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We develop the theory of a superwnducting quantum interferometer in an external magnetic field H, 
with account taken of the finite geometrical dimensions of the system (L,, L2-widths of the tunnel 
junctions, a-inside area of the interferometer ring). Exact equations that describe the behavior of an 
interferometer with finite dimensions are formulated. The problem is solved analytically in the limiting 
case of a strong external field (H,,l). Plots are constructed of the maximum stationary current I,,,,, 
through the interferometer as a function of the external field He at different values of L,, L2, and cr. The 
magnetic field inside the interferometer H,, is determined as a function of the external magnetic field He 
in the presence of a transport current I through the interferometer. In the limiting case of point junctions 
(L, = L2 (I), the results obtained in the present paper are compared with the corresponding results of 
other studies. 

PACS numbers: 85.25. + k 

1. Superconducting quantum interferometers a r e  terferometer H,, a s  a function of the external magnetic 
widely used in a variety of physical experiments and field H, in the presence of transport current I through 
other practical applications (see, e.g., Refs. 1-4), s o  the interferometer. The results a r e  illustrated by a 
that an analysis of the operation of such devices is  of number of plots. In the limiting case of junctions of 
great importance. In the static regime, greatest in- small width (Lip,<< 1), the results obtained in this paper 
terest attaches to the dependence of the maximum a r e  compared with the equations known from the litera- 
transport current through the interferometer on the ture. 
external field. The resultant characteristic interfer- 
ence relations make it possible to determine with high 
accuracy the external field, and this finds important ap- 
plications in a number of cases. The experimentally ob- 
served interference curves vary greatly, and it is  not 
always clear which factors cause the differences be- 
tween them. There a r e  quite a few published theoreti- 
cal attempts to describe the experimentally observed 
relations (see the r e v i e ~ s l - ~ ) .  Most papers, however, 
a r e  restricted to the case of point junctions, and the 
description makes use of phenomenological parameters 
of the self-inductance of the interferometer, which 
take qualitatively into account the presence of screening 
currents in the svstem. This leaves unclear the manner 

2. We choose the system shown in Fig. 1 a s  the model 
of the double interferometer. Here H,, = He - HI, HL2 
= H, + H,, H, i s  the external homogeneous magnetic 
field, HI i s  the field of the total transport current I 
flowing through the interferometer; L ,  and L, a r e  the 
widths of the tunnel junctions and o i s  the area  of the 
internal opening (ring) of the interferometer. It i s  as- 
sumed that the external magnetic field He i s  directed 
along the z axis (perpendicular to the plane of the 
figure) and that the entire system is infinitely long in 
the z direction (cylinder). This model is  frequently 
used to study real interferometers and reflects their 
properties to a certain degree. 

- 

in which these coefficients a r e  connected with the ge- We assume, a s  usual, that the distributions of the 
ometrical parameters of the system. We develop below fields H(x) and of the currents in the junctions Li and 
a theory that determines the corresponding relations L, a r e  described by the following differential equations 
and makes it possible to take into account the influence (in dimensionless units):') 
of the finite geometric dimensions of the interferometer 

dZq,ldx,2=sin q,, dzq2/dxlZ=sin qz; on the critical current. FI(x,) =drp,ldx, (O<x,<L,), . . 
We consider in the present paper the case of the so- H (x*) =dq21dzz (o<z,<L~), 

called double quantum i n t e r f e r ~ m e t e r , ~ ' ~  which is most 
frequently used in practice for precision measurements 
of a magnetic field. The physical operating principles 
of this instrument a r e  described in a number of mono- 
graphs and We formulate below exact equa- 
tions that describe the behavior of a double interfe- 
rometer with finite geometrical dimensions in an ex- 
ternal field (cf. the analogous problem for a single ring 
interferometer, considered in Ref. 7). The obtained 
exact equations a r e  solved in the limiting case of a 

where c p ,  and cp ,  a r e  the differences of the phases of the 
order parameter a t  the junctions Li and L2. In view of 
the cylindrical symmetry, the quantities c p ,  and cp ,  de- 
pend only on the radial coordinates xi  and x,. The co- 
ordinate axes xi and x ,  l ie in the plane of the junctions 
and a r e  directed along the radius from the inner cavity 
o to the outside. It is  assumed in Eqs. (1) that the den- 
sities of the critical currents of the junctions j,, and j,, 
a r e  equal and that the junctions differ only in width. 

strong external field (H, >>I),  and a formula is ob- For each of the equations in (1) we can easily write a 
tained for the maximum stationary current through the f i rs t  integral in the form 
finite-dimension interferometer a s  a function of the ex- 

-'I, 
Lernal field. In addition, we determine the law gov- dy, 
erning the variation of the magnetic field inside the in- 2 3 (2) 
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FIG. 1. Schematic diagram of double interferometer. 

where cp,=cp(O) and C is an arbitrary constant. The in- 
tegral (2) yields an explicit expression for the solutions 
of Eqs. (I), which can be expressed in terms of Jacobi 
elliptic functions. Using (2), we obtain the relations , 
(cf., e.g., Refs. 7-12) 

Here cpoi and cp,, a r e  the phase differences on the junc- 
tions L, and L, respectively a t  the points x i  = 0 and x, 
=0, lying on the inner surface of the cavity a ;  cpLi and 
cp,, a r e  the values of the phase difference on the outer 
surface (i.e., a t  the points xi  = Li and X, = L,). 

