary 
temperatures. In the case of the S-c-N junction, the CVC was obtained for arbitrary V and T. The 
results differ not only quantitatively but also qualitatively from those obtained by Artemenko, Volkov, 
and Zaitsev [Soviet Phys. JETP 49, 924 (1979); Solid State Commun. 30, 771 (1979)l for dirty short 
constrictions. 

PACS numbers: 74.50. + v, 73.40.Gk 

INTRODUCTION z=v(~)/R+z. sin rp, ~ ( t )  =$/2, (1) 

It i s  known that weakly coupled structures of the S- 
c-S type (S-superconductor, c-geometrical constric- 
tion), which include point contacts, junctions of variable 
thickness, etc., a re  the most promising for applica- 
tions.' Although much progress was made recently in 
the study of the properties of such systems, the results 
were obtained for the so-called "dirty" constrictions, 
i.e., those whose characteristic dimensions a and d 
(which characterize the respective parameters of the 
constriction in the plane normal to the current direc- 
tion and in the same direction) greatly exceed the mean 
free path I .  

The study of the Josephson effect in S-c-S was initi- 
ated by Aslamazov and L a r k k 2  It is based on the sim- 
plified nonstationary Ginzburg-Landau equations, which 
are  generally speaking valid only for zero-gap super- 
conductors. They have shown2 that near T ,  the Joseph- 
son effect in short dirty constrictions ( I  << (a, d )  << f T) 
can be described within the framework of a simple re- 
sistive model, in which the current is the sum of an 
ohmic component and a Josephson component: 

where cp i s  the phase difference of the order parameter 
and V(t) i s  the voltage on the junction (the electron 
charge i s  assumed equal to unity). It follows from (1) 
that the current-voltage characteristic (CVC), which i s  
the dependence of the time-averaged voltage V on the 
direct current, i s  of the form 

V=R(Z2-12) 'h. (2) 

In experiment, however, deviations a r e  observed from 
the resistive model; this i s  not surprising, since the 
latter was obtained on the basis of simplified equations. 
In recent studies of the properties of S-c-S systems, 
microscopic equations have been used. Kulik and 
Omel'yanchd?, using the Eulenberger equations that 
describe equilibrium processes in superconductors, 
have constructed the theory of the stationary Josephson 
effect in short dirty microjunctions, where the follow- 
ing condition i s  valid: 

Z< (a, d )  < ( D / A )  ". (3) 

Here D =lv,/3 is the diffusion coefficient. It turned out 
that the connection between the current and the phase 
difference deviates from the Josephson relation when 
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the temperature i s  lowered. The next step in the study 
of dirty short microjunctionsl' [in the sense of condition 
(3)] was made by Artemenko, Volkov, and the author: 
who constructed a theory of the nonstationary Josephson 
effect on the basis of microscopic equations. We con- 
sidered limiting cases of small voltages V<< A (near T,) 
and large voltages V>> A (at arbitrary temperatures). 
It was shown that near T, the expression for the current 
depends substantially on the ratio of the characteristic 
voltage V, = I8  to the reciprocal energy-relaxation time 
7;'. In particular, Eq. (1) is valid only in the limit a s  
revc - 0. It turned out, however, that the CVC at V << A 
differs little from relation (2). The form of the CVC 
Z(V) in the voltage region V >> A was obtained at arbi- 
trary temperature in the following simple form: 

Thus, at large V the CVC has an excess current, i.e., 
it takes on an asymptotic form shifted relative to the 
straight line I =V/R by an amount independent of V. 
This effect, first observed in weakly coupled systems 
by Pankove,' i s  the most pronounced deviation from the 
predictions of the resistive model, according to which 
the CVC takes the form of Ohm's law at I>>I,. 

