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We study electromagnetic waves in metals, semimetals, and semiconductors in the presence of a strong
magnetic field and a temperature gradient at different relative directions of the magnetic field, the

temperature gradient, and the wave vector. Our study is based on a microscopic theory of the
conductivity and the thermoelectric current. In a number of cases the waves are thermomagnetic in the
following sense: a) the frequency (or the damping) is proportional to the temperature gradient; b) a
growth of the wave (i.e., self-excitation) occurs which is proportional also to the temperature gradient; c)
under certain conditions, depending on the temperature gradient, cyclotron resonance occurs and the

cyclotron waves may also grow with time. We also consider the case where there is no magnetic field
present. We give a linear theory of these effects in the present paper.

PACS numbers: 72.15.He, 72.20.Nz, 41.10.Hv

1. INTRODUCTION

The concept of thermo-magnetic waves was introduced
in Refs. 1,2 and they were studied for a frequency w
much smaller than the collision frequency v. Kobylov?
observed these waves experimentally.

In the present paper we generalize the concept of
thermo-magnetic waves: we study both low-frequency
and high-frequency (w >v) electromagnetic waves when
there is a strong (but not quantized) magnetic field B,
present in a conducting medium in which there is a tem-
perature gradient v7T (T is measured in energy units).
We call these waves thermo-electromagnetic, if the fre-
quency w or its imaginary part depends strongly on VT,
for instance, is proportional to it. We consider the dis-
persive properties of the thermo-electromagnetic waves
and also the way the frequency of the wave and its damp-
ing (or growth) depend both on VT and on the constant
magnetic field B,.

In contrast to the earlier papers'? where we intro-
duced phenomenological coefficients, we determine the
current density j from the solution of the kinetic equa-
tion; we estimate the collision integral in the approxi-
mation of an average collision frequency v averaged
over the electron momenta.

We assume an isotropic quadratic electron spectrum.
We evaluate the current density in the approximation
linear in V7 (which is sufficient for solids) and also lin-
ear in the alternating electric field E’ and magnetic field
B’. We restrict ourselves to the case of carriers of a
single sign and of a single energy band.

2. KINETIC EQUATION AND CURRENT DENSITY

The kinetic equation for the current-carrier distribu-
tion function f(p) has the form

2O ¢ v9ip) e (B+ o xw) L2 1® 1) —(p) 1=0, (1)

where f,(p) is the equilibrium dlstrlbution function in
which, however, the temperature T varies slowly from
point to point so that
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Vh@)=2k v, @)

We shall assume that the inhomogeneity length L =T/vT
is appreciably longer than the particle mean free path.
The kinetic coefficients depend then on T as a param-
eter and we can neglect this dependence for the solution
of the kinetic equation.

To simplify the formulae we introduce the cyclotron
frequencies

Q,=eB/mc, Q'=eB’/mc, 3)
and put E’«Q’ <cexp[ik ‘T — w¢)] where

o=aw+iy. (4)
We put further

B=B,+B’, E=E+E/, (5)

where E, is the thermo-electric field which has a com-
ponent parallel to VT and also components Ef,' «Q,Q,vT)
and Ef «< [VT X §,]. We look for the distribution function
in the form

f(p)=fo(p)+1f:(P)+f2(P) +1s(P), (8)

where f,(p) < VT is time-independent and satisfies the
equation

0fo 9fs

(1+§)VVT +%En + v X‘Q'o] f +V|f|"'0 (7)

The solution of this equation is

_ v afo
1) = v, (v Q%) de,

Fv (148 ) 2—0,) [VT X Qo 1+ ((14+8) z—a,) (R V) Qo) =vg,(e;) (8)

—{v?*((1+E)z—a) VT

(x=(e,= W/T, €,1s the energy and u the chemical po-
tential). Here £, £,, and & take qualitatively into ac-
count the drag of the electrons by the phonons, while a,
a,, and a, are thermo-electric coefficients determined
by the condition that the corresponding components of

the constant current j, vanish.

The function f,(p) <E’ is independent of VT and deter-
mined by the equation

af:_,_ sz -——El afﬂ_,_[ xn ]—f+szz— ) (9)

Its solution is
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e ev 6fo
‘j&, (v,,—zm-hkv) ((ve—iotikv)*+Q,?) de, i
{(v,—uo+zkv) E’+ (vi—io+ikv) [E' X ,]1+(E'Q,)}.

