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We study electromagnetic waves in metals, semimetals, and semiconductors in the presence of a strong 
magnetic field and a temperature gradient at different relative directions of the magnetic field, the 
temperature gradient, and the wave vector. Our study is based on a microscopic theory of the 
conductivity and the thermoelectric current. In a number of cases the waves are thermomagnetic in the 
following sense: a) the frequency (or the damping) is proportional to the temperature gradient; b) a 
growth of the wave (i.e., self-excitation) occurs which is proportional also to the temperature gradient; c) 
under certain conditions, depending on the temperature gradient, cyclotron resonance occurs and the 
cyclotron waves may also grow with time. We also consider the case where there is no magnetic field 
present. We give a linear theory of these effects in the present paper. 

PACS numbers: 72.15.He, 72.20.Nz, 41.10.H~ 

1. INTRODUCTION 

T h e  concept of thermo-magnetic waves was  introduced 
in Refs. 1 , 2  and they were  studied f o r  a frequency w 
much s m a l l e r  than the collision frequency v.  Kobylov3 
observed these  waves experimentally. 

In  the p resen t  paper  we general ize the concept of 
thermo-magnetic waves: we study both low-frequency 
and high-frequency (w >> v) electromagnet ic  waves when 
there  is a s t rong  (but not quantized) magnetic field B, 
presen t  in  a conducting medium in which t h e r e  is a tem- 
pera ture  gradient VT (T is measured in energy units). 
We ca l l  these waves thermo-electromagnet ic ,  if the  f re -  

We shal l  a s s u m e  that  the inhomogeneity length L =T/VT 
is appreciably longer  than the par t i c le  mean f r e e  path. 
T h e  kinetic coefficients depend then on T as a param-  
e t e r  and we can neglect th i s  dependence f o r  the  solution 
of the  kinetic equation. 

T o  simplify the formulae we introduce the  cyclotron 
frequencies  

P,=eB,/mc, Pr=eB'/mc, (3) 

and put E ' m  $2' a exp[i(k . r - wt)]  where 

a=o+iy. (4) 

quency w o r  i t s  imaginary p a r t  depends strongly on vT, We put fu r ther  
fo r  instance, is proportional t o  it .  We consider  the dis-  B=B,+B1, E=E,+E', 
pe rs ive  proper t i es  of the  thermo-electromagnet ic  waves 

(5) 
where E, is the thermo-electr ic  field which has  a com- 

and a l s o  the way the frequency of the  wave and i t s  damp- 
ponent para l le l  t o  VT and a l s o  components E: ~ Q , ( S ~ , V T )  

ing (or  growth) depend both on VT and on the  constant and E,I oc [VT x 681. We look f o r  the distribution function 
magnetic field B,. 

i n  the  fo rm 
In  contrast  t o  the e a r l i e r  papers12 where we intro- 

duced phenomenological coefficients,  we determine the  f ( ~ ) = f ~ ( ~ ) + f t ( ~ ) + f ~ ( ~ ) + f a ( ~ ) ,  (6) 

cur ren t  density j f rom the  solution of the kinetic equa- where f,(p) a VT is time-independent and sa t i s f ies  the 
tion; we es t imate  the collision integral  in the approxi- equation 
mation of a n  average collision frequency v averaged 
over  the  electron momenta. af e df a f ( ~ + ~ ) v v T ~ + - E , -  + [vxfi ,]  - L + ~ , f , = ~ .  a~ m av dv (7) 

We a s s u m e  a n  isotropic  quadrat ic  electron spectrum. T h e  solution of th i s  equation is 
We evaluate the c u r r e n t  density in the approximation v ato 
l inear  in V T  (which i s  sufficient f o r  solids) and a l s o  lin- - { v ~ ~ ( ( I +  E)x-a) VT 

fl(p)= Y , ( v I ~ + Q ~ ~ )  
e a r  in the al ternat ing e lec t r ic  f ie ld E '  and magnetic field +v,((l+f,)~-al) [ v T x O , l + ( ( l + ~ , , ) ~ - a , , )  (S20VT)Po)=~g,(~F) (8) 
B'. We r e s t r i c t  ourse lves  t o  the c a s e  of c a r r i e r s  of a 

(x= (cp - p ) / ~ ,  cp i s the energy and p the chemical  po- 
single sign and of a single  energy band. 

tential). H e r e  5, (,, and ( , , t ake  qualitatively into ac- 
count the d r a g  of the e lec t rons  by the phonons, while a, 

2. KINETIC EQUATION AND CURRENT DENSITY a,, and CY,, a r e  thermo-e lec t r ic  coefficients determined 
by the condition that  the corresponding components of 

