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The gauge-field formalism earlier by Dzyaloshinskii and Volovik [J. de Phys. 39, 693 (1978); Ann. Phys. 
(1980)l for the description of continual dynamics of defects in condensed media is developed further. The 
Poisson brackets for hydrodynamic variables such as gauge fields are obtained from an analysis of the 
dynamics of an isolated defect. They turn out to be different for fields describing distributed vortices in 
He Ir and distributed disclinations in planar magnets. A complete system of hydrodynamic equations is 
obtained for a lattice of vortices in rotating Herr. The spectrum of the Tkachenko waves is obtained, 
with dissipation taken into account. A generalization of the equations obtained for planar magnets to 
include the case of nonplanar magnets with linear defects and spin glasses is proposed. The fourth spin- 
glass low-frequency mode due to defect motion is obtained. 
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INTRODUCTION zero. As a result, the defects more together with the 
medium in the absence of dissipation, i.e., have no mo- Interest has been evinced recently i n  the dynamics of 

various condensed media with structure defects. These tion of their own. Therefore the equations obtained in 
Ref. 8 a r e  valid only in the limit of a strong interaction include crystals with continuously distributed disloca- 
between the defects and the medium. tions and disclinations (see, e.g., Ref. 1); superfluid 

HeII with a system of quantized vortices produced eith- 
e r  when the vessel is rotated o r  in the presence of a 
chemical-potential gradient applied to the system as a 
result of an effect similar to the nonstationary Joseph- 
son effect in superconductors2; liquid crystals with sys- 
tems of disclinations that can be produced by applica- 
tion of a difference between angular velocities (see, 
e.g., Ref. 3), etc. One can include among these sys- 
tems also spin glasses, which can be regarded as the 
continual limit of a magnet with d i s c l i n a t i o n ~ , ~ . ~  and 
two-dimensional systems with statistical defects.' 

Although defects in condensed media a r e  classified in 
accord with a general approach connected with homo- 
topic groups," no general approach to the description of 
the dynamics of distributed effects has yet been devel- 
oped. Common to the derivation of equations of hydro- 
dynamics for media with defects is apparently the 
method of Poisson brackets (see Refs. 5, 8, 9), in 
which the dynamic equations a r e  obtained with the aid 
of the ~ i o u i i l l e  equations if the energy of the system is 
specified as a function of the variables that character- 
ize the hydrodynamic motions of the system, and if the 
relative Poisson brackets for these variables are  speci- 
fied. So far, however, there is no general method of 
introducing the hydrodynamic variables responsible for 
the dynamics of the distributed defects. The method 
proposed by Dzyaloshinskii and one of us4 for describ- 
ing defects with the aid of gauge fields, while suitable 
for the case of defects such as singular lines, must be 
substantially modified if i t  is to describe systems with 
pointlike singularities and  soliton^.'^ In another paper, 
Dzyaloshinskii and one of us8 consider systems with 
only linear topological defects, and therefore gauge 
fields are  introduced a s  the hydrodynamic variables re-  
sponsible for the defects, under the assumption that the 
Poisson brackets between these variables a re  equal to 

The purpose of the present paper is to lift this re- 
striction and find the Poisson brackets for gauge fields. 
As will be shown below, these Poisson brackets depend 
on the dynamics of the isolated defects and can be dif- 
ferent for  different condensed media, even if the defects 
a r e  described by the same homotopic group. Therefore 
an individual derivation of the Poisson brackets i s  
needed for each condensed medium with defects. We 
confine ourselves to two such systems: the vortex lat- 
tice in rotating He11 a t  T # 0 (the case T = 0 is described 
briefly by us earlier1'), and a planar magnet in which, 
if the system is two-dimensional, there can exist a non- 
zero equilibrium concentration of def ects-disclina- 
tions. In either case, the space of the internal states 
constitutes a one-dimensional unitary group U,. In the 
f i rs t  case this is the group of gauge transformations, 
and in the second i t  is a group of planar rotations. 
Therefore the defects in both systems a re  described by 
the same homotopic group IIl(U,) =Z.  

In Sec. 1 we present the Poisson brackets for  the 
variables that describe He11 without vortices. These 
brackets yield the known equations of the hydrodynam- 
i c s  of HeII, including the equation of motion for  the 
density pS of the superfluid component. In Sec. 2 we in- 
troduced, in place of the phase Q, of the condensate, a 
gauge-like vector field vS whose solenoidal part  de- 
scribes the vortex density, and obtain the Poisson 
brackets for the components of + with one another and 
with other variables. In Sec. 3 a re  added variables that 
describe the displacements of the si tes of the vortex 
lattice produced when a vessel with He11 is rotated. 
The result is the complete system of equations for the 
hydrodynamics of rotating HeII. In Sec. 4, starting 
from the derived equations, we investigate the spectrum 
of the Tkachenko waves. In Sec. 5 a re  obtained the 
Poisson brackets for  variables describing a planar 
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magnet with disclinations. These variables include. Therefore 
besides gaugelike fields, the density of the intrinsic 
momentum of the defects. The results a r e  generalized 
in Sec. 6 to the case of a nonplanar magnet with dis- 
clinations and to spin glass. 

