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A mechanism whereby an ionic conductor goes into the superionic state is proposed. The disordering of 
the cation sublattices, which consists of a shift of a cation from a site to one of the interstices of the 
same unit cell, if the number of the interstices is large, leads to an increase of the dielectric constant E of 
the crystal, since dipoles consisting of interstitial and site cations are produced in the system in this case. 
On the other hand, the shift of cations from sites to interstices with increasing E consumes less energy, 
because of the larger polarization of the medium by the dipole. As a result, with increasing T, a first- 
order phase transition from a state with low E (ordered cation sublattice) into a state with high E 

(disordered cation sublattice) can occur. At large E,  conditions become easier also for the production of 
carriers, i.e., of excess cations in other unit cells and of the vacancies that remain after their departure, 
since the Coulomb interaction between them becomes weaker. The jump of E leads therefore to a jump in 
the conductivity. 

PACS numbers: 66.30.Dn, 77.20. + y 

It is customary to single out from among the solid 
electrolytes the group of superionic conductors, which 
have relatively high ionic conductivity (a> 10-=&2-l cm-') 
above a certain temperature.' As a rule, the transi- 
tion to the high-conductivity state proceeeds jumpwise, 
with the resistance changing by several orders of mag- 
nitude. This jump differs substantially from the in- 
sulator-metal phase transition in electronic conductors 
in that the resistance in the high-conductivity phase, 
just as in the low-conductivity phase, depends exponent- 
ially on the temperature, but the activation energy in 
the former is much lower than in the latter. A transi- 
tion into the superionic state is accompanied simul- 
taneously by partial disordering of the lattice, wherein 
the translational symmetry is lost in the arrangement 
of the cations that carry  the current, but is preserved 
for the low-mobility anions (it is customary to speak 
of melting of the cation sublattice and preservation of 
the anion sublattice). 

A characteristic feature of materials that can become 
superionic is the complexity of their crystallographic 
structure. The latter manifests itself, in particular, 
in the large number of equivalent unit-cell interstices 
to which a cation can go from i t s  normal stable posi- 
tion. It must therefore be emphasized that, despite 
the prevailing opinion, the very melting of the cation 
sublattice still does not automatically lead to high con- 
ductivity. In fact, the charge transfer consists of a 
transition of cations from some unit cells to others, 
i. e . ,  i ts  necessary condition is the presence of "polar 
statesw-unit cells with either excess o r  deficit of ca- 

tions. Yet the loss of translational symmetry of the 
cations can take place also without the cations going 
from cell to cell-simply by the cation going into one of 
the interstices within the same unit cell. This kind of 
"melting" is similar in essence to the "order-disorder" 
phase transition in ferroelectrics which, as is well 
known, is usually not accompanied by high conductiv- 
ity. The reason is that in typical ferroelectrics the 
energy needed to produce the excess cations and their 
vacancies is high. It can be lower in solid electrolytes, 
but certainly exceeds the energy needed by the cation 
to leave a si te and go to an interstice in the same unit 
cell. 

At the same time, the physics of the melting of the 
cation sublattice in solid electrolytes is not clear (it 
differs from the disorder in ferroelectrics in that in 
the latter the cations become redistributed among 
equivalent positions within the unit cell, whereas in 
solid electrolytes the moves a re  from sites to inter- 
stices). In the previously advanced theories213 it  is 
postulated that attraction exists between the cations in 
the interstices, so  that when the number of cations in- 
creases formation of more remote defects of this type 
is facilitated and a first-order phase transition into a 
state with a molten cation sublattice becomes possible. 
The physical nature of the attraction, and whether i t  
exists at all, remains unclear. It is therefore desir- 
able to construct a theory of superionic conductors 
without using yet-unfounded hypotheses. The present 
paper is an attempt to construct such a theory. We 
emphasize that the mechanism proposed below for the 
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conductivity of superionic conductors is very likely not 
to be the only possible one. The degree to which i t  is 
realistic can be assessed only by a detailed investiga- 
tion of a large class of such materials. 