In pure S-c-S junctions (whose parameters satisfy the 
condition I >> (a,d), only the stationary Josephson effect 
was investigated so far? Kulik and Omel'yanchuk7 used 
a constriction model in the form of a hole of radius a 
in an impermeable infinitesimally thin (d<< a)  partition. 
This model suits best junctions obtained by breakdown 
of a dielectric film, and can also describe short point 
contacts and variable-thickness junctions. They as- 
sumed' a sufficiently small radius of the hole: 

a c t ,  ~ - * = S - ' ( O )  +PI. (5) 

The restriction (5) makes it possible to solve relatively 
simply the Eulenberger equation and to obtain the con- 
nection between the current and the phase difference. 
It turned out that when the temperature is decreased the 
function I(q) differs substantially from sinusoidal and 
t h ~ s  difference is more strongly pronounced than in dir- 
ty contacts. In the present paper we construct a theory 
of the nonstationary Josephson effect in pure micro- 
junctions, for which the condition (5) i s  satisfied. Just 
a s  in Ref. 5, we obtain the linear response in a direct 
current smaller than the critical value, investigate the 
resistive regime in the region V<< A near T,, and in the 
region V >>A at arbitrary temperatures. It turns out 
that the results differ not only quantitatively but also 
qualitatively from those obtained in Ref. 5 for dirty 
microjunctions. 

We investigate also a pure S-c-N junction (N i s  nor- 
mal metal), in which the hole radius also satisfies the 
condition (5) (where 5 i s  now the coherence length of the 
superconductor). S-c-N junctions have been intensively 
investigated experimentally of late.8*9 Dirty S-c-N 
junctions were investigated theoretically by Artemenko, 
Volkov, and the author.].' In the present paper we ob- 
tain the CVC of pure S-c-N systems at arbitrary volt- 
ages and temperatures. In this case the results differ 
not only quantitatively but also qualitatively from those 
obtained in Ref. 10 for dirty S-c-N junctions. 

1. GENERAL RELATIONS 

To construct the theory we start  from the system of 
equations for Green's functions integrated with respect 
to ~ , = V ( P - P F ) ~  "-I3 The matrix form of this system is13 
(the notation is the same a s  in Ref. 5): 

H ( t )  = - i v ~ ( t j ~ ~ 3 - i i  ( t )  -i@ ( t )  i" 

The function e satisfies the additional normalization 
condition13 

@ = i ~ ( t - t r ) .  (7) 

The current density i s  expressed in terms of the matrix 
6 by the formula 

As already noted, the model of the construction i s  a 
hole of radius a in an impermeable thin screen, assum- 
ing that the quantity a satisfies the condition (5). Pro- 
ceeding to the solution of (6), we consider first the re- 
gion far from the hole, for which the distane R,  meas- 
ured from its center, i s  large enough: R >>a. We rec- 
ognize further that in this region we can equate quanti- 
ties that a re  independent of the direction v to their 
values at infinity (neglecting in this case, a s  can be 
easily shown, small corrections of order (a/~) '<< I) ,  
i.e., we can assume 

&, z < o  X ( R )  = dn G , z < o  la,. z > o  , ~ o ( ~ ) = i ~ ( ~ , p ) s =  h. .>o .  
(9) 

where z is a coordinate perp_endicu!ar to the hole (z = 0 
corresponds to its center), A, and G, a r e  the equilib- 
rium values corresponding to the phase shifts x ,, and 
j = 1 or 2. Taking the foregoing into account in each of 
the two regions z < 0 and z > 0, Eq. (6) reduces at R >> a 
to 

" 
where the matrix A, takes the form 

&(t ,  t r )  = - i [ d ; ( t ) + m j ( t )  i ~ ~ ( t - f ) + % ( t ,  t ' ) .  (10') 

We now consider the region near the hole, where R 
<< 5 .  In this case Eqs. (6) and (10) reduce to 

Since the regions R << 6 and R >>a overlap by virtue of 
(5), we see that, neglecting small corrections, we can 
solve in all of space the simpler equations (10) in place 
of (6). The solutions obtained for z < 0  and z >0  must be 
matched together at z =0., 

We write down Eq. (lo), changing to the Fourier rep- 
resentation: 

where the matrix 2, is defined by the relation (we omit 
the subscript j )  
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de de' j j f (e ,  e')e-"'+l"lr - de 
i ~ ( t ) )  ( j i c e )  e-ee"-'') - 

(23~)" 2n 

[e+tr:'*' ] ; , + [ ~ + i ~ : ' * '  li;, 
( e )  =g'"") ( e )  ;,+f~'*' ( e )  i;, = gncA) ( e )  

9 

where the matrices T R  =Yf?z+Yfify, and TA =GR (see 
expression (12') in Ref. 5) determine the relaxation 
processes due to electron-phonon interaction. 