It is  easily seen that in addition relations (2) it is  nec- 
essary to satisfy the equations (cf. Refs. 7-12) 

which follow from the boundary conditions to Eqs. (I), 
namely 

In addition to the foregoing, it is  necessary to satisfy 
also the relation 

which is an obvious generalization of the corresponding 
equation (cp, =OH,) used by us earlier7 for a single ring 
interferometer.,' Sometimes there is  added to the left- 
hand side of (6) a term of the type 2nn (n i s  an integer), 
connected with the fact that the phase i s  determined ac- 
curate to such an inessential term. We normalize the 
phase shifts by the condition that in the absence of fields 
and currents (H, =He = I= 0) the phase differences be- 
come equal to 0, (i.e., n =O). The condition (6) enables 
us to connect the jumps of the phases on the junctions 
directly with a physically observed quantity-the total 
magnetic flux inside the system. 

The group of equations (3)- (6) makes it possible to 
find the values of the "initial* phases qOi and cp,, a s  
functions of the geometric parameters Li, L, , and o at  
given values of He and HI. This determines simulta- 
neously also the value of the field H, that i s  established 

inside the interferometer. Knowledge of the "initial" 
values cp, and of the derivatives dcP/d?c 1,. , = H, makes 
it possible to determine uniquely the solutions of the 
differential equations (1) and obtain the configuration of 
the fields ~(x)=dcp/d?c and of the currents j(x)=sincp(x) 
in both junctions (L, and L,). As a result we obtain a 
complete description of the behavior of the system under 
consideration. 

The exact solution of Eqs. (3)-(6) entails rather cum- 
bersome numerical calculations of the elliptic integrals 
in (3); examples of calculations of this kind a r e  given in 
Refs. 7-11. We confine ourselves below to the limiting 
case of strong fields (He>> 1, cf. Refs. 7 and 12), when 
Eqs. (3) a r e  degenerate and the problem becomes sim- 
pler. We note, incidentally, that a field of even a few 
gausses i s  strong in terms of the dimensionless units 
employed here, s o  that a condition H,>> 1 covers a 
rather wide range of fields. In addition, the obtained 
formulas in the case point junctions (Lip, << 1) a r e  valid 
in arbitrary fields. 

3. Thus, let the external field be strong: H,>> 1. Ob- 
viously, in this case the internal field Ho i s  also strong: 
H, >> 1. The integral equations (3) degenerate in this 
case to the simple equalities 

Equations (4) a t  H, >> 1 can be rewritten with allowance 
for (7) in the form 

Eliminating the quantity cpO2 with the aid of (6) and then 
eliminating from (8) the quantity cp,, + L,H,/~, we arrive 
at the following fundamental equation: 

HL.-H '+ (HL,-Ho) (HLV-HO) cos 2H - . ,-sinz ZH,. 
S, S 2  

where (9) 

Equation (9) enables us  to find the unknown H, a s  a 
function of the parameters of the problem (Li, L,, u, 
HLi, H,,). This equation has a complicated transcen- 
dental form with respect to the variable H,, and we 
shall therefore solve it relative to the quantity HI, 
which enters in Eq. (9) quadratically via the obvious 
relations 

Solving the corresponding quadratic equation for HI, we 
get from (9) 

where 

R= {siZ+ss2-2s,s, cos ZHo-4 ( H , - H , ) z ) B  I slsz sin ~ f i  1, (13) 
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FIG. 2. Plot ofl=~,/(L.~+ L ~ )  against He at He 2 1: a-a 
=20,Li= 0.01; b-u=20,Li=0.1; c-u=50,Li= 0.05. For small 
L i  and L 2  the dependence i s  periodic up to fields H e -  1/~ i ,2 .  
With increasing field, characteristic interference curves ap- 
pear (see Fig. 3). 

If we assume that H, b O  and a r e  interested only in the 
maximum current, then we must choose the positive 
sign in front of the radical in (12). 