(10)

We shall in what follows consider waves for whichk v
< w; estimates show that this is feasible both for high-
frequency (w>v,k -v) and for low-frequency (v> w,k -v)
waves. This means neglect of Landau damping and when
Q, || vT also neglect of spatial dispersion (articles B and
D below).

Finally, the function f£, (p) is proportional to ' and
VT, the corresponding equation has the form

afs

_+va,+[vX.Qo]%{:—+[vX ﬂ']%+v,f,=0, (11)

and its solution is

f.(p>=—%,%go-,)—{v’m’><s, 147112/ X 811901 +Q0 (2" X 81120},
(12)
where
F=vy—ie. (13)

As all three functions £,(p), f,(p), and £,(p) are pro-
portional to the first Legendre polynomial, the frequen-
cies v, v, v, =v and in what follows we shall therefore
not distinguish between them. Simple calculations then
lead to the following expression for the variable part of
the electrical current: '

J=iz2 *j3.
where
e J,
= r————— [ #’E’ ! nﬂ 0
i I [VE+5[E' X Q0] +N(E'Q,)], (14)
fo=—— L VP VTX Q]

3 v (VHQ?) (73+Q0%)
+w2[[VTXR,] X Q'] +73(Q,V IR X 2] +12 VT X 0] X2y)
TH[[[VTX Q0] X QT X Qo] +HQoVI[Ro X021 X Q0]
i ([VT X Q'182,) +v82 ([[VT X Qo] XQ'T X R6)};  (15)

here

dfo 3n

]ﬁjv ——(dp)=—— (16)

both when there is and when there is no degeneracy,
while

(o gy 30 BT

hi ot S =

respectively, when there is no degeneracy and when
there is degeneracy; (dp)=2d°%p/(2a7%)®. In the last case

we used the fact that when there is degeneracy

amn

w(T)=po |1+ (18)

T 2
12( ) ] )
The expression for j, needs an explanation. The cur-
rent j, is non-vanishing only when v depends on the elec-
tron energy and on average because the frequency v de-
pends on the relative directions of the electron and pho-

non currents. The frequencies v, and v, enter into the
expressions for j, and j; in a different way and therefore
j; does not vanish, although j, does. Averaging the fre-
quency v makes the expressions for the currents j, and
js correct apart from numerical coefficients of order
unity.

It is convenient to introduce the dimensionless quan-
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tities
VI=VT/mcv, VT=peTVT/nvch®

respectively, for the non-degenerate and the degenerate
gas; we also introduce the notation »=ck.

Since the dispersion equation is very complicated it is
necessary for us to carry out estimates to simplify it.
We shall put 2~10 to 10 cm™, v ~10' to 10" s~! for
metals and v~ 10° to 10'° s~* for bismuth,* v7~10 K/cm,
i.e., VT ~107% to 107° in metals and v7~1075,107
bismuth along the binary and the trigonal axes, respec-
tively; furthermore, 2,~10" to 10'2 s™!; as to the plas-
ma frequency w,= (4mne 2/1m)*/2 most natural is the in-
equality wi»ng, but the opposite inequality is also pos-
sible for semiconductors. Finally, we note that in what
follows the inequality a2 <« 5% will indicate that we neg-
lect a2 as compared to 2.

3. THERMO-ELECTROMAGNETIC WAVES

Substituting the expressions for the current density
into the Maxwell equations we get the polarization of the
waves and the equation connecting the complex fre-
quency w +Zy with the wave vector (we note that the re-
lation

div E'=4ne [ 1(p) (dp)

shows that the electrical field can also have a longi-
tudinal component). As it is extraordinarily compli-
cated we study it in different particular cases, choosing
well defined directions of the vectors Q,, V7, and «.

A. All three vectors mutually perpendicular

The dispersion equation splits into equations for the
ordinary and the extra-ordinary waves; the latter has
also a longitudinal component. We have

wm,z([VT)(ﬂo]u)

viHQ,? (19)

¥ (ew*—x?) tiow,?

eo (e’ %)+ ———[iovw,*+7 (2e0?—x%?) ]

Z+Q 2
wm,’([VTXQo]x)
TR (R0

where ¢ is the dielectric permittivity of the lattice.