Recognizing that var/aR = 1, where r =Re v/v2, we 
easily obtain the solution of (11): 

G(R, p) =exP[-i i ,rICj(p)  exp ( K ~ T )  + ~ j .  (12) 

It i s  assumed in (12) that the straight line passing 
through the end of the radius vector R in the p direction 
passes through the hole, If, hoyever, this line inter- 
sects the screen, then G(R,p) =GI. Here, a s  every- 
where, we omit the dependences of the matrices on the 
energy units, to abbreviate the notation. Matching the 
solutions (12) at z = O  we obtainJhe first relation for the 
determination of the matrices Cj(p): 

In addition, stipulating that the first term in (12) tends 
to zero a s  7 -*a, we obtain (see the Appendix) 

" "  
GJ, (P)  = ( - 1 ) ' + ' 6 , ( ~ )  sign p., 

t j ( p )  ~ , = ( - l ) @ , ( p )  sign p,. 

It will be convenient next to introduce the matr*) 

Relation (15) follows from (13). It i s  convenient to cal- 
culate the current at z =O. As a result we obtain from 
(81, (12), and (15) 

We now proceed to determige the matrix 6(p]. To this 
end, using (13), we express C2(p) in terms of C,(p) and 
substitute, for example, in (14b). As a result we obtain 
the system 

k1 ( p )  G,=--&Jp) sign p., (17) 
El ( P )  = El (p)  sign P, + (GI - &) (1 sign pZ - &). 

Adding the equations in (17), we readily obtain the re- 
lation 

E ( p )  G; =G- sign p,, (18) 

in which we have introduced the matrices 

G,=~/ , [G,*G,  1 .  
It follows from (18) that e(p) can be represented in the 
form 

E(p)  =C sign p,, 

" 
where the matrix C does not depend on the direction of 

p. Ultimately we get from (18) 
" - .. 
C=G-G+-I. 

The components of the matrix 6;' can be easily ob- 
tained: 

where 

8, = G?,";+ - n+e: + k R n -  - ̂n-CA, 
- I * ~ ) ,  &(t ,  t r )  =S ( ~ , ( t ) ) n ( t - t ' )  s + ( x , ( ~ ' )  ), (20) 

e  de 
n ( t ) =  5 th-e-'"-. 

2T 2n 

Substituting (19) in (18), and taka$ into account (20) 
and the properties of the matrices GiRwA' (see Ref. 5), 
we get 

cR=€-R(B+R) -1, eA=G-A (&+")-I,  

c = e p + p ,  p = p ; + - ; + p ,  
(21) 

cm= (~+~)-i-(a,~)-~+~~~-c~-A-. (22) 
It follows from (18), (22), and (16) that the total current 
through the opening can be represented in the form 

where, a s  will be shown later, R = n / ( ~ , a ) ~  is the resis- 
tance of the pure opening in the normal state (which was 
first calculated in Ref. 14). We proceed now to solve 
some concrete problems, using the results obtained in 
the present section. 

2. THE S-CS JUNCTION 

1. Linear response 

In this subsection we investigate the case when direct 
current I,<< I, and a weak alternating current I, <<I, flow 
through the junction. The phase difference can be rep- 
resented in this case in the form 9 = cp,+ cp,, with cp, << 1. 
In the calculation of the current we confine ourselves to 
terms of order cp,. Since G- - cp,?,, it i s  clear that to 
determine the matrix Ce from (22) we can neglect the 
dependence of all the matrices in (22) (with the excep- 
tion of 2-) on cp,. As a result we find that the Fourier 
component om(&, E-) takes the form 

where E , = E * w / ~ ,  

C o R ( e )  =(XR(e)  [ € + R ( e )  I-', 

and the matrices &: are equal to5 

€+"(el = g R ( e ) ^ t . + ~  (8) cos ( L / n c p o )  iiu, G-R ( e )  =ifR ( e )  sin ('/ ,~p,);.  , (26) 

Using (24)-(26), we obtain the Fourier component of the 
current Ia(w), which, when added to the current P(a)  
[which can be easily calculated from (21)-(23)] can be 
expressed in the form 

where 
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A similar expression is obtained for BTG, &-), while 
Ba(c+, C-) is obtained from B y G ,  &-) by making the sub- 
stitutions gR(z-)-gA(&-) andfR(c-) -F(c_). The expres- 
sion for the dc component of the current in (26) is 

A 0 [ A co;qd2) 1 I(cpo) = -sin - th 
R 2 

(28) 

Equation (28) was obtained earlier in Ref. 7. 