The values I,, = 2H,,,, obtained from (12) a s  func- 
tions of H,, a r e  plotted in Figs. 2 and 3 for several 
values of L,, L2, and o. The character of the trans- 
formation of the &,,, curves when the parameters of 
the problems a r e  changed i s  clear from the figures. In 
the case of broad junctions, a s  seen from Fig. 3, effects 
connected with the widths of the junctions Ll,2 come into 
play when the field is  increased, and interference de- 
pendences due to the entry of flux quanta into the in- 
teriors of the individual junctions (the minima and maxi- 
ma of the envelopes of the curves in Fig. 3) begin to 
manifest themselves against the background of the 
shallow minima and maxima due to the entry of an in- 
teger number of flux quanta into the interferometer ring. 
With increasing field, the amplitude of the oscillations 
of the envelope tends to zero like 1 /~ , .  We note also 
the appearance of a nonlinear structure on the curves of 
Fig. 2 at L, 2 L,. 

We show separately (Fig. 4) a plot of the depth of 
modulation of the critical-current curve 

FIG. 3. Interference-type dependences of I  on He for broad 
junctions: a-a=20, curves 1-Li = L 2 =  1, curves 2-Ll 
= 0.01,L2 = 0.5, curves 3-Li= 1,L2=2;  b-a=50, curves 1- 
L i = L z =  1; curves 2-Li=0.5,L2=1.5. 

FIG. 4. Depth of modulation m of the plot of the maximum . 
current as a function of the difference A=L2 -Li of the junc- 
tion widths: a-a = 20, b-a= 50. 

where 12',,/12' i s  the ratio of the values of the critical 
current in the neighboring minima and maxima. It is 
seen from Figs. 2-4 that the largest depth of modulation 
i s  a characteristic of symmetrical junction of small 
width (L, = L, << 1). 

In the limiting case of symmetrical point junctions it 
can be assumed that the field inside the interferometer 
coincides with the field on the outside (Ho= H,). Equa- 
tion (12) then yields; the critical current I,,, =2H,m,: 

Im,=2L cos- , I ''3 
which agrees with the result obtained earlier from sim- 
ple physical  consideration^.^*^ Equation (15) predicts 
for a symmetrical interferometer a maximum depth of 
modulation (m = 1) and vanishing of the critical current 
a t  external-flux values =OH, = an. 

We note that the assumption Ho = H, certainly does not 
hold in the case of non-symmetrical contacts, inasmuch 
a s  they carry,  generally speaking, different currents 
and consequently a circular current flows around the 
ring and produces an additional flux inside the ring. 
For symmetrical junctions of finite width (L, = L, = L) 
we can likewise not assume that in the general case 
Ho = He, inasmuch a s  the ~ e i s s n e r  effect produces in 
the system a screening current and therefore the fields 
inside and outside the ring differ. In the general case, 
a s  shown by calculations by means of the exact formula 
(12) (see Figs. 2-4), the depth of modulation differs 
from unity and the critical current vanishes nowhere. 
In this connection, the equations for I,, (H,), given, 
for example, in Ref. 1 and based on the assumption Ho 
=He (i.e., without allowance for the screening currents) 
give the correct dependence only in the case Li = L, << 1. 

4. In a number of theoretical papers (see Refs. 2 and 
4 the literature cited therein) the critical current of a 
symmetrical interferometer was obtained with allow- 
ance for the screening current, using relations of the 
type 

@ , = ~ ~ 4 , ~ , ,  

i t o t = l i i l + l i 2 1 ,  1 . ~ ~ = ( 1 j ~ ~ - ~ j , l ) / 2 ,  
(16) 

where ji = sincp, and j ,  = sincp, a r e  the dimensionless 
currents through junctions 1 and 2 of the interferometer 
(the junctions were assumed to be pointlike, since the 
phase shifts cp, and cp, assumed to be independent of the 
coordinates), Z i s  a phenomenological self - inductance 
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parameter of the contour, and takes into account the de- 
crease of the external flux through the interferometer 
ring ($,) because of the screening circulating current 
flowing around the ring (j,,,). The parameter 1 was not 
determined in this case, and the critical current was ob- 
tained from (16) numerically by choosing the optimal 
phase difference cp, (for details see  Ref. 2). 

It is easy to verify that our relations (8) in the case 
Ll = LI = L << 1 can be represented in the form (16) by 
assuming the identity 

We shall show that the identity (17) i s  in fact satisfied in 
the general case and is a trivial consequence of the 
boundary conditions. Indeed, we have, [see (5), (1 I ) ]  

1 He-Ho+HI 
sin cpz  d x  = Y . = ~ J  ' 

L 
0 

from which we get 

Multiplying (19) by the area  o of the ring, we obtain the 
sought connection between the currents @, =uHo and rp, 
=OH,: 

@,=@.-aLj..,, (20) 

1 -  - 1 
j.., = - ( s in  cp,+sin cpz), sin cp  = -J sin cp ( x ) d x .  