[io,*+eo (v+¥)], (20)

For the ordinary wave the case w? >v? is not real-

ized.
A1) @i »vZ>»w?:
_vor(IVTXQolx) v
Qo* (%*+wp?) x+ay

The wave is linearly polarized along the magnetic field;

it is weakly damped, if VT >xQ,/w3. If (for metals) »

~10" 57!, w, ~10* 571, @, ~10" 5™, we must have VT

1071, We put V7 =10 K/cm, and then v~ 1078 to

107° and the inequality is satisfied.

(1)

We turn to the extraordinary wave:

A2) 92 > w? >»p2, In that case when w3 < Q3

0=0p (ex¥/ 0 +w,;7/Q:%)",
— (22)
— Vv([VT X8 ]u)a),’(Zn"{'Qo:)
= — o -

The wave is elhptlcally polarlzed If [vIXQ,]%x>0,a
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right-handedly polarized wave grows and a left-handedly
polarized wave is damped; if the inequality has the op-
posite sign the branches change place. A weak growth
and a weak damping are possible under a wide range of
conditions.

In the linear approximation to which we restrict our-
selves in the present paper it is impossible to deter-
mine completely the growth rate and we can merely say
that self-excited waves will result for which y >0 or
that waves leaving the crystal will be amplified com-
pared to a wave incident on it from outside. Indeed, in
the linear approximation an outgoing wave satisfies the
equation & =ck and hence, a positive imaginary part of
@, i.e., growth in time, corresponds to a positive im-
aginary part of k, i.e., spatial damping. The kinetics
of self-excitation can thus be studied solely in a non-
linear theory.

When w2 > Q2 the magnitudes of w and y are the same
as for the wave Al).

A3) w~Q,>» v, w, 2 R, where the ~—-sign indicates
equality. We have

o Q _ V([ VTR,]1%)
1+eQwyt " Q' (1+eQ¥0,?)

(23)

When w?>>Q2 cyclotron resonance occurs. If [VFXQq]n
>0 the left-handedly circularly polarized wave grows

and the right-handedly polarized one is damped; for the
other sign of the inequality the situation is the reverse.

B. All three vectors collinear

The dispersion equation splits into equations for the
Langmuir oscillations which do not contain v7 and an
equation for a transverse wave:

2 2 ~2 2 2__ a2 =2 2 ;7 2 . wT:
(eatmr?) (140) [ (e0' ) (57+00)+ 210y (0 + =) |

= 0oy [m(V’+Qo’)+ 2mr’( 1+ _v_)] ,

“ror (24)

where w} =(Q, ' ®)&, * VT ).
We start with the case
B1) Q2 » w?v?,»* n2, where »,=w3(Q,- v7)/Q;. We
have
O=Qx%/ @,
(25)

v (VT 0,045 (2052 +eQ0%)
=  —] .
Q2 [ory

The waves are circularly polarized in both branches,
and the right-handedly polarized wave grows while the
left-handedly polarized wave is damped, if @,v7 >0; if
the sign of the inequality is the opposite growth and
damping change places.

When »? « w2

i

i ~ _ o 1"
otiy==+ Yl [Qo’(QoVT)’+ 2v (Q.,n)(ﬂ,,VT)(ﬂ.,’—2m,,’VT’)] . (26)
0 i

®p*
Here also the left-handedly polarized wave is weakly
and damped and the right-handedly polarized one grows
weakly.

When 92 =2w";VT‘2 the frequency turns out to be purely
imaginary, i.e., in that approximation it is possible to
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excite a magnetic field at right angles to the field B,.
The oscillation period of that field is larger than the
growth time by a factor »/x,. If » -0, the generated
field will be not only nearly constant in time, but also
nearly uniform in space.

B2) 22> 12 >» w?, In that case
®*Q,
©OW=——F—————"T"»
(2ex*Qo*t+w,') "
vrop (052—2x%) (R,VT)
Q% (2ex*Q*+wpt) "

@7

the situation is here analogous to B1) and is the same as
the one considered in Ref. 2.

B3) w~Q,>»v. If then w3 >3, we have
Q,
@ =1+e$20’/w,’ ’
2v(Qux) (,VT)
Q' (1+eQ¥w,?)?"