If there is no direct current in the system, Eq. (27) 
reduces to 

where B(w) is a function well known from the linear el- 
ectrodynamics of the homogeneous superconductors 
(see, e.g., Ref. 15). The situation here is therefore 
similar to that in dirty junct i~ns. l~* '~ 

Expression (27) takes near T, the simpler form 

I(@) = * + 2n1, sin p.6 (o) +Iepl (o) cos cp. 
2R 

a cp 
+I. - cp, (a) sina 2, 

o+iv. 2 

Here 

and s is the speed of sound. Equation (29) is valid in 
the case when cos (p,/2) is not too small: Icos (cp0/2 I 
>> (7,~)-', W/A. A s  follows from (29), a t  low frequen- 
cies w << v, the alternating part 1, of the current be- 
comes 

11-~V1+a8V, cos po+I,cpt cos pa, Vt='lzipi, (29') 

where C=(1+ x ) / ~ R ,  a =-X(1+ h)-l, x =V,T,. The second 
term in (29') is the so-called interference component 
of the current. At large X(r,A2/T >> 1) we have a = -1. 
We note that it was concluded in Ref. 17 from measure- 
ments of the impedance of a point contact that I a I - 1 
and o<O. 

2. RESISTIVE REGIME NEAR T,. LOW VOLTAGES 
( V K  A) 

In the calculation of the matrix ea it is more conven- 
ient in this case not to start  from (22) but to use the fol- 
lowing method. 

Adding relations (14) we get 

B,C+Cd,=d. (30) 

A similar system of equations was investigated in Ref. 
5. From (30), in particular, it follows that 

epe+ea~+e~a,+c,c~=o: (30') 
Next, following Ref. 5, we represent the matrix ed in 
the form 

caEc-c~=cnit.-+e~. (31) 

Taking into account the expression for C', we can ob- 
tain from (30') an equation for Ed (Ref. 5): - - 

B , R P . ' - F r ~ , A = ~ , H r ~ - - ~ t - ~ * A .  (32) 

A solution of (32) was obtained in Ref. 5 for the case V 

<< A << T. Using the expression obtained in that refer- 
ence for ia(&, t) (see Sec. 3 in Ref. 5), and recognizing 
that the matrices CM'(&, t) can be calculated using (25) 
and (26) [where p, must be replaced by p(t)], we get 
from (22) and (23) the current 

I=*+ 2R I, sin cp+I.P(cp), 

P{p} =sin-s~gn cos- exp[-v.(t-t,) ]$(ti) ' .  2 : ) I  - 
2 

The expression obtained for ~ { c p )  is valid for all t, with 
the exception of small (compared with the period T = n/V 
of the Josephson oscillations) time intervals 6 t - ~ - '  
near the instants of time t* defined by the relation3' 
cos[cp(t*)/2] = 0. Actually the exact expression for ~ { q )  
will contain, in place of the discontinuous function sign 
cos(cp/2) a continuous function near the instants t*, over 
times of the order of Am', in the range from -1 to +l.  
Since we a r e  not interested in the details of these chan- 
ges, and also since the refinement of P(cp) near t* in- 
troduces into the CVC corrections of the order of (V/A) 
<< 1, we shall henceforth use (33). 

We proceed now to analyze some limiting cases: 

A. h = V,T,<< 1. In this case, in the region of small 
voltages V<< ve, Eq. (33) reduces to 

@ I = -(l+h-h cos cp) + I, sin cp. 
2R (34) 

From (34) we easily obtain the CVC: 

V=R(P-1:) "/(l+h), V e v , .  (35) 

This expression differs from (2) in that R is replaced by 
I?. =R (1 + x)-'. To calculate the CVC at V >> V, we sub- 
stitute cp =2Vt in the functional (33) and average over the 
time. As a result we get 

where 

Thus, even a t  V - v, >> V, the quantity I - V/R can be of 
the order of I,. 