0 

(21) 

Relation (20) at L << 1 (i.e., p,,, = const) coincides with 
(16) if we define I with the aid of (17) and take into ac- 
count the difference in the determination of the sign of 
cp,. Thus, the self-induction coefficient of a symmetri- 
cal interferometer in the general case of arbitrary L ,  
is equal (in dimensionless units) to the product of the 
ring area  by the width of the junctions). 

In dimensional units, the connection (21) between the 
external and internal fluxes can be represented in the 
form 

where a,, @,, and I,, a r e  respectively the total flux 
and the dimensional flux flowing around the ring; 9 i s  
the dimensional self-induction coefficient which can be 
represented, taking footnote 1 into account, in the form 

We note that Eqs. (17) and (23) for the self-inductance 
coefficient of a double interferometer coincide with the 
analogous equations obtained by us earlier for the self- 
inductance coefficient of a single ring interfer0meter.l 

The results given by solymar2 coincide with our cal- 
culations at L <c l, if it is  recognized that the parameter 
2n4PI,/@, used by Solymar coincides in dimensional 
units with our quantity 1 (17). A similar correspondence 
can be established also with the results given in the 
book of Likharev and ~ l ' r i c h . ~  We note that there i s  no 

need to introduce explicitly the self-inductance coeffi- 
cient Z in our Eqs. (9)-(13), because the screening ef- 
fects a r e  already taken into account automatically via 
the geometrical parameters of the system Li, Lz, and 
o, and via the boundary conditions. 

~ h u s ,  our general formulas (9)- (13) lead in the case 
of point junctions Ll = L, << 1 to results known from the 
literature.'e4 

5. Besides the critical current of the interferometer, 
it is useful to have information on the magnetic field H ,  
that is  established inside an interferometer placed in an 
external field H,. This information can be obtained by 
solving (9) and (11) with respect to H,. As a result we 
get 

HI (szZ-s t2)  =tR,sIsZ sin ZHo 
H.=Ho + s , = + ~ ~ ~ + 2 s , s ,  cos ZHo ' 

where 

and s, and s, a r e  defined in (10). 

In the absence of a transport current (H,=O) we get 
from (24) the relation 

s,s2 sin Dlo 
H.=H, * 

{ s l ~ s f + 2 s , s z  cos ZH,}'" ' 

which goes over for a symmetrical double interferom- 
eter (L ,  = L, = L) into the expression 

The last  formula i s  analogous to the result 

LH 
H.=H,+-s in  o + -  H, sin;, I( k )  1 Ho 

obtained by us7 for the field inside a single ring inter- 
ferometer with junction width L. A comparison of (26) 
and (27) shows that for the double interferometer the 
He(H,,) curve has two branches [in accord with the two 
signs in (26)] in contrast to the single branch in (27) for 
a single interferometer. The presence of two branches 
of the function He(Ho) was noted earlier in a paper by 
Matsinger et al.,13 who considered the case of a double 
interferometer a t  L, = L, = L << 1. 

Figures 5-7 show plots of ?fo(H,) obtained from (24) a t  
different values of L,, L,, o, and H,. Each point on 
these curves corresponds to a possible state of the sys- 
tem. (We note that the states of the system obtained 
from (24) and from Figs. 5-7 coincide with those ob- 
tained from (12).) At H,=O and a t  finite LI  =L, the 
curves show a beat pattern (we use a term from oscilla- 
tion theory), analogous to the case of the single inter- 
f e r ~ m e t e r . ~  The cause of these beats is that the flux 
quantum, on penetrating into the interior of the system, 
need not necessarily enter immediately into the ring, 
and can become stuck inside the junction at finite LlVz. 
At Li # L, there appear on the curves additional inter- 
ference singularities connected with the addition of 
"oscillations" on different junctions (Figs. 5-71. 
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FIG. 5. Plot of Ho&) according to (24) at HI= 0: 1-o 
= 50,Li= O.l,Lz= 0.5; 2-u=20,Li =L2= 1; 3-0=50,Li=Lz=1. 

We note that both branches of the H,(He) curves a t  HI 
= O  a r e  continuous and for any He there a r e  a t  least two 
static states with a certain value of an internal field H,. 
With increasing parameters Li,, and o, the number of 
such states increases. At HI + 0 discontinuities appear 
on the H,(He) curves and a r e  due to the fact that the 
radicand in (24) becomes negative and static states be- 
come impossible. At these values of He the interferom- 
eter goes over into a nonstationary condition. 