T h e  kinetic equation f o r  the c u r r e n t - c a r r i e r  distribu- the  constant c u r r e n t  j, vanish. 
tion function f (p) h a s  the form T h e  function f,(p) a E '  is independent of VT and de te r -  

af(p) 1 af (P) -+v~f (p )+e  at ( E + ~ X B $ - + V [ ~ ( ~ ) - ~ ~ ( ~ ) ] = O ,  (1) mined by the equation 
8~ 

where f,(p) is the equilibrium distribution function in afz 
~ + v ~ f z + ~ ~ ' % +  [VXO,]  ,i-%f2=0. 

at  m av (9) 
which, however, the t empera ture  T v a r i e s  slowly from 
point t o  point s o  that I t s  solution is 
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ev a f o  
'=- ( v 2 - i o f  ikv) ((vz-io+ikv)Z+Qoz) deg ' 

. { ( ~ ~ - i o + i k v ) ~ E ' +  (v2--io+ikv) [E' X no ] +Po(E'Po) ) .  (10) 

We shall in what follows consider waves for  which k .v 
<< w; estimates show that this i s  feasible both for  high- 
frequency (w >> v, k - v )  and for  low-frequency (v >> w,k .v) 
waves. This  means neglect of Landau damping and when 
SJo 11 VT also neglect of spatial dispersion (art icles B and 
D below). 

Finally, the function f, (p) is proportional t o  a' and 
VT; the corresponding equation has the form 

and i t s  solution is 

where 
v = v - i o .  

As  all three functions fl(p), f2(p), and f,(p) a r e  pro- 
portional to the f i r s t  Legendre polynomial, the frequen- 
c ies  v, = v2 =v3 = V  and in what follows we shall  therefore 
not distinguish between them. Simple calculations then 
lead to the following expression for  the variable par t  of 
the electrical current: 

where 
ez 

jz=- - J 1  [ v 2 ~ ' + v  [E' x 52, I + P O  (E'P~Z,)  I, 
3 r (v2+QoZ)  

j 3 = -  2- J z  { V ' O ' [ V T X ~ ' ]  
3 Y Q  (vZ+Qo2) (vz+QOz) _ - 

+ v v 2 [ [ ~ T X S 2 , ]  X52'l + > 2 ( S Z o V T ) [ ~ o  X a ' ]  + u 2 & [ [ p T X 5 2 ' ]  Xao1 - .- 
+ v e [ [ t v T X S Z , l  x n ' l  x a,] + J ( a o ~ T ) [ [ 5 2 0  X n ' l  Xaol 

here  

both when there is and when there i s  no degeneracy, 
while 

respectively, when there i s  no degeneracy and when 
there is degeneracy; (dp) =2d3p/(2nE)'. In the last  case  
we used the fact that when there i s  degeneracy 

The  expression for j, needs an explanation. The  cur-  
rent  j, is non-vanishing only when v depends on the elec- 
t ron energy and on average because the frequency v de- 
pends on the relative directions of the electron and pho- 
non currents. The  frequencies v, and v, en ter  into the 
expressions for  j, and j, in a different way and therefore 
j, does not vanish, although j, does. Averaging the fre- 
quency v makes the expressions for  the currents  j2 and 
j, cor rec t  apart  from numerical coefficients of order  
unity. 

I t  i s  convenient to introduce the dimensionless quan- 

tities 
I*r w 

VT=VT/mcv, V T=ppTVT/nvcA3 

respectively, for  the non-degenerate and the degenerate 
gas; we a lso  introduce the notation n= ck. 

Since the dispersion equation is very complicated i t  is 
necessary fo r  us  to ca r ry  out es t imates  t o  simplify it. 
We shall put k-10 to 102 cm-', v -10l0 t o  10'' s-' for  
metals  and' v- 10' to 10'' s-' for  bismuth,' VT - 10 K/cm, 
i.e., ~ f - 1 0 - ~  to  10-lo in metals  and v F - ~ O - ~ ,  lom7 in 
bismuth along the binary and the trigonal axes, respec- 
tively; furthermore,  L?, -10" to 10" s-'; a s  to the plas- 
ma frequency w,= (4me2/m)lP, most natural is the in- 
equality w2, >>@, but the opposite inequality is also pos- 
s ible for  semiconductors. Finally, we note that in what 
follows the inequality a 2  << b2 will indicate that we neg- 
lect  a 2  a s  compared to  b2. 

3. THERMO-ELECTROMAGNETIC WAVES 

Substituting the expressions for  the current  density 
into the Maxwell equations we get the polarization of the 
waves and the equation connecting the complex fre-  
quency w +iy with the wave vector (we note that the re- 
lation 

div E'=4ne f  ( p )  (dp)  

shows that the electr ical  field can also have a longi- 
tudinal component). As  it i s  extraordinarily compli- 
cated we study i t  in different part icular  cases ,  choosing 
well defined directions of the vectors no ,  vT, and U. 