1. SUPERFLUID He11 WITHOUT VORTICES 

We consider f i rs t  superfluid He11 in the absence of 
vortices. The variables that characterize the hydrody- 
namic motions in He11 are  the mass density p, the mo- 
mentum density p, the entropy density S, and the phase 
of the condensate (or the phase of the order parameter) 
@. The equations of motion for these variables in the 
absence of dissipation are  the Liouville equations, for 
example 

with a Hamiltonian that constitutes the total energy of 
the system: 

To specify the equations concretely, i t  is necessary to 
know the relative Poisson brackets for the hydrodynam- 
i c  variables and the dependence of the energy on these 
variables. To write down the Poisson brackets we re- 
peat briefly the reasoning advanced in Ref. 8. 

The hydrodynamic variables include the conserved 
quantities p and p, which are  the densities of the gener- 
ators of the symmetry transformations, namely: of the 
translation and of the gauge transformation. Let a 
small  shift u(r) and a small  change of phase ~ ( r )  be the 
infinitesimal parameters of these transformations. 
Then the Poisson brackets of any variable A with p and 
p take the form 

{P, A) -6.4 (r') 1611 (r) , 
{ ~ ( r ) ,  A(r1)}=6A (r1 )18~(r ) ,  

where 6A in  the right-hand sides stand for the changes, 
which depend on u and (p, of the value of A under the 
small transformations. We write down the changes of 
all the hydrodynamic quantities under these transforma- 
tions: 

Using (1.1)-(1.6), we obtain the following nonzero 
Poisson brackets : 

{pZ(r), ph(r') )  PA(^) V t - p l ( ~ )  VL) 6 (r-r'), (1.7) 
{pi (4, P ( 4  1 =p(r) V16 (I-r'), (1.8) 
{p,(r), S(rt) )=S(r)  Vt8(r-r'), (1.9) 
{p,(r), Q (r')} =-Vt@6(r-r'); (1.10) 

{P(I), ~ h ( ~ ' )  1 = - P ( ~ ' )  vh'8(r-r')--{~h(~') 9 ~ ( ~ 1 ) ~  
(1.11) 

{p(r), @ (r')} =-mfi-'6(r-rr) . 

In some situations (for example, near the transition 
temperature), the system of hydrodynamic equations 
must be supplemented by one more quantity-the super- 
hyperfluid component density pS, which i s  the modulus 
of the order parameter (see Ref. 12), and as such is 
canonically conjugate to the order-parameter phase @. 

{pa(r), @ (rr)) =-mh-%(r-r'), (1.12) 

and, since pS is transformed in accordance with the 
formula 

6pS=-8ufVtp'-p'V&uf, 

i t  follows that 

{pi(r), f(r')) =pn(r) V&(r-r'). (1.13) 

The remaining Poisson brackets a re  equal to zero. The 
Hamiltonian of the system depends also on pS: 

With the aid of the Liouville equations we obtain from 
the Hamiltonian (1.14) and the Poisson brackets (1.7)- 
(1.13) all  the equations of the nondissipative dynamics 
of HeII. The dissipation can be introduced in standard 
fashion in terms of the dissipation function R (see Ref. 
13), which depends on variables that a re  the thermo- 
dynamic conjugates of the variables p, p, pS, S, and *. 
Let A be any of these variables, except the entropy; 
then the equation for this variable, with allowance for  
dissipation, is 

It is necessary to add to the equation for  the entropy a 
term that describes the entropy production. In the case 
when R is a quadratic form of i t s  variables, this term 
is equal to ~R/T: 

as 
- + {S, H)=-tiR/6T+ZR/T, 
a t  

where T = ~E/BS is the temperature. 

To write down the equations we must specify the 
forms of H and R. Let the energy density e be given by 

where vS= @/m)v@ is the superfluid velocity. Then 

6H a 8  p-p'v' 
-=-=- = v", pn=p-p', 
6~ OP P" 

The quadratic form for the dissipative function R is 
chosen as follows (see Refs. 14 and 12): 

i + - 6, (V (p' (vS-v") 1)' + c1 (Vv") V (p' (v*-vn) ) 
2 
1 1 1 

+ T ~ ( V T ) + -  y(p'-V'(aVpl)+--(v'-vn)")'. 
2 2 

(1.22) 

In this case the hydrodynamics equations (1.15) and 
(1.16) take the form 

,j+v (p'v'+pnvn) =0, (1.23) 
ap,~at+v,n,,=o, (1.24) 

where the momentum flux density tensor is 
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Here p is the pressure 

Next 

These equations coincide with those given in the review 
of Ginzburg and Sobyanin'' and in Khalatnikov's book,14 
if the function a is chosen in a definite manner ( a  
=E'/8m2ps). This confirms the statement that pS and 9 
a re  canonically conjugate variables, which dictates the 
form of the Poisson bracket (1.12). In this connection, 
we call attention to the substantial difference between 
the approaches used by Dzyaloshinskii and one of us8 
and by Lebedev and Khalatnikova to obtain the Poisson 
brackets. In contrast to the former,  the latter deter- 
mine not completely, the density of the generators, but 
only their action on the order parameter. Therefore in 
principle the Poisson brackets in Ref. 9 must be supple- 
mented with those missing par ts  of the generated dens- 
ities, which act  on the normal pa r t  of the system, for 
otherwise contradictions will arise.  For example, the 
momentum density j is defined in Ref. 9 in t e r q s  of the 
order parameter and i t s  canonically conjugate variable, 
i.e., in our notation 

j=p'tim-'VQ=p'v'; 

and a t  the same time i t  is implicitly assumed [see Eq. 
(24) of Ref. 91 that j = p 9 .  