6. The next step is the investigation of the stability 
of the states corresponding to the curves shown in Figs. 
5 and 6. We start  the stability investigation with non- 
stationary equations of the type (cf. Refs. 7-12) 

which describe the time evolution of the solutions in 

FIG. 6. Plot of Ho(He) at 0=20 for L t =  1, and L 2 =  2. The 
values of HI are indicated'on the curves. 

FIG. 7. Plot of Ho(He) for point junctions at HI= 0, a =  500; a- 
L t  =L2= 0.01; b-Li= 0.01,LZ=0.02; C-Li = 0.002,L2= 0.01; 
d-L1 = 0.001,L2= 0.01; e-L1 = L 2 =  0.01 at HI= 0.005. Solid 
line-branch corresponding to the plus sign in (40), dashed- 
to the minus sign. The stable states a re  shown by thick lines 
and the stability boundaries (E= 0) are  marked by circles. The 
points of equilibrium transition from branch to branch a re  
marked in Figs. a and b by vertical arrows. 

both junctions 1 and 2. Here P is a phenomenological 
parameter that takes into account the damping and en- 
sures establishment of a static solution a s  t - m .  For 
simplicity we put & = P ,  = P ,  assuming that the contact 
differ only in width. Writing 

where $,(x)ewft a r e  the Fourier components of the small 
deviation from the investigated static solution cp, (x), we 
get from (28) the linearized equations 

-- dz'i(x) eos T i  (x)rp,(x) =E& (x), ~i=o i '+~o i .  
dx2 

The boundary conditions (5) take in this case the form 

In (31) we must put w, =w2=w and E,=E,=E,  other- 
wise the boundary conditions (5) cannot be satisfied a t  
all instants of time. The system (30) with the boundary 
conditions (31) and (32) makes it possible to find the 
spectrum of the eigenvalues w (or E). If some of them 
a r e  positive (w >O), then the deviations $i,2(x)ewt will 
increase with time and the investigated static solutions 
~ , , ~ ( x )  will be unstable. On the other hand, if all the 
eigenvalues a r e  negative, then the deviations $,,,eWt 
will attenuate with time and the solutions cp,,,(x) will be 
stable. 

We determine the spectrum of the eigenvalues w for 
the simple case L,, , << 1, when the phase shifts cp,, , can 
be regarded a s  independent of the coordinates. Equa- 
tions (30) then take the form 
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The solutions of these equations can be easily written 
down (with allowance for the fact that E *  is constant): 

ql=al exp(e:x) +b, exp(-e'fx) .  (35) 

The boundary conditions (31) and (32) reduce to a sys- 
tem of four linear homogeneous equations whose de- 
terminant gives the dispersion relation (at L,,, << 1) 

O E ~ E ~ L ~ L ~ + E ~ L ~ + E ~ ,  e l .  *=E+cos ( P , ,  *. (36) 

Solving the quadratic equation (36) we obtain the spec- 
trum of E: 

coscp, 1 I coscp 1 1 +- 2 (z--) oLz +*(---)]"' 0Lz oL, 

In (37) it suffices to retain the plus sign in front of the 
square root R, since we a r e  interested only in the 
presence of positive values of E. 

The growth rates of the solutions obtained from (34): 

~ = - ~ / ~ g *  ( ~ i p + ~ ) ' ~ ,  p> 0. (3 8) 
If E > 0, then there must exist a positive root w r O  and 
the solution i s  unstable. If all the E < 0, then w < 0 and 
the solution i s  stable. The value E = O  corresponds to 
the stability threshold. 

We write down also the conditions (8) in the case 

11,-H,=L, sin c p , ,  If.-H,=L, sin cp,, 

cpz=oHo-cpi 

and Eq. (27), which now takes the form 

L,Lz sin oH, 
He-Ho = * 

{L?f  LzZ+ 2L1Lp cos OH,)'" ' 

The determination of the stability of the state reduces 
thus to the following operations. We f i rs t  specify a 
certain value Ho and obtain from (40) the position of 
the representative point on the Ho(H,) curves. We then 
obtain from (39) the values of cp, and cp,, and from (37) 
we determine the value of E and its sign, which gives 
the stability criterion of the investigated state. 

Figure 7 shows, in magnified scale, the plots ob- 
tained from (40) in the periodicity interval O c  oHo c 277. 
The solid line indicates the branch corresponding to the 
plus sign in (40), the thick lines indicate the stable 
states, and the circles mark the points where E =O.  
The dashed line corresponds to the branch with minus 
sign in (40), and all the states on this branch a r e  un- 
stable. 

Figure 8 shows the values of the phase shifts cpt and 
(42 a s  functions of the field Ho, obtained from (39) for 
the two branches corresponding to the * signs in (40). 