A. All three vectors mutually perpendicular 

The dispersion equation spli ts  into equations for  the 
ordinary and the extra-ordinary waves; the la t te r  has 
a lso  a longitudinal component. We have 

where E is the dielectric permittivity of the lattice. 

F o r  the ordinary wave the case  w2 >>v2 is not real-  
ized. 

The wave is linearly polarized along the magnetic field-; 
it is weakly damped, if v ~ > > H o , / w ~ .  If (for metals) x 
- lo1' s-l, wp-10'" s-',ff?, -lo1' s-', we must have VF 
>>lo-lo. We put VT = I 0  K/cm, and then vF= lom8 to  
lo-$ and the inequality is satisfied. 

We turn to the extraordinary wave: 

A2) L?: >> w2 >>v2. In that case  when w;<< a", 

. - -- 

The wave is elliptically polarized. If [vf x n 0 ] u  > 0, a 
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right-handedly polarized wave grows and a left-handedly 
polarized wave is damped; if the inequality h a s  the op- 
posite sign the branches change place. A weak growth 
and a weak damping a r e  possible under a wide range of 
conditions. 

In the l inear  approximation t o  which we  r e s t r i c t  our- 
se lves  in the p resen t  paper  i t  is impossible  t o  deter-  
mine completely the growth r a t e  and we can  mere ly  say  
that self-excited waves will  r e s u l t  f o r  which y >O o r  
that waves leaving the  c r y s t a l  will  be amplified com- 
pared t o  a wave incident on i t  f rom outside. Indeed, in  
the l inear  approximation an outgoing wave sa t i s f ies  the 
equation ij = ck and hence, a positive imaginary p a r t  of 
O, i.e., growth in t ime,  cor responds  t o  a positive im- 
aginary par t  of k, i.e., spat ial  damping. The  kinet ics  
of self-excitation can  thus be studied solely i n  a non- 
l inear  theory. 

When w;>> 51; the magnitudes of w and y a r e  t h e  s a m e  
as for  the wave A1 ). 

A3) w -52, >> v, w, z a, where the --sign indicates  
equality. We have 

When w: cyclotron resonance occurs .  If [vi 'xn,]x 
>O the left-handedly c i rcu la r ly  polarized wave grows 
and the right-handedly polarized one is damped; fo r  the 
other  sign of the inequality the situation is the reverse .  

B. AII three vectors collinear 

The  dispersion equation spl i ts  into equations fo r  the 
Langmuir  oscillations which d o  not contain V T  and an 
equation f o r  a t r a n s v e r s e  wave: 

where 4 = (a, .x)(Q, . Vi' 1. 

We s t a r t  with the c a s e  

~ 1 )  n;>>w2v2,x2 n2,, where x,=w;(S2,- vi')/Q;. We 
have 

0=Slox2/mp2, 

The  waves are circular ly polarized in both branches,  
and the right-handedly polarized wave grows while the 
left-handedly polarized wave is damped, if n,vP >O; if 
the sign of the inequality is the opposite growth and 
damping change places. 

When x2  << xi 

H e r e  a l so  the left-handedly polarized wave is weakly 
and damped and the right-handedly polarized one grows 
weakly. 

When 52; = 2 u ; v T 2  the frequency t u r n s  out t o  be purely 
imaginary, i.e., i n  that approximation i t  is possible t o  

exci te  a magnetic field a t  right angles  t o  the field B,. 
T h e  oscillation period of that  field i s  l a r g e r  than the 
growth t ime  by a fac tor  n/x,. If x - 0, t h e  generated 
field will  be not only near ly  constant in t ime ,  but a l s o  
nearly uniform in space. 

B2) 52; >>v2 >> w2. In  that c a s e  

t h e  situation is h e r e  analogous t o  B1) and is the s a m e  as 
the one considered in Ref. 2. 

B3) w -52, >>v. If then w;>>a;, we have 

w =  
510 

l+eQ,a/oPz ' 

y = *  Z V ( B , ~ )  ( n o v 3  
no3 ( I + E Q , Z / ~ , ~ )  . (28) 

T h e  left-handedly c i rcu la r ly  polar ized wave grows and 
t h e  right-handedly polarized one is damped, if 
(0, .w)(SZ, . V P )  >O; f o r  the  opposite sign the branches 
change place. 

If,  however, w:< a:, we have 

T h e  polarization of the  waves and the conditions fo r  
growth and damping a r e  the s a m e  a s  in  the preceding 
case .  