B. X >> 1. In this case a t  V >> v, it follows from (33) 
that in the principal approximation in the parameter 
(r,V)-' we have 

where 

Taking into account the relations 

and substituting in them +(p) from (37), we find that 
the CVC is determined by the following parametric re- 
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lation: 

z-=WJb ( J ) ,  V = 2 V e ( P -  1 )  %b ( I ) ,  

As follows from (38), at v, < V<< V, the current can be- 
come less than critical. In particular, I =0.791, al- 
ready at V =0.24V, (J = 1.05). The CVC thus exhibits 
hysteresis in the case X >> 1. 

In the voltage region V> V, it follows from (38) that 

We note that Eq. (37) can be written in the form 

"-1 

The coefficients a, of the higher harmonics sin(nq) de- 
termine the heights of the subharmonic steps that will 
appear on the CVC of the irradiated contact at a voltage 
V = w/2n (w is the radiation frequency). 

Thus, just a s  in dirty constrictions~ the expression 
for the current near T, i s  determined by the value of the 
parameter A. However, the very form of the functional 
~{p),  and consequently of the CVC , can vary strongly 
with the mean free path, a fact most clearly pronounced 
at x > l .  

3. REGION OF HIGH VOLTAGES V>A 

In the calculation of the current in this case we start 
with Eq. (22). Since the relations V >> A means that I 
>>I,, the phase difference can be taken in the principal 
approximation to be equal to cp =2Vt. 

The main complexity lies in the calculation of the ma- 
trices [6fU']". The latter can be obtained with the aid 
of the equation 

which follows from the relation5 (6f)'+ = b ( t  - t r )o  
We now sum the series (39) by changing over to the 
Fourier representation and separate the principal ag- 
gregate of terms in which singularities accumulate near 
energies satisfying the condition I & -+ V/2 I =O. Recog- 
nizing that in the principal approximation in the para- 
meter A/V we have 

we obtain from (39) 
2 

( G + R ) - l ( e ,  ='I= g ( & + v ) g R ( & - p ) + 1  ~ + R ( E ,  8 ' ) .  (40) 

From (21) and (40) we easily obtain the matrices CR(*) 
and after simple calculations we get from (22) and (23) 

It was recognized in (41) that V >> A ,  Calculating the in- 
tegral, we ultimately get 

V V 16 A 
I t h -  Iexc--- .  

R 2T 3 R 

Thus, at V >> A the character of the dependence of I(V) 
in pure contacts is the same a s  in dirty ones,' and in 
both cases the excess current varies with temperature 
in proportion to A(T). We note, however, that the value 
of RI,, depends substantially on the mean free path. 

3. THE S-C-N JUNCTION 

The general expression (22) allows us to find the ma- 
trix C also in this case. It i s  convenient here to assume 
that the potential of the superconductor i s  equal to zero 
and that the potential of the normal metal N is  equal to 
V. Taking the foregoing into account, we get 

Gf'*' ( E ,  E ' ) - [ ~ ~ ~ ~ ' ( E ) ; ~ + ~ " ( * J  ( E ) ~ ; ~ J ~ ( E - & ' ) ,  (43) 

& P ' * ' ( e ,  E ' )  =*;;fi(~-~'). 

Therefore 

~.":*'GY"=*~/,~AJ ( & ) G I s  (e-.sf). 

From (43) and (44) we easily obtain the matrices 
and E R ' ~ ' ,  and after substituting in (22) and (23) we get 

E-V (E- ( E ~ - A ~ ) ' ~ ) ~  
-ih --) de .  

2 T A% 
(45) 

From (45), in particular, we find that 

at V >> A or  arbitrary V at A << T. 