In the case L, = L, = L, Eq. (40) takes the simpler 
form3' 

He-H,=&EL sin (oH0/2) ,  e=sign cos (oHo/2) ,  (41) 

FIG. 8. Phase shifts pt.2 of point junctions (marked by the 
numbers 1' and 2* on the curves) as  functions of the flux uHo 
at u = 5 0 0 , H I =  0 :  a-at L i = L 2 = 0 . 0 1 ;  b-at L i =  0.001, L z = 0 . 0 2 .  

for the branch with the plus sign in (40) and 

for the branch with the minus sign. Expression (37) 
for E also takes on the simple form 

The stability threshold (E= 0) corresponds in this case 
to coscp = 0 (i.e., uHo = (2n + l)a),  which coincides with 
the criterion obtained in Ref. 13 by another method for 
a symmetrical interferometer. 

If the junctions differ greatly in width (for example, 
L, << L, << I), then we get from (40) 

He-Ho=*L, sin OH,. (43 

We see  therefore that the properties of the double 
strongly asymmetrical interferometer a r e  determined 
entirely by the weakest link (L,), and the stable branch 
(43) (with the plus sign) coincides with the relation He 
- Ho = L sinoHo for a single interferometer [formula (27) 
a t  L << 11. This means that the behavior of a strongly 
asymmetrical double interferometer in an external field 
(at HI=O) i s  the same a s  that of a single interferometer 
with L = L, (see Figs. 7c, d). In particular, there a r e  
no hysteresis states (see below) a t  DL, < 1  in an asym- 
metrical double interferometer (Fig. 7e), just a s  for 
the single interferometer. It i s  also easy to show that 
the stability criterion (37) (at L - 0,  cp, - 0, cp, - oH,, 
see  Fig. 8) yields E=O at  the points cosoHo= - l / o ~ , ,  
which coincides with the stability criterion for a single 
i n t e r f e r ~ m e t e r . ~ " ~  

7. An examination of the curves shown in Figs. 5-7 
indicates that in a given external field He a double in- 
terferometer can have in the general case several stable 
states. This points to the possibility of a hysteresis 
behavior of the interferometer in an external field (cf. 
Ref. 13). If the representative point of the state lies on 

and from (39) it now follows that stable branch, then with increasing He, when the stabili- 
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ty boundary i s  reached (points marked by circles in Fig. 
7), the solution must jump over to the higher-lying 
stable b r a n ~ h . ~ '  When He i s  subsequently decreased, the 
representative point moves along the higher branch until 
it again reaches the stability boundary, where it must go 
over to the lower branch. Thus, the stability-loss 
points determine the boundaries of the possible hy- 
steresis behavior (the limits of the "superheating" and 
"supercooling" in the magnetic field, cf. Ref. 14). 
Under real conditions, the jumps from branch to branch 
need not coincide with the stability-loss points, and can 
occur earlier, for example a t  points where the f ree  en- 
ergies of the corresponding'states become equal (the 
equilibrium-transition points). To find the points of the 
equilibrium transition it i s  necessary to know the free 
energy of the system. 

The expression for the free energy G of a double in- 
terferometer can be easily obtained by a method used 
by us earlier in the case of a single ring interferometer 
(cf. Refs. 7,15). From the mathematical point of view 
the solution of the boundary problem (I), (5), (6) is  an 
extremal of the functional G, i.e., the condition 6G = 0 
must be satisfied on the solution at fixed boundary con- 
ditions. Taking this into account we easily obtain 

Here gl and g2 a r e  the energies of weak supercon- 
duc torsig2 

The third term in (44) can be written, when (6) is  taken 
into account, in the form oH2,/2, i.e., it constitutes 
the energy of the magnetic field in the cavity (o2,/8n in 
dimensional units), while the last  term in (44) is  in- 
terpreted a s  the flux of the Poynting vector through the 
edges of the junctions into the interior of the system.5' 
With the aid of (44) and (45) we can calculate the free 
energy of the system, if we know the solutions cp,(x) and 
cp2(x) for both junctions [we recall that the solution (x) i s  
determined completely by the values of cp(0) and dcp/ 
dxlx=,] . In the case of point junctions and a t  HI= 0, the 
expression for G takes the simpler form 

The positions of the points of the equilibrium transition, 
where the f ree  energies of the states corresponding to 
the lower and upper curves of Fig. 7a and b become 
equalized, a r e  shown on these figures by vertical a r -  
rows. 