The derived equations can be easily generalized also 
to the case of a charged liquid, for example, a super- 
fluid electron liquid in metals. In this case two new 
variables a re  added: the vector potential of the electro- 
magnetic field A and the electric induction D. The only 
additional nonzero Poisson bracket takes, according to 
Dirac, the form (c is the speed of light) 

{At  ( r )  , D,(r t )  ) =kc8116 (r-r'). 

It should only be recognized that the energy must be 
written in a gauge-invariant form 

2. SUPERFLUID He II WITH VORTICES 

We now explain how to supplement the system of Pois- 
son brackets in the presence of vortices in Hen. We 
a re  interested in a continual description of the vortices 
when each element of the volume contains many vor- 
tices, and the velocity 9 is assumed equal to the aver- 
age of the velocities of the individual vortex filaments 
over the fields. Now on the average curl  vSf 0, s o  that 
the relation vS= (E/m)v9 is meaningless, although i t  
retains i ts  meaning locally in  the interval between vor- 
tices. Therefore in place of @ we must introduce into 

the system of variables the vector vb, all  three compo- 
nents of which a r e  independent. It is easy to write the 
transformation of vS under translations and gradient 
transformation: 

We call attention to the fact that under the gradient 
transformation vS transforms like the gauge field that 
corresponds to this group of symmetry transformations. 
In the general case (see Ref. 8) on going to the contin- 
uous description of a system with linear topological de- 
fects one introduces as the hydrodynamic variables the 
gaugelike fields in place of the order parameter. 

Using (2.1), (1.1), and (1.2) we get the following Pois- 
son brackets 

In addition, since locally vS is connected with the grad- 
ient of the phase, we obtain from (1.12) 

{pS(r) ,  v*(r ' ) }=V6(r-1' ) .  (2.4) 

It remains to find the Poisson brackets between the 
components of vS themselves. To this end we must con- 
sider the dynamics of an isolated vortex. Let the vor- 
tex line r be specified in parametric form x,(a), where 
a can be chosen to be the length of the vortex. In this 
case dx,/da is a unit vector tangent to the vortex line. 
Since the phase 9 changes by 2nv (v is an integer) on 
going around the vortex, the circulation of the super- 
fluid velocity around the vortex line is 

Outside the vortex, curl vS= 0, and on the vortex line 
itself curl  vS has a 6-function singularity: 

ax 
rot v"=xv J do - 6 (r-x(o) ) 

a0 

It is easily seen that (2.5) follows from (2.6). If the 
number of vortices is large, i t  is necessary to sum 
(2.6) over all the vortex lines: 

Therefore the problem of finding the Poisson brackets 
for  the components of curl vS reduces to the problem of 
finding the Poisson brackets for the components of x(a). 
The latter are  obtained from the equations of motion of 
an isolated vortex. 

There a r e  disagreements in  the literature concerning 
the dynamics of an isolated vortex in superfluid He11 a t  
T # 0 (see Putterman's book,15 on the one hand, and the 
papers by ~ordanski; '~ and Sonin,17 on the other). There 
is, however, a region of parameter values where the 
differences a r e  reconciled, and the equations of motion 
take the form 

If extraneous forces act  on the core of the vortex, then 

where v: is the superfluid velocity produced at the loca- 
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tion of the given vortex element by the remaining vor- 
tex elements and by the other vortices. Therefore the 
left-hand side of (2.8) is the Magnus force acting on the 
vortex element and is produced when the vortex velocity 
a d a t  differs from the velocity vS, of the superfluid com- 
ponent. The right-hand side in (2.8) is the dissipative 
force that compensates the Magnus force and ar ises  be- 
cause of the motion of the vortex relative to the viscous 
normal component. 

According to Putterman,15 this equation is valid when- 
ever the two-velocity dynamics equations a r e  valid. 
The friction coefficient A is connected with the second- 
viscosity coefficient L, by the relation A =  b,pzxv. Ac- 
cordirg to ~ o r d a n s k c  and S ~ n i n l ~ * ' ~  A is connected with 
the f i rs t  viscosity 7: 

and the equation holds only in  the low-viscosity limit 
9 <<p"x. We shall assume a t  any rate that this condi- 
tion is satisfied and limit ourselves by the same token 
to the temperature 1.6 K< T < T,. If furthermore the 
condition A << pSu is satisfied, then a d a t  in the right- 
hand side of (2.8) can be replaced by 

The equation can then be rewritten in standard form 
(1.15): 

where 

p'xv 6x  

under the condition that the Poisson brackets fo r  the 
components x take the form 

1 ax, 
(xi ( a ) ,  xh (a ' ) )=  -- e.,, -6 (0-0').  

p"v a0 

We point out that a similar Poisson bracket was ob- 
tained by Rasetti and Reggel' from the Lagrangian de- 
scription of the motion of a vortex with the aid the ca- 
nonical Dirac formalism, but instead of ps they obtained 
p, since they considered the case T =  0, when pS=p. 