B4) Cyclotron resonance: 4 =&(I + p ) ,  (3 << 1. We 
study it  f o r  the  c a s e  when x2 <<52;, which simplifies the 
calculation and holds t r u e  in a s t rong  magnetic field. 
We have 

o - ~ , + i y = ~ , ( p ~ + i p " ) .  (30) 

When VT = O  the quantity y < 0, a s  it  should be. Hence 

where 

Complete  cyclotron resonance s t a r t s  when A = O  o r  
when B = C = 0,  and both these equal i t ies  a r e  fully real iz-  
able. If A = 0, in the  approximation taken h e r e  y = O  al- 
so;  if, however, A #O, y can  change sign s o  that  both 
damping and growth of the cyclotron thermo-magnetic 
waves is possible. 

T h e  quantity A = 0 if 

OPZ -- g 2-4 gar - 0'1 (Pox) ( % a  
2, O - ( 4, ... (35) 

Hence, if (no . x ) ( $ 2 , . ~ ) <  0, e i ther  w; >w;/2c, o r  
< p 2 J 4 ~ ;  if, however, ($2, -d(&I, -vF) >O, we have 

0 p ' / 4 ~ < ~ ~ Z < ~ p z / 2 ~ .  (36) 

Moreover ,  C = O  if 
2eQo' -- I = Z(Q,X) (no%) 

OPZ 82 
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C. The case 51,l VT 1 x 

Two waves a r e  possible here. The wave which is po- 
larized along the magnetic field sat isf ies the equation 

The  inequality w2 >> v2 cannot be realized. 

C1)Q;>>v2>>w2. If we have the inequality vw<< w2,wZ, 
which i s  then the obvious inequality 

The wave i s  linearly polarized along the magnetic field; 
it i s  weakly damped when vT>>nQ;/vw$, which can be 
realized. 

Waves with electr ical  field components parallel t o  B, 
and n. The  dispersion equation has the form 

C2) 9; >> w2 >>v2. Th i s  is possible only when 52; z> 0:. 
In that case  

The wave is elliptically polarized. When x > wclh and 
n . VT > 0 the right-handedly polarized wave grows and 
the left-handedly polarized wave is damped. If one of 
these inequalities changes t o  the opposite one, the 
branches change place. 

C3) >> v2 >> w2. The frequency and damping of the 
wave a r e  the same a s  in case  C l ) ,  only the polarization 
is different. 

C4) w -9, >> v. T o  simplify the calculations we re-  
s t r ic t  ourselves to the case  wi>>Q;: 

When 0: >>a;& the situation is close to cyclotron reson- 
ance. If n VT >0, the left-handedly circularly polar- 
ized wave grows and the right-handed one is damped; 
when the inequality changes sign, the position i s  the re-  
verse.  

D. The case Qo 1 V Tl x 

In this case  the dispersion equation does not split up 
and i s  very complicated. I t  can be simplified when the 
condition 92, >> v2 i s  satisfied: 

The  case  w2 >>v2 i s  not realized; only low-frequency 
waves can be thermo-magnetic. 

D l )  52: >>v2 >>w2: 

The electr ical  field of the wave has components parallel 
t o  %(x-axis), Q,(z-axis), and a component E,. In that 
ca se  

E,IE,-TT. (44) 

Weak growth and weak damping occur when Q, P (3/ 
&)'/2 up. 

4. THERMO-ELECTROMAGNETIC WAVES WHEN 
THERE IS NO CONSTANT MAGNETIC FIELD 

Since Kopylov3 has considered effects when there i s  
no constant magnetic field present ,  we shall briefly dis- 
cuss  also that case.  Th ree  relative directions of the 
vectors x and VT a r e  here possible: 

a )  rill vT. The  dispersion equation for  the t ransverse  
wave has the form 

Putting w2 << w: we have 

(since usually x2 << w 2,). 
The longitudinal component is independent of vT. 

b) n VT. The presence of VT manifests itself only 
in that for a wave with an  electr ical  field which has 
components parallel to x and vT, the rat io of the f i r s t  
t o  the second is ~ v f  and equals 

c )  The vector n has components n,, and n, (parallel 
and perpendicular to VT). Two thermo-electromagnetic 
branches a r e  possible. First ly,  a branch for which the 
electr ical  field i s  at  right angles to the (n, vT)-plane: 

Secondly, a branch with an electr ical  field which has 
components parallel to n and vT: - 

o=xVT,  'f =-vxS/opS. (49) 

In al l  three  ca ses  the frequency and the damping a r e  
the same when w2 <c w$: the waves a r e  low-frequency 
waves and a r e  weakly damped for  the condition, which 
can be realized in metals and semi-metals, vT>>vn/  
w:. If, however, w2 >> w$, the frequency and damping 
a r e  independent of vT. 

When 51, = O  there is a weakly damped longitudinal 
wave. I t  can leave the crystal  only in the non-linear 
process of turning into a t ransverse  wave5 and we shall 
not consider this in the present  paper. 
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