We have thus demonstrated above that, within the 
framework of the assumed model, it is  possible to de- 
scribe completely the behavior of a double interferom- 
eter, namely, to find, given the external field, both the 
internal field and the configuration of the fields and cur- 
rents in both j~nc t ions ,~ '  to determine the entire spec- 
trum of the possible states (both stable and unstable), 
to find the limits of the hysteresis behavior and the 

points of equilibrium transition between the states, and 
to determine the function Z,,(He) for an asymmetrical 
interferometer. The derived equations can be compared 
directly with experiment. The results obtained above 
a r e  valid formally a t  H,>> 1, but it can be shown that for 
point junctions (Li,,<< 1) these formulas a r e  suitable 
also for arbitrary fields. In the case of junctions of 
finite width in fields He S 1, deviations from the simple 
equations such a s  (12) and (24) appear, and the oscilla 
tory curves (Figs. 2-7) assume a more complicated 
nonlinear form. To find these curves in weak fields it 
is  necessary to turn to the exact equations (3)- (6) and 
find the values of cp,,, cpo2, and Ho with the aid of rather 
cumbersome numerical calculations (cf. the similar 
problem considered in Ref. 7). 

"we use dimensionless variables, with the lengths measured 
in units of hJ (the Josephson depth of penetration. A j  - 0.1 
mm), the current is measured in units of i, (the maximum 
density of the stationary current through the barrier),  the 
field i s  measured in units of Hz = ao/2rhJA - 1 G (where die 
i s  the flux quantum, A = 2hL+ t ,  hL is the London depth, and t - is the thiclmess of the dielectric liner of the barrier),  
the flux i s  measured in units of c ~ ~ / 2 r  and the dimensionless 
area i s  o= s/hJA. 

 he plus sign in (6) is the result of the fact that on going 
around the cavity cr in a counterclockwise direction we reckon 
the phase difference between the upper and lower edges of the 
cuts Li and Lz respectively along the contour. A relation of 
the type (6) is usually written with taken with a minus 
sign, corresponding to a different definition of the phase dif- 
ference. 

3 ' ~ e  note that Eq. (41) i s  analogous to Eq. (18) of Ref. 13 (the 
correspondence can be observed by multiplying our Eq. (41) 
by o and introducing the inductance I r uL. However, (41) 
contains an additional sign factor &, which reflects the con- 
tinuity of both branches of the Ho(H,) curves (see Figs. 7a, b). 
In Ref. 13 the horizontal sections of the branches on Fig. 7a 
were not taken into consideration, therefore the authors ar- 
rived at the incorrect conclusion that in a double symmetri- 
cal interferometer the oscillations of the field Ifo@,) a re  half 
as  frequent as  in a single interferometer. In fact, a s  is ob- 
vious from Fig. 7, the number of zeros of the functions 
HoCH,) is the same for both interferometers. 

4 ' ~ n  fact, the jump has a dynamic character-when the stability 
boundary i s  reached a restructuring of the flip configuration 
and of the current takes place within a time 7 -  10"' sec. 
Examples of solutions of dynamic problems of this kind are  
given in Refs. 9-11. 

" ~ e c o ~ n i z i n ~  that E=dp/dt is the electric field intensity in the 
junction, we can respresent the pointing vector S=EH in the 
form S=iYLdp/dt. Integrating this expression with respect to 
time, we obtain the contribution-HLp& for the energy that 
flows in through the edge of the junction into the interior of 
the system. 

6 ' ~ o  determine these configurations we must find the quantity 
Ho and then obtain from (6)-(8) the values of p a  and poz. The 
"initial" values pa,  pm, and ~ ~ = d p ~ , ~ / d x l , ~ ~  determine com- 
pletely the solutions of Eqs. (1) and the corresponding config- 
urations of the field and of the current in the junctions. In 
explicit form the solution of Eqs. (1) for the case He>> 1 i s  
given in Ref. 12. 

110 Sov. Phys. JETP 51(1), Jan. 1980 G. F. Zharkov and A. D. Zaikin 110 



'I. 0. Kulik and I. I. Yanson, Effekt Dzhozefsona v sverkhpro- 
vodyashchikh tunnel'nykh strukturakh (Josephson Effect i n  
Superconducting Tunnel Structures), Nauka, 1970. 

'L. Solymar , Superconductive Tunneling and Applications , 
Wiley, 1972. 
'0. V. Lounasmaa. Experimental Principles and Methods be- 

low 1 K, Academic, 1974. 
4 ~ .  K. Likharev and B. T. Ul'rikh, Sistemy s dzhozefsonov- 

skimi kontaktami (Systems with Josephson Junctions), Mos- 
cow Univ. P res s ,  1978. 

5 ~ .  C. Jaklevich, J. Lambe, J. E. Mercereau, and A. H. Sil- 
ver ,  Phys. Rev. Lett. 12, 274 (1964). 
'R. C. Jaklevich. J. Larnbe, J. E. Mercereau, and A. H. Sil- 

ver,  Phys. Rev. 140, A 1628 (1965). 
'G. F.  Zharkov and A. D. Zaikin, Zh. Eksp. Teor. Fiz. 77. 223 
(1979) [Sov. Phys. J E T P  50, 114 (1979)l. 