The principal idea of the paper is the following. Al- 
though the disordering of the lattice as a result of the 
move of the cations from sites to interstices does not 
lead by itself to the appearance of ca r r i e r s  (excess ca- 
tions and their vacancies), i t  does facilitate substan- 
tially their formation. The reason is that the disorder 
is accompanied by an increase of the dielectric constant 
c of the crystal, and this weakens the Coulomb interac- 
tion between the cation that departed to another unit cell 
and the vacancy left behind. Thus, the problem re- 
duces to a determination of the character of the temper- 
ature dependence of the dielectric constant. Since by 
definition the number of carr iers  (excess of cations and 
vacancies) per unit cell is small, their presence can be 
neglected in the calculation of c(T), and the crystal can 
be regarded as an insulator (this is permissible even 
at carr iers  densities - 1 0 ~ ~ - 1 0 ~ ~  ~ m - ~ ) .  

The increase of c because of the transition of the ca- 
tions from sites to interstices is due to the fact that 
each such transition produces in the crystal an equiv- 
alent dipole whose positive charge is in the interstice 
and the negative charge in the site. Since the number 
of interstices is large, the dipole orientation can be 
practically arbitrary, i. e.  , the dipole can align itself 
with the external electric field and increase the dipole 
moment of the system (in contrast to an ordinary ferro- 
electric, where the ion position in the interstices is 
described by an equivalent spin 1/2, the position of the 
ion in our case can be described by the classical spin). 
The departure of the cation to the interstice increases 
greatly the polarizability of the unit cell, since the 
length of the produced equivalent dipole is very large- 
of the order of the lattice constant. In essence, the 
system of equivalent dipoles in the crystal lattice is the 
analog of a solution of polar molecules in a nonpolar 
liquid. 

The increase of the number of equivalent dipoles with 
rising temperature should be due to purely statistical 
causes, even if we disregard the interaction of the 
equivalent dipoles with one another. Their number 
must then increase continuously with temperature, and 
the cation sublattice should become disordered a t  
temperatures - ~ / l n z ,  where L is the energy of the 
transition of the cation from the site to the interstice 
and z is the number of interstices in the unit cell. In 
the absence of interaction between the dipole, this dis- 
order, not being a cooperative phenomenon, is like- 
wise not a phase transition. The situation changes 
qualitatively i f  account is taken of the interaction be- 
tween the produced dipoles, which lowers the dipole- 
production energy ~ ( n )  with increasing dipole concen- 
tration n. The resultant positive feedback between the 
dipoles can lead, under favorable conditions, to a first- 
order phase transition from a state with small c and n 
into a state with large c and n. 

The reason for the decrease of ~ ( n )  with increasing 
n is that the neighboring dipoles a re  oriented relative 

to each other so  as t o  ensure a gain in the energy of 
their interaction with one another. Assume that some 
dipole distribution is produced and a new dipole is 
created in some unit cell. Then the neighboring di- 
poles should turn somewhat, so that some correlation 
should ar ise  in their directions, i. e. ,  a short-range 
order should exist in the directions of the dipoles. But 
this, generally speaking, does not mean the appear- 
ance of a ferroelectric long-range order, although in 
some cases i t  is apparently possible. The situation 
here is similar to that realized in a gas of charged 
particles. Screening of the charge by other charges, 
which is precisely a manifestation of the short-range 
order and their arrangement, lowers the energy of the 
system, although no long-range order is produced in 
the gas. 

We shall take into account the influence of the dipoles 
on one another in a self-consistent manner. The energy 
of their interaction with one another is represented as 
the energy of polarization, by the dipole, of a medium 
having a dielectric constant that depends on the dipole 
concentration. A similar approach is used in 
Onsager's theory of the dielectric constant of a gas of 
polar molecules (see, e. g., Ref. 4), but there the di- 
pole concentration is assumed fixed, whereas here i t  
is determined from the self-consistency equation. 