Thus, at large voltages the CVC of an S-c-N junction 
has an excess current having half the value of I,, in the 
S-c-S system. A similar situation takes place in dirty 
 junction^.^*'^ It must be noted, however, that the con- 
sidered pure case differs in some respects not only 
quantitatively but also qualitatively from that of dirty 
junctions. In particular, a s  follows from (45), (o= 1 / ~ )  

Thus, in contrast to the dirty case, the differential con- 
ductivity does not have a gap singularity at low temper- 
atures: &) =3(T =0). The singularity at V =A(T << a)  
appears in the pure case only in the second derivative 
d21/dV2. We note also that the function o,,(T) =(dl/dV), 
decreases with increasing T, with 
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whereas in dirty junctions oo(T) i s  a nonmonotonic func- 
tion and has a maximum a t  T = 0.7A > O  In addition, in 
contrast to the pure case, the dirty model oo(0) =o. 

The current can be also easily determined in the case 
when the junction contact voltage has besides the dc 
component also an alternating component V, = V, sinwt. 
The expressions for the matrices 6TA) and eR'*) then 
remain the same as before, and only the matrices 2, 
change. Taking the foregoing into account, and calcu- 
lating the direct current, we easily obtain 

where J,(x) is a Bessel function of order n and I(V) is 
the CVC, determined by Eq. (45), in the absence of an 
alternating voltage. We note that an analogous expres- 
sion was f i rs t  obtained for tunnel junctions.18 It is valid 
also in dirty  constriction^.'^ 

Thus, the developed theory shows that the properties 
of pure and dirty5*10 constrictions have both like and un- 
like features. Common to both cases  is, in particular, 
the fact that the functional ~{cp), which determines the 
current near T,, depends essentially on the relation be- 
tween V,, V, and 7;'. The concrete form of ~{q), how- 
ever, varies rapidly with the mean free path, and the 
deviation of the current I - @/2R from sinusoidal form 
(which is typical near T, in the stationary case) is most 
strongly pronounced in pure constrictions. In the latter 
case. the hysteresis of the CVC (which is quite small in 
dirty junctions)' i s  likewise strongly pronounced and 
takes place a t  A >> 1. At high voltages V >> A ,  the CVC 
takes an asymptotic form which is similar in both pure 
and dirty constrictions, with an excess current I,, 
whose value var ies  with temperature like A(T). The 
value of RI,,, however, depends strongly on the mean 
f ree  path. 

A similar situation is typical also of S-c-N junctions 
a t  high voltages. The qualitative differences between 
pure and dirty constrictions manifest themselves in this 
case (just a s  in S-c-S systems) a t  V c, A. Whereas in 
the dirty limit the o(V) function has a gap singularity at 
low temperatures, in pure junctions there a r e  no such 
singularities. In addition, the form of the function 
oo(T), which is the differential conductivity a t  zero bias, 
changes qualitatively with changing mean f ree  path. 

We note in conclusion that by regulating the force that 
clamps the electrodes to  the point contact (and by the 
same token varying the parameters of the short circuit) 
it is possible to trace the transition from the proper- 
t ies  of the dirty constriction to  that of the pure one. 

APPENDIX 

The condition that the first  term of (12) must tend to 
zero a s  T -*a is equivalent to the condition 

exp (-i(e)r)d(e,  el) exp (k(e)r) -6, T+*CU, (A .I) 

yhere  C =S+ CS. It follows from (11') that the matrix 
k(&) can be rewritten in the form 

It is easy,to verify that 

& - gF= d, 3 (E) = I. 

Therefore the following relations a r e  valid 
exp (KT) =exp ( k i ~ )  exp (kir) , exp ($2~) = i- ch kr+B sh kr. (A .3) 

Since it follows from (A.3) that the matrix exp (*&) 
contains only t e rms  that oscillate with increasing I T  1 ,  
we can disregard this matrix in expression (A.1). Thus, 
the condition (A.1) is equivalent to 

exp [- k (e) i (e) rl E(E, el) exp [k (8') g (e') r] 

= ' l r  l? - i (ell ? (e, 8') [ I  + r! (E')] exp [k (8) + k (e')] r 

+ fi + k; (E)] ? (e, E') [i - k; (e')] exp [-- k (e\ - k (e')] r 

+ [i - g (&)I ? (E, e') [i - 2 (e')] esp [k (E) - k (B')] T 
+lip [i + g(e)l z(e,  e') [ I  + i(er)jexp[k(e') - k(e)] r -6. 