'G. F. Zharkov, ibid.  71, 1951 (1976) M, 1023 (1976)l. 
'G. F. Zharkov and S. A. Vasenko, ibid.  74, 665 (1978) k1, 
350 (197811. 

"s. A. Vasenko and G. F. Zharkov, ibid.  75, 180 (1978) [48, 89 
(1978)l. 

"G. F .  Zharkov and A. D. Zaikin, Fiz. Nizk. Temp. 4 ,  586 
(1978) [Sov. J. Low Temp. Phys. 4 ,  283 (1978)l. 

I2G. F. Zharkov. Zh. Eksp. Teor. Fiz. 75, 296 (1978) [Sov. 
Phys. J E T P  48, 1107 (1978)l. 

"A. A. J. Matsinger, R. de Bruyn Ouboter, and H. van Beelen, 
Physica 94B, 91 (1978). 

"v. L. Ginzburg, Usp. Fiz. Nauk 42, 169, 133 (1950). 
1 5 ~ .  F. Zharkov and A. D. Zaikin, Kratkie soobshcheniya po 

fizike (FIAN SSSR) No. 7, 21 (1978). 

Translated by J .  G. Adashko 

Theory of pure short S - c S  and S-c-N microjunctions 

(Submitted 11 July 1979) 
Zh. Eksp. Teor. Fiz. 78, 221-233 (January 1980) 

A theory is developed for the nonstationary Josephson effect in pure S - c S  junctions (mean free path 1 
much larger than the constriction radius a) ,  and the current-voltage characteristic (CVC) of such a 
junction is obtained. The model considered for the construction was an opening of small radius 
a <G-'(O) + 1 -I)-' in a thin impermeable partition [Kulik and Omel'yanchuk, Sov. J. Low Temp. Phys. 
3, 459 (1977); Omel'yanchuk, Kulik, and Shekhter, JETP Lett. 25, 437 (1977)l. A linear response from 
an S-c-S junction was obtained with a direct current smaller than the critical value, and the resistive 
regime was investigated in the voltage region V<A near T, and in the region V>A at arbitrary 
temperatures. In the case of the S-c-N junction, the CVC was obtained for arbitrary V and T. The 
results differ not only quantitatively but also qualitatively from those obtained by Artemenko, Volkov, 
and Zaitsev [Soviet Phys. JETP 49, 924 (1979); Solid State Commun. 30, 771 (1979)l for dirty short 
constrictions. 

PACS numbers: 74.50. + v, 73.40.Gk 

INTRODUCTION z=v(~)/R+z. sin rp, ~ ( t )  =$/2, (1) 

It i s  known that weakly coupled structures of the S- 
c-S type (S-superconductor, c-geometrical constric- 
tion), which include point contacts, junctions of variable 
thickness, etc., a re  the most promising for applica- 
tions.' Although much progress was made recently in 
the study of the properties of such systems, the results 
were obtained for the so-called "dirty" constrictions, 
i.e., those whose characteristic dimensions a and d 
(which characterize the respective parameters of the 
constriction in the plane normal to the current direc- 
tion and in the same direction) greatly exceed the mean 
free path I .  

The study of the Josephson effect in S-c-S was initi- 
ated by Aslamazov and L a r k k 2  It is based on the sim- 
plified nonstationary Ginzburg-Landau equations, which 
are  generally speaking valid only for zero-gap super- 
conductors. They have shown2 that near T ,  the Joseph- 
son effect in short dirty constrictions ( I  << (a, d )  << f T) 
can be described within the framework of a simple re- 
sistive model, in which the current is the sum of an 
ohmic component and a Josephson component: 

where cp i s  the phase difference of the order parameter 
and V(t) i s  the voltage on the junction (the electron 
charge i s  assumed equal to unity). It follows from (1) 
that the current-voltage characteristic (CVC), which i s  
the dependence of the time-averaged voltage V on the 
direct current, i s  of the form 

V=R(Z2-12) 'h. (2) 

In experiment, however, deviations a r e  observed from 
the resistive model; this i s  not surprising, since the 
latter was obtained on the basis of simplified equations. 
In recent studies of the properties of S-c-S systems, 
microscopic equations have been used. Kulik and 
Omel'yanchd?, using the Eulenberger equations that 
describe equilibrium processes in superconductors, 
have constructed the theory of the stationary Josephson 
effect in short dirty microjunctions, where the follow- 
ing condition i s  valid: 

Z< (a, d )  < ( D / A )  ". (3) 

Here D =lv,/3 is the diffusion coefficient. It turned out 
that the connection between the current and the phase 
difference deviates from the Josephson relation when 
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