The abrupt increase of the dielectric constant in the 
first-order phase transition should be accompanied by 
a jump in the number of carr iers ,  since the energy of 
production of a pair of ca r r i e r s  (an extra cation and a 
vacancy), which is the result of the departure of the ca- 
tion "its own" to a "foreign" interstice, is of the order of 
e2/ca, where a is the lattice constant. It must be noted 
that in addition to the number of carr iers ,  the ca r r i e r  
mobility, which is of the hopping type in solid electro- 
lytes, also depends exponentially on the temperature. 
The transition from one unit cell to the neighboring one 
is a classical above-barrier motion. The correspond- 
ing potential barr ier  is determined mainly by the short- 
range forces and apparently does not change substan- 
tially with increasing E .  Thus, a phase transition with 
a jump of c leads to a jumplike increase in the number 
of carr iers  and accordingly of the conductivity; i t  is 
also accompanied by a jumplike decrease of the con- 
duction-activation energy. 

1. DIELECTRIC CONSTANT 

We assume the following model of the structure of a 
solid electrolyte: for each cation site there a re  z >> 1 
energywise equivalent interstitial positions equidistant 
from the site (here and below, unless otherwise stip- 
ulated, we refer to the sublattice that becomes dis- 
ordered, while the second sublattice ensures the rigid- 
ity of the crystal). We consider only the dipole exci- 
tations described above. Their number n per cation is 
equal to 

where the energy A(n) of an individual excitation is it- 
self a function of n. Indeed, the dipole moment P which 
ar ises  when an ion goes from a site to an interstice po- 
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larizes the dielectric medium and as a result gains an 
energy -P. E, , where E, is the electric field pro- 
duced at the dipole by the medium polarized by the di- 
pole. Naturally, the intensity of this field depends on c 
and consequently on n. Short-range forces can be re- 
garded as independent of temperature, and then A(n) is 
given by 

Here A, and co a re  the excitation energy and the dielec- 
t r i c  constant as T - 0, i.e., in the absence of ions in the 
interstices. 

By virtue of the condition z >> 1, these defects a re  re- 
garded a s  classical dipoles. The electric field E, and 
the dielectric constant c a re  calculated within the frame- 
framework of the Onsager model, which is the simplest 
formalism suitable for the description of polar dielec- 
tr ics.  According to this model, a point dipole is 
placed at the center of a vacuum sphere with radius R 
(It is the order of the lattice constant a). The remain- 
der  of the crystal is regarded as a continuous medium 
with dielectric constant equal to the actual & of the sys- 
tem. Within the framework of this model 

e-i P 
q-2--. 

2e+l R3 

The polarizability of the system under consideration 
consists of the polarizability of the lattice in the ab- 
sence of cations in the interstices and the polarizability 
of the system of dipoles produced as a result of the 
transitions of the cations into the interstices. The sys- 
tem is thus the analog of a solution of dipole molecules 
in a nonpolar liquid. According to the Onsager model, 
the dielectric constant is then determined from the 
equation4 

where N = a" is the number of unit cells per unit vol- 
ume, and a0 is their polarizability as T - 0. We neg- 
lect here the lengthening of the dipole moments P under 
the influence of the polarized medium, inasmuch as 
under typical conditions the moment induced by the field 
is small compared with the dipole's own moment. 

We note that the calculation of E ,  and & within the 
framework of the Onsager model constitutes in effect 
allowance for the dipole-dipole interaction in the spirit 
of the self-consistent-field approximation. 

The radius R in (4) is eliminated with the aid of the 
Onsager approximation, according to which the sphere 
occupies a volume equal to that of the unit cell 

and this, as seen from (4) with n = 0, is equivalent to 
satisfaction of the Clausius-Mosotti relation for  co: 

Substituting (5) and (5 ') in (4) we obtain an equation for 
c: 

This expression is not convenient for direct calcula- 
tions, and we shall therefore use hereafter an inter- 
polation formula of the Langevin type 

which is asymptotically valid both a t  (E- to)/co << 1 and 
at  cO/c << 1. The interpolation (6 ') is accurate enough: 
in the entire range of parameters i t  yields for  & values 
that differ from those calculated by Eq. (6) by not more 
than 10%. This accuracy is perfectly satisfactory, 
since none of the Onsager-theory results were obtained 
with higher accuracy. 