For  this expression to tend to zero  with increasing I T  1 ,  
it is necessary to satisfy the relations 

[ i - g ( ~ )  ]C(E, e l )  [ l+g(ef )  ] =o, sign (zp,) >O, 
[if g(e)]E(e,  E') [i-;(e1)]='6, sign (zp,) (0, (A .4) 

[iztg(e) ]E(e, er) [i*g(ef) ]=6. 

Relations (14) a r e  the direct consequence of (A .4). 

 unctions with lengths exceeding the characteristic dimension 
(D/A)"' were investigated (near T,) in Refs. 4. 

')We nok that the matrices C, (p) [in contrast to 6 (p)l have no 
inverses. For this reason the matrix Cj  (p) cannot be can- 
celed out &om the two sides of (14a) or (14b) (and the equa- 
tions obtained by canceling them are incorrect). 

3 ) ~ h e  point is that when I c o s ( ~ / 2 )  1 s V/A the main contribu- 
tion to the integral 

A 

J as ~p ;&(e, t) 

-A 

is made by the region of IF energies I E I -S V, at which the 
use of the expression for F(")( t, t )  [and hence &(E,  t)] is  in- 
correct. 
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We calculate the dispersion coefficient and investigate the stability to decays of the phonon modes of the 
Bose spectrum in the superfluid A ,  B, and 2 0  phases of a model system of the ~ e '  type. All the modes 
in the B phase are stable, and in the A and 2D phases the stability depends on the angle between the 
momentum of the collective excitation and the selected direction. 

PACS numbers: 67.50.Fi, 05.30.Jp 

1. lNTRODUCTlON solved by calculating the correct ions to the linear dis- 
persion law. The calculation shows the stability of al l  

We have investigated, in a model Fermi  system of the the phonon branches in the B phase. 
He3 type, the stability of collective Bose excitations of 
the phonon type" to decays of one excitation into severa l  
others. The Bose spectrum of He3 was calculated in a 
number of s t ~ d i e s . ' ' ~  Acoustic and spin waves were  
shown to exist in the B phase, and acoustic and orbital 
waves in the A and 2 0  phases. 

The stability of the Bose spectrum can be considered 
with respect  to various processes:  to pair  decay into 
initial fermions (see Ref. 5 for  orbital waves), and to 
decay of a collective Bose excitation o r  severa l  Bose 
excitations of the s ame  type o r  into severa l  Bose excita- 
tions of different types corresponding to different 
energy-spectrum dispersion laws. 

In the isotropic B phase, the decay of the phonon into 
individual fermions is forbidden, s ince the excitation 
energy i s  much lower than the binding energy 2A of the 
Cooper pair. The decay of a n  excitation into two o r  
severa l  excitations of the s ame  type i s  kinematically 
forbidden if & ~ / d k *  c O ,  and the E(k) curve bends down- 
ward away from the tangent uk (Fig. 1). This i s  equiv- 
alent to a positive dispersion coefficient y in the dis- 
persion law E(k) =uk(l  - #) (at smal l  k). Therefore 
the question of the stability of phonon excitations i s  

In the anisotropic phases (A, 20)  the energy gap of the 
Fermi  spectrum depends on the direction of the mo- 
mentum and vanishes in the selected direction. Decay 
of the phonon into individual fermions is  therefore en- 
ergywise possible here. On the other hand, the ques- 
tion of the stability to decay into Bose excitations, just 
as in the B phase, reduces to finding the corrections to 
the linear dispersion law. A calculation shows that the 
excitation i s  s tab le  if i ts  momentum lies within certain 
cones described around a preferred direction, and i s  
unstable in the opposite case. 

2. THE ~e~ MODEL AND THE HYDRODYNAMIC 
ACTION FUNCTIONAL 

We consider the model sys tem of the He3 type pro- 
posed by Alonso and ~ o p o v . ~  The collective Bose ex- 
citations in the sys tem a r e  described by a functional of 
the hydrodynamic action S,, obtained after  functional in- 
tegration over the Fermi  fields. The functional takes 
the form 
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