Using (2.11) and (2.61, we calculate 

(V,".'--V," 
{ ( ro t v ' )  ,, (rot v')k)=-e'n'V,e"'V,' a ( r - T O )  . (2.12) 

Integrating this equation, we can find the Poisson 
brackets for the components of vS: 

It must be noted that integration can produce in (2.13) 
additional terms whose curl is zero. The criterion for 
the selection of these terms is provided by the Jacobi 
identities for the system of Poisson brackets (1.7)- 
(1.91, (2.2)-(2.41, and (2.13), which require that these 
terms vanish. Thus, in contrast to the assumptions 
made in the preceding we have obtained non- 
zero Poisson brackets (2.13). 

3. HYDRODYNAMICS OF A VORTEX LATTICE IN 
ROTATING He II 

- 

We now use the obtained Poisson brackets to derive 
the equations of the hydrodynamics of Hen in a rotating 
vessel. It must be recognized here that the vortices in 
the rotating vessel form a lattice, and consequently the 
symmetry, of the state of the system with respect to 
translations is violated, s o  that an additional hydrody- 
namic variable appears, namely the displacement of a 
vortex from the equilibrium position. To describe the 
two displacement components in a plane perpendicular 
to the vortex lines, we have introduced in our ear l ier  
paper1' two functions Xl(r) and X,(r). We recall that 
these functions specify two se t s  of surfaces Xl(r) =Cl 
and X,(r)= C,, the lines of intersection of which a r e  the 
vortex lines. Therefore the gradients of these functions 
a r e  perpendicular to the direction of the vortices, i.e., 

vX, rot v'=o, y=1,2. (3.1) 

The constants Cl and C, a r e  assumed discrete values, 
for example, integer Nl and N,, which number the vor- 
tices in the lattice. In the continual description, Cl and 
C, take on a continuous s e t  of values, and X, become 
continuous hydrodynamic variables. 

The Poisson brackets between the quantities Xl and 
X, can be obtained by going to the continual limit in 
(2.111, in which v must be se t  equal to +1, since the 
lattice consists of identical vortices. We shall show 
how to do this using as an example straight vortices 
directed along the rotation axis z [then x i  = (x, y)]. Gen- 
eralization to the case of curvelinear vortices will be 
obvious. 

We rewrite (2.111, replacing o with z and recognizing 
that the coordinates of different vortices commute with 
one another, in the form 

In the continual limit we make the substitutions N,-2, 
and N,-& (we have assumed the particular case of 
functions X, that take on integer values on the vortices): 

We now change from the variables x,(z,X,) to the in- 
verse variables - % , ( ~ , x , ~ )  andZ,(z,x,y): 

a x ,  ax, ax, ax, 
{ X , ( r ) , X z ( r f ) ) =  (-----) ax  a y  a y  ax { , Y I  

- ax, a x ,  a x ,  ax, 6(~-~')6(x,-x,')6(X~-Xa') - ----- 
( g r a y  a l a s  ) - ~ p '  

= - 
6 (z-z') 6 (2-2') 8 ( y - y f ) -  6 (r-r') . 

XP" XP' 

In the general case, transforming to arbitrary functions 
x, (R,), we obtain 

where J is the Jacobian of the transformation from the 
variables X, to 2, and is equal to the ratio of the areas  

J = I  [FX,, V X , I  111  [ v x i ,  va2i I .  

The a rea  I [v',, vZ,] I is equal to the a rea  of the cell in 
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the reciprocal two-dimensional lattice, which coincides 
with the density of the vortex filaments I curl  vS ( /u .  
Therefore, taking the condition (3.1) into account, we 
rewrite the Poisson bracket (3.2) in  final form: 

(rot  v*, [ V X , .  V X I I  ) 
6  (r-r')  . 

We obtain similarly 

Finally, the last  nonzero Poisson bracket follows from 
the law of transformation of the variables Xu by the ro- 
tating 

6 X , ( r )  =X,(r -6u)  -X, (r )  =- (GuV) X,. 

We obtain then 

{ p ( r ) ,  X,,(rl)}=-VXu6 (r -r ' ) .  (3.5) 

Thus, Eqs. (1.7)-(1.91, (2.2)- (2.41, (2.13) and (3.3)- 
(3.5) yield a complete system of Poisson brackets for 
the hydrodynamic variables in rotating HeII. The equa- 
tions of hydrodynamics take the form (1.151, (1.16) with 
a Hamiltonian that can be written, for HeII in a vessel 
rotating with angular velocity S2, in  the following gen- 
era l  form: 

Here 

ax, ax, 
gik= C-- axi ax, 

F l . 2  

is the metric tensor andg;, is the value of this tensor 
in the undeformed lattice. 