Substituting (6'), (5 '), (3), and (2) in (1), we obtain, 
accurate to terms of order  1/2c, the molecular-field 
equation for the determination of n: 

The main physical parameter of the problem is the 
quantity A, equal to the ratio of A, to the maximum pos- 
sible energy gain due to polarization. At A >> 1 the 
number n increases continuously and monotonically with 
increasing temperature. When A decreases to values 
of the order of unity, a temperature region appears in 
which Eq. (7) does not have a unique solution (see Fig. 
1 below); this indicates, as usual, in the absence of a 
change in symmetry, that a first-order phase transi- 
tion takes place in the system. Since the linear dimen- 
sion of the dipole is of the order of the lattice constant 
a, the quantity p2/coIt3 is of the order of eZ/coa-0.5- 
1 eV, i. e . ,  i t  is of the order of A,. Thus, a situation 
with A- 1 is possible in real crystals. In order fo r  Eq. 
(7) to have several solutions belonging to the same con- 
tinuous curve, i t  is necessary and sufficient that the 
plot of n against the dimensionless reciprocal temper- 
ature x have points a t  which dx/dn= O(dn/dx = m) . 

FIG. 1. Dependence of the number of dipole excitations n on the 
dimensionless reciprocal temperature a t  z = 20 (A,,= 1.4) and 
at  different values of the parameter A (1 -A =.a; 2 -A = 1.3; 
3 -A=1 .1 ;  4 -A=1 .05 ;  5 - A = 1 ) .  The thicklinesdenote the 
physically realized states, the arrows mark the phase transi- 
tions. 
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Differentiating (7) with respect to n and recognizing that 
dx/dn= 0, we get 

It is clear from the foregoing that phase transitions 
can occur in the system if A does not exceed a certain 
value A,,, which, can be calculated from the condition 
that Eqs. (7) and (8) be simultaneously solvable. Sub- 
stituting x from (8) in (?), we obtain an equation for n 
a t  the points dx/dn =0: 

The expression in the left-hand side of (9) is maximal 
at [(I - n)/n]1'2 = 1 + 2'". Correspondingly 

2. FREE ENERGY AND PHASE TRANSITIONS 

For  a more detailed investigation of the phase transi- 
tion that occurs if A <A,, (in particular, to determine 
the transition temperature), i t  is necessary to make up 
a functional for the free energy. In the spirit of the 
self-consist-field approximation the free energy F per 
cell is given by 

T 
F= A (n) dn- - ln ( c ~ ~ N z " " ) ,  CNnN- - N! 

N 
0 

(N-nN) ! (nN) ! ' (11) 

where N is the number of cells per unit volume. The 
f i rs t  term in (11) is the energy of defect formation; 
c $ ~  is the number of possible ways of exciting nN ions 
in N cells, while the second factor is the number of 
methods of placing nN ions in the interstices. 

Using (21, (31, and 16 1, ( l l ) ,  and Stirling's formula 
fo r  the factorial of a large number (hy! = y lny - y), 
we obtain 

F=T[ (A-l)xn+ln ( l+xn) -n lns+( l -n)  In ( f - n )  +n ln n ] .  (12) 

We note that Eq. (7), as usual, follows from the con- 
dition B F / B ~  = 0. Using the dependence of n on the dim- 
ensionless reciprocal temperature x [ E ~ .  (?')], we can 
simplify expression (12) for the free energy: 

At A <&, there is a temperature region in which Eq. 
(7) has three solutions for each value of x.  We desig- 
nate them n ~ ,  n ~ ,  and n3 in increasing number of ex- 
citations, and the corresponding values of the free 
energy (13) a re  designated PI, F,, and F3. The largest 
number of excitations n3 and the smallest nl correspond 
to minima of the free energy, while nz corresponds to a 
maximum. At a certain temperature T, the three ener- 
gies F1 and F, become equal 

h (T.) --F,(T.). (14) 

Below T, we have F ,  <F3 and the "ordered" state (nl 
<< 1) is stable, while above T, we have F1 >F3  and the 
system is in a "molten" state (n3 - 1). Thus, a t  a temp- 
erature T, a first-order phase transition takes place 
in the system and is accompanied by a jump in the 
number of excited ions ("melting" of the lattice) and ac- 
cordingly by an increase of the dielectric constant. 

FIG. 2. Dependence of the dielectric constant on the dimen- 
sionless reciprocal temperature at z = 20 (A,,= 1.4) and at 
different values of the parameter A (1 -A = 2; 2 -A = 1.45; 
3 -A = 1.3; 4 -A = 1.05; 5 -A = 1). The arrows mark the phase 
transitions. 

The transition temperature is obtained by simultan- 
eously solving (l4), (131, and (7). 

Figure 1 shows the results of the numerical calcula- 
tion of the function n(ho/T) and of the transition temp- 
eratures a t  z = 20 (A,, = 1.4) and a t  various values of 
A. At A= 1.3 the value of n is altered by the transi- 
tion by more than one order of magnitude, while at 
A = 1.05 the change exceeds four orders  of magnitude. 

To estimate the change of the dielectric constant, we 
rewrite (6 ') in the form E = cO(l + xn), where x is de- 
fined in (7). The dependence of E / E ~  on the reciprocal 
temperature a t  the different values of the parameter 
A is shown in Fig. 2. As seen from Fig. 2, in the 
phase transition the dielectric constant can increase 
by more than one order of magnitude. When the in- 
equality A < A,, is satisfied with sufficient margin, & 

follows closely in the disordered state the Langevin in- 
terpolation (& - T-') . Deviations from linearity of & in 
T" a re  due to the fact that a t  T > T, the number of di- 
pole excitations continues to increase with temperature. 
When A approaches A,, this can lead to an increase of 
c with increasing temperature in the region T >T, 
(curve 3 of Fig. 2).  It is interesting that in the case 
A >A,,, when there is no phase transition in the sys- 
tem and accordingly there is no jump of E, sizable an- 
omalies of the dielectric constant should be observed. 
Thus, even a t  A = 2 (curve 1 of Fig. 2) E increases with 
temperature by more than two times, and with further 
increase of temperature i t s  change is close to that 
given by Langevin. 

If A is less  than A,, by at least lo%, then the values 
of nl are  exponentially small and n3 is of the order of 
unity. Therefore it is perfectly sufficient to use in the 
calculation the approximation 

which is asymptotically exact in the indicated limits 
within the framework of the Onsager model. This con- 
f i rms the applicability of the interpolation (6') for the 
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investigation of the phase transition. 

So far  we have disregarded the change of the char- 
acter of the oscillations when the ions move from the 
sites to the interstices. To take this change into ac- 
count i t  is necessary to add to the free energy (111, (12) 

where w ,  and w ,  a r e  the frequencies of the normal vi- 
brations in the sites and the interstices, respectively. 
As seen from (11) and (12), this leads only to a re- 
normalization of z :  all the equations must contain in 
place of z 

Since usually the coupling in the interstices is weaker 
than a t  the si tes (thus, w ,  < w , ) ,  this can increase ef- 
fectively the number z and by the same token weaken 
the criterion for the presence of the phase transition 
(10). 

Nor does allowance for the presence of carr iers  (ex- 
cess cations and vacancies) alter the results, since 
these can be regarded as separated from the dipole ex- 
citations by a sufficiently large energy gap, and their 
number thus remains exponentially small also in the 
"molten" state. Their presence leads only to a screen- 
ing of the dipole-dipole interaction. At a screening 
radius greatly exceeding the lattice constant, however, 
a situation to which incidentally the high values of E 

contribute, this results only in small corrections to 
the polarization energy. 

A behavior of c similar to that obtained in our model 

was recently observed experimentally in the superionic 
conductor Li3N. At low temperatures, the low-fre- 
quency dielectric constant E is the same as in the in- 
frared region. With increasing T, the value of c f i rs t  
increases, but a t  80-170 K i t  decreases like 1/T (no 
measurements were made at high temperatures because 
of the high conductivity). The authors of the cited art- 
icle attribute the Langevin decrease of E to local ionic 
motion within the unit cell, but no direct experimental 
proof has yet been obtained fo r  this statement. The 
local "melting" by itself, as indicated above, is not 
enough for high conductivity to appear. Owing to the 
increase of E, i t  only decreases the activation of the 
conductivity, but still to a finite value. Therefore, i f  
the temperature is not too high (as was apparently the 
case under the experimental conditions) the resistance 
can be high enough. We note also that the conductivity 
of Li3N exhibits no anomalies with further increase of 
temperature, and merely increases exponentially. 

The authors thank A. P. Levanyuk for a discussion of 
the results. 
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