We do not present the equations of motion in general 
form, since they follow automatically from the Poisson 
brackets, and confine ourselves to a linear approxima- 
tion with the concrete forms of the energy & and of the 
dissipation function R in this approximation. In the lin- 
e a r  approximation we introduce in place of X, the dis- 
placements of the lattice from the equilibrium position 
in accord with the formula 

We express the energy & in the form 

e-'/,p' (v'-[PX r ] ) ' +  (p-p'v'- (p-pa) [ Q X r ] ) 2 / 2 ( p - p a )  
+ea(p, p', 8) +'/zp'(K, (VUU)'+K,(VU)  ' + K , ( h / a z ) ' ) ,  (3.8) 

and the dissipation function in the form 

Here R is given by Eq. (1.22), and the increment to i t  
describes the friction of the vortices against the vis- 
cous normal component. This increment is none other 
than the dissipation function (2.10) for an isolated vor- 
tex, multiplied by the density of the vortices 

I rot v' 1 / x = 2 Q / x .  

In fact, recognizing that 

a e / a ~ ~ = = p * ( ~ * - v ~ ) ,  

and that the force 
p'[vW X  2 Q ] - 6 ~ / 6 ~  

is the force acting on 2n/u  vortices, i.e., is equal to 

we obtain Eq. (2.10) multiplied by 252/x. In principle it 
is possible to take into account in R also the anisotropy, 
but i t  is usually small  to the extent that the ratio of the 
interatomic distance to the distance between vortices is 
small. 

To obtain linear equations it i s  convenient to rewrite 
the Poisson brackets (2.13) and (3.3)-(3.5) in the follow- 
ing approximate form: 

As a result we have the following linear equations: 

a p / a t + u  ( p + + p n G )  =o, (3.14) 
a s i a t + s ( v v n )  = - X V T ,  (3.15) 

a p 8 i d t + p y  VV" =-yas idp‘ .  (3.16) 

? and ?" denote here the velocities in the rotating coor- 
dinate system: 

;.="*-[Rx r ] ,  V"=V"-[QX r ] ,  

and the variational derivative of the energy with respect 
to the displacement is given by 

1 6 e  --- aZ 
--K,A,.u-KzV, ( V u )  - K , - U .  

pa 6 u  ?zZ 

4. LATTICE MODES IN ROTATING He 11 

Equations (3.11)-(3.16) yield the spectrum of all the 
long-wave modes [with q smaller than the reciprocal 
distance between the vortices ( C ~ / X ) ~ / ~ ]  in rotating HeII. 
We consider now the modes connected with the lattice. 
For simplicity we confine ourselves to the particular 
case when: 1) v" =O; 2) the liquid can be regarded as 
incompressible, so  that VvS = 0; 3) the wave vector q i s  
perpendicular to the rotation axis S2= SZ:; 4) we retain 
from among all the rigidity coefficients only K,;  5) the 
temperature variation can be neglected. We a re  then 
left with three variables u,, u,, and C;, for which we 
have three scalar equations: the two components of 
(3.11) and one scalar equation obtained from (3.12) by 
taking the curls of both halves: 

Here y = k/xpS, q 11 %, ? 11 $. These equations yield 
three modes. The f i r s t  two a re  obtained from the equa- 
tion 

lo, (iw - 2ySZ)=-K,q'. (4.3) 
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At w >>2yS1 we obtain the spectrum of the Tkachenko 
waves (for more details on Tkachenko waves see  Ref. 
19): 

o z = K l q 2 .  (4.4) 

At w << 2yS1 the Tkachenko waves a r e  transformed into 
the diffusion mode 

o--iKIqY2yQ. (4.5) 

[We call attention to the fact that (4.5) was obtained in 
the simplest case v" = 0. In the general case i t  i s  nec- 
essary to take into account the motion of the normal 
component that is dragged by the motion of the vortices. 
This, a s  shown by TkachenkoZ0 decreases the damping 
of the waves and may prevent the diffusion regime (4.5) 
from being realized for  them .] 

The third mode has a frequency identically equal to 
zero. To determine the origin of this mode, we note 
that Eq. (4.2) is linearly dependent on (4.1). In fact, we 
have the condition (3.1), which takes in the linear ap- 
proximation the form 

At q, = 0 (i.e., Bu/az = 0) this condition has a clear phys- 
ical meaning: lattice expansion o r  compression, de- 
scribed by the quantity VU, leads to a relative change in 
the vortex density I curlGs 1/20 = -Vu. Equation (4.2) is 
obtained by differentiating the condition (4.6) with re-  
spect to time and by using Eq. (4.1). This gives r ise  to 
the extra unphysical mode w = 0. 

This mode, however, becomes physical in the pres-  
ence of vacancies, i.e., lattice si tes not occupied by 
vortex lines. In this case, a s  in an ordinary crystal, 
the change of the vortex density is no longer connected 
with the displacement of the lattice sites. In a solid the 
frequency w =  0 is then transformed into a mode that de- 
scribes the diffusion of the vacancies (see Ref. 21). To 
obtain this mode in our case we must change the form 
of the dissipation function a and add to  i t  a term con- 
nected with the diffusion of the vacancies. The second 
term in (3.9) is a definite combination of &/6u and 
B & / W  and takes into account the ideal character of the 
lattice and, by the same token, the condition (12.6). To 
take the vacancies into account i t  is necessary to dis- 
turb this combination by adding, for  example, the term 

'/:p (6e /6u)  '. (4.7) 
Equations (4.1) and (4.2) now become independent, and 
we obtain from them a diffusion vacancy mode 

5. HYDRODYNAMICS OF A PLANAR MAGNET WITH 
DlSCLlNATlONS 

We examine now the hydrodynamic variables that must 
be used to describe a planar magnet with defects and 
what a re  the Poisson brackets for these variables. For 
simplicity we confine ourselves to the case T = 0. The 
order parameter in a planar magnet in the absence of 
defects i s  the angle between the direction of the spon- 
taneous moment lying in the plane (we choose the z axis 
perpendicular to this plane) and some chosen direction 
in this plane. In addition to the order parameter, the 
hydrodynamic variable is the density of the generator of 

the rotations in spin space about the z axis: M=M& 
The vector M has the meaning of the magnetization 
along the z axis. The energy of the system is written in  
the simplest case in the form 

where pS is the spin rigidity and X i s  the magnetic sus- 
ceptibility. 

The Poisson brackets for  M and follow from the 
transformation of @? upon rotation through an angle brp, 
generated by the quantity M: 

From (5.1) and (5.2) we obtain with the aid of the Liou- 
ville equations the following relation 

a M / a t = v ( ~ ~ v c D ) ,  qcD/at=MI~. 

We call attention to the fact that the spin system has 
a momentum that generates the translations of the spin 
subsystem. In fact, we consider a combination of vari- 
ables in form 

p=-MVcD. (5.3) 

It is easily seen that this combination has all  the prop- 
er t ies  of the translation-generator density, namely: 

The variable p is not a new hydrodynamic variable, 
since i t  is expressed in t e rms  of M and 9. The situa- 
tion changes in the presence of vortices. 

In the presence of vortices o r  disclinations (singular 
line, circuiting around which causes @? to change by 
2rv), the angle 9 ceases to be definite and i ts  space is 
taken by the gaugelike hydrodynamic variable A, which 
is transformed under rotations in accordance with the 
rule 

6 A = V 6 q .  (5.7) 

The curl of this variable determines the density of the 
vortices [cf. (2.7)]: 

The Poisson brackets between A and M a r e  obtained 
from (5.7): 

{ M ( r ) ,  A ( r r ) } - - V 6 ( r - r ' ) .  (5.9) 

To find the Poisson brackets for the components of A 
we must, as before, consider the dynamics of an iso- 
lated vortex, which, just as in Hen (see Ref. 17) follows 
from the momentum conservation law 

a p , ~ a t + v , n , , - o ,  (5.10) 

where I I i ,  is the momentum-flux tensor. The force act- 
ing on the vortex is equal to an integral of II,, with re-  
spect to a surface surrounding the vortex in a coordi- 
nate frame moving together with the vortex. Let v, be 
the velocity of the a-th vortex. Then the momentum- 
flux tensor in the frame moving together with the vor- 
tex i s  

If there i s  no spin flux in the system, i.e., 9 consists 
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only of the field of the vortex proper, and also if there 
i s  no magnetization, then the force exerted on the vor- 
tex by the spin subsystem, F ,  = S~SP,,, is equal to 
zero. This means that the vortex can move at any con- 
stant velocity and is not frozen into the medium o r  into 
the superfluid component, as is a vortex in HeII. . 

Therefore the vortex in  a magnet, having motion of its 
own, has also momentum of i t s  own. 

The momentum of the vortex is obtained from, (5.3), 
in which it must be taken into account the M = XO, and 
the dependence of O on the time is connected with the 
motion of the vortex. The momentum per  unit length, 
of a vortex with v, circulation quanta, is then 

where e, is the energy of the vortex pe r  unit length. 
For a vortex at r e s t  &~=2npSv,21n(R/5) (R is the charac- 
teristic distance between vortices and 5 i s  the radius of 
the vortex core), in the general case c, = zt(1- v i /  
c ~ ) - ' / ~ ,  c is the spin-wave velocity, C ~ = ~ ' / X .  

If a spin flux pSVGo and a magnetization M a r e  present 
in the system, the vortex is acted upon by a force ex- 
erted by the spin subsystem, similar to the Magnus 
force, which leads to a change of the vortex momentum 
with time, in accordance with Newton's second law: 

The f i rs t  term in the right-hand side of (5.13) is that 
part of the Magnus force which is due to the spin flux 
produced in  the location of the given vortex element, 
the remaining elements of the vortex, and other vor- 
tices, a s  well as the external spin superflux. The sec- 
ond term i s  connected with the magnetization. 

In HeII, in contrast to a magnet, if a vortex moves 
relative to the superfluid component then, in  a coordi- 
nate frame that moves with the vortex, there is always 
a mass superflux pSv$ that flows around the vortex and 
produces the Magnus force. Therefore in  the absence 
of any forces to compensate the Magnus force a vortex 
cannot move in Hen with a constant relative velocity. 
This difference between the dynamics of an isolated 
vortex in Hen and in a magnet is precisely the cause of 
the different forms of the Poisson brackets for these 
systems. 

Equations (5.13) can be written in  Hamiltonian form by 
introducing the following Poisson brackets: 

ax: 
{p: (a), p.,k(a')} =e"' - 5 (a-a') 2nv,,M6,*, 

a0 

It follows from them, first, that the Poisson brackets 
for the components of the gaugelike A, a s  seen from 
(5.8), a r e  equal to zero: 

Second, the system momentum density p, which was 
previously the momentum of the field (5.3), now con- 
s is ts  of both the momentum of the field -MA and of the 
momentum of the vortices 

Using (5.9) and (5.14)-(5.16), i t  is easy to verify that 
(5.18) indeed satisfies all the properties of the transla- 
tion-generator density: 

The momentum density (5.18) is now an independent 
hydrodynamic variable. 

To the se t  of hydrodynamic variables M ,  A, and p it 
remains to add the vortex mass density p: 

and the corresponding nonzero Poisson bracket: 

{ ~ ( r )  3 ~ ( 1 ' )  1 =p(r) V8(r-r1). (5.23) 

The equations of the dynamics of a planar magnet in the 
absence of dissipation are  determined by the Liouville 
equations with the aid of the Poisson brackets (5.9), 
(5.19)-(5.21) and (5 23)  (the remaining Poisson brackets 
a re  equal to zero) and with the aid of the Hamiltonian, 
which in the simplest case i s  given by 

The third term in the Hamiltonian is the kinetic energy 
of the vortices (K=p+MA). 

Hopefully, these equations, supplemented with dissi- 
pative terms, a r e  applicable f o r  a two-dimensional 
planar magnet (the x ,  y model), where an equilibrium 
vortex concentration exists a s  a result of the statistics. 

6. SPlN DYNAMICS OF NONPLANAR MAGNET WITH 
DlSCLlNATlONS AND OF SPlN GLASS 

We now attempt to generalize the obtained Poisson 
brackets to include the case of a nonplanar magnet with 
defects, for example a multisublattice antiferromagnet 
with a system of disclinations, o r  else spin glass, 
which can be represented as the continual limit of an 
antiferromagnet having a nonzero equilibrium disclina- 
tion density.4p5 Here M i s  replaced by the density Ma 
of the generator of the three-dimensional rotations, and 
the field A is replaced by three fields that transform 
under three-dimensional rotations like gauge fields. 
The quantities having the meaning of the disclination 
density take the form of the intensities of the guage 
fields: 

FIka=V~Aha- VJta+eaB1AisAkT. (6.1) 

In analogy with planar magnets, we must introduce the 
defect momentum density K and the density p of the in- 
ert ial  mass  of the defects. To find the Poisson brackets 
for K we must recognize that the sum of the field and 
disclination momenta p = K - MaAa is the total momen- 
tum of the spin system [cf. (5.18)] and consequently has 
all the properties of a translation generator. Using this 
circumstance, and also finding the changes of the 
hydrodynamic variables under the influence of the rota- 
tion transformation generated by the quantity Ma, we 
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obtain a closed s e t  of nonzero Poisson brackets for  the 
variables Mu, Au, K, and p: 

{Ma (I), M(r') ) =-ea61MT6 (r-r') , (6.2) 
{Ma(r), A6(r')) =-GaBV6(r-r') -eaSTAT6(r-r'), (6.3) 

{Kt, Aha) =-Fika6 (r-r') , (6.4) 
{Ki, Kk) =(&(I) V.-K,(rl) V,'+MF,@) 6 (I-r') , (6.5) 

{KI, p) =pVd(r-r') . (6.6) 

All the Jacobi identities a r e  satisfied. 

The equations of motion take the form (we introduce 
At  = 6 ~ / 6 M "  and v= 6H/6~):  

It is seen from (6.8) that v ,  is indeed the macroscopic 
disclination velocity, since F,, is the disclination 

and F,, is the density of the disclinations. 

We write down the Hamiltonian and the dissipation 
function in the form: 

The third term in (6.12) is due friction of the disclina- 
tions against the medium, while the fourth term is due 
to the possibility of a change in the disclination mass  on 
account of annihilation of the disclinations. If we neg- 
lect the last term, then Eqs. (6.7)-(6.10) yield four low- 
frequency modes: the three spin-diff usion modes 
(which go over into spin waves at higher frequencies,~~), 
and one diffusion mode connected with the motion of the 
disclinations, 

It is possible that this mode has a bearing on the fourth 
low-frequency mode obtained in a numerical experiment 
with spin glass." In the limit as Y- 0 it goes over into 
an acoustic mode in the system of defects. 

CONCLUSION 

We have considered two cases of a continual descrip- 
tion of defects. These cases, in  the sense of topology, 
a r e  the simplest ones, since both the vortices in He11 
and the vortices in a planar magnet a r e  described by 
the homotopic group n ,=Z and consequently a re  speci- 
fied by analytic expressions with the aid of 6 functions 
[see (2.7) and (5.8)]. Even in this case the hydrodynam- 
ic variables that describe the distributed vortices have 
entirely different Poisson brackets and consequently a 
different dynamics. In other systems with II,=Z, for 
example in a system of vortices in a superconductor and 
in a system of dislocations in a crystal, one should also 
expect the defects to  have different continual dynamics 
peculiar to these systems only. It appears that this 

dynamics can be easily obtained by the method de- 
scribed above from the dynamics of an isolated defect. 

The situation is much more complicated if II,f 2, for 
example fl, =Z, o r  II, =Z,. This takes place, for  exam- 
ple, in systems in which the symmetry of the states 
relative to three dimensional rotations has been vio- 
lated, such as liquid nematic crystals, nonplanar mag- 
nets, the superfluid phases of He3, etc. The difficulty 
l ies here in  the fact that fo r  the linear defects that a r e  
described by such homotopic groups there a r e  general- 
ly speaking no analytic expressions. Therefore, when 
considering in this paper nonplanar magnets and spin 
glasses, we have simply drawn an analogy with planar 
magnets. Further research is needed here. In addi- 
tion, it is necessary to elucidate the dynamics of the 
distributed defects of other topologic sorts,  described 
by the groups II,, II,, as well as of solitons described by 
relative homotopic groups (see Ref. 23). 
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In magnetically ordered crystals with strong hyperfine interaction there is a large observed frequency 
shift of the nuclear magnetic resonance (NMR), proportional to the magnetization of the nuclei. Under 
these conditions the NMR has strongly nonlinear properties. The process of locking of the nuclear 
magnetic resonance withn the detuning is varied in the easy-plane antiferromagnetics MnCO, and 
CsMnF, is investigated. It is shown that in CsMnF, the results can be described in terms of excitation of 
NMR on the wing of a line of the Lorentz form. For MnCO,, besides this mechanism, the possibility of 
locking via excitation of nuclear spin waves is also assumed. 

PACS numbers: 75.60. - k, 75.50.Ee 

INTRODUCTION eari ty was pointed out in the very f i rs t  papers on NMR 

In magnetically ordered substances with strong hyper- research in substances with a strong dynamic shift.' 

fine interaction and large density of magnetic nuclei, If we fix the external parameters-the temperature, 
coupled modes of electron-nucleus magnetic resonance the external magnetic field that determines the frequen- 
appear. The nuclearlike branch of these modes, like cy ne, and the frequency of the exciting field in the 
that which has been investigated1-5 fo r  antiferromagnet- range from w, given by E ~ .  (1) to o,-then the nuclear 
ics  with small crystalline anisotropy, has the form magnetic system can be in two stable states, viz., a t  

where w, is the frequency of nuclear resonance in the 
hyperfine field of the electron when there is no coupling, 
9, is the frequency of antiferromagnetic resonance in 
the absence of the nuclear magnetic system, and B(m) 
is a quantity which characterizes the coupling. Here the 
dependence of the coupling on the value of the mean nu- 
clear magnetization (m) has been distinguished. The 
formula used for  this quantity is 

B<m>=2y,LHsHN, (2) 

where ye is the electronic magnetomechanical ratio, H E  
is the effective exchange field of the antiferromagnetic 
system, and H ,  is the hyperfine field on the electrons 
which the nuclei produce: 

HN=A(m)17., (3) 
(A i s  the hyperfine interaction constant). From this we 
have 

small power levels (m)= (m),, where (m),  i s  determined 
by the thermostattemperature, andat apower (m)= (mi, 
sufficient to saturate the NMR, where (m), i s  the solution 
of Eq. (1) for afrequency w equalto the frequency woof the 
excitingfield. If I wo- W I  >6w, where 6w is the linewidth 
of the NMR, there i s  a decided difficulty in the 
system's making the transition from the state (m),  to 
the state (m),. This problem was considered in the pa- 
per of de Gennes and others' for  a Gaussian shape of 
the NMR line. They found an exponential dependence of 
the amplitude of the exciting field required to take the 
system from the state (m),  to the states (m), on the de- 
tuning w, - w. Experiments made by double resonance 
on the saturation of NMR in KMnF, (Ref. 7) and MnCO, 
(Ref. 8) showed a decidedly weaker dependence. It was 
suggested that this dependence could be described on the 
bas is  of the defect structure in the This 
point of view was maintained, in spite of existing devia- 
tions of the experimental results  from the calculated 

(4) dependence. 

The form in which the nuclearlike resonance modes ~ u r k i n '  calculated the critical power necessary for 
a r e  written shows that the frequency depends on the the transition of the nuclear system into the saturated 
mean nuclear magnetization, which can get changed state (m), in the case of a Lorentz shape of the NMR 
easily under the action of a high-frequency field, a line. He a lso  showed that the Lorentz line shape is 
phenomenon described a s  saturation of NMR: This closer to a realistic description of the situation. As  
leads to a strong nonlinearity of nuclear magnetic res-  could be expected in this case,  the dependence of the 
onance in the case under consideration. This nonlin- critical power on the detuning is of a power-law type: 
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