(28)

The left-handedly circularly polarized wave grows and
the right-handedly polarized one is damped, if

@, %@, - vT ) >0; for the opposite sign the branches
change place.

If, however, w3<Q3, we have

0=(Q*+wp*/e)",
(29)

i '
s e [ 202 QTP yi

Q eQo*t oy’
The polarization of the waves and the conditions for
growth and damping are the same as in the preceding
case.

B4) Cyclotron resonance: @=4(1+8),8«< 1. We
study it for the case when »? « @2, which simplifies the
calculation and holds true in a strong magnetic field.
We have

0—QuHiy=8, (B’ +ip”). (30)

When v7T =0 the quantity y <0, as it should be. Hence

0—Qtiy = I%CZ(BHC), (31)
where
A=20,2[Q. (2R~ 0,%) +2 (4eQ—0,Y/R) (Xx) (WD) ],  (32)
B=4v[262Q°+0,Q (05— 4eQ0?) + (0,7/Q0) (%) (2,VT)], (33)
C=20,2[Q° (05" —2eQ:?) +20,* (%) (VY T) ]. (34)

Complete cyclotron resonance starts when 4 =0 or
when B=C =0, andboththese equalities are fully realiz-
able. If A =0, in the approximation taken here y =0 al-
so; if, however, A #0, y can change sign so that both
damping and growth of the cyclotron thermo-magnetic
waves is possible.

The quantity A =0 if

@y’

2e (35)

o ) (Qux) (VT)

— Q=4 (0,2 —
@ ( ° 4e Q,°

Hence, if (@, -®)(@,* VF) <0, either w2 >w?/2¢, or 23
< p%/4g; if, however, (@, W(Q, VT)>0, we have

0,2/ 4e<Q*<w,%/ 2e. (36)
Moreover, C =0 if
2eQ,’ - 2(Qx) (Q,VT)
mpz Qoa
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C. Thecase 24 LVT | x

Two waves are possible here. The wave which is po-
larized along the magnetic field satisfies the equation

inZen 2 (20O T
¥ (emz—xz) + o, = M
vi+Q,?

(37)

The inequality w2 > v? cannot be realized.

C1) @3 »v? »w?. If we have the inequality vw « »?,w?
which is then the obvious inequality

0,?  v(xVT) x

o= S
1 .
wtop,t Q) w*twp’

(38)

The wave is linearly polarized along the magnetic field;
it is weakly damped when vT »»Q3/vw3, which can be
realized.

Waves with electrical field components parallel to B,
and ®. The dispersion equation has the form

20 (e0’—x?) (V*+Qy?) + i, [ in 0, +7 (2e0?—x2) ]
AT

v+Q,*

(% VT) [ivoy—ew (vi—Q:) 1. (39)
C2) @3 » w?>»v?%, This is possible only when Q%> w3,
In that case

n?

@p* \ '
o)
0= s T T

vo),,‘(xV7) )
2Q, (ex*Qet+wpt)®

(40)
Y=

The wave is elliptically polarized. When » >we? and
- VT >0 the right-handedly polarized wave grows and
the left-handedly polarized wave is damped. If one of
these inequalities changes to the opposite one, the
branches change place.

C3) Q2 >»v?>» w2, The frequency and damping of the
wave are the same as in case C1), only the polarization
is different.

C4) w~Q,>»v. To simplify the calculations we re-
strict ourselves to the case w3 >Q}:

[op'+x2 (et tw,?) 1"

0=Q
° Q)+ oy’ !

(41)

. era(xV7')

——[eQo’w,* +(eQ*+a,") (eQe’—x?) ].
2wp

When w? >Q3¢ the situation is close to cyclotron reson-
ance. If » - vT >0, the left-handedly circularly polar-
ized wave grows and the right-handed one is damped;
when the inequality changes sign, the position is the re-
verse.

D. Thecase 2, IVT L1 x

In this case the dispersion equation does not split up
and is very complicated. It can be simplified when the
condition Q2 > 12 is satisfied:

£ (V+0:%) [30°Q*+x*(Q,VT) ] (42)
=— i, QYT —x (R, VT)* (v —vo/Q) .

The case w?>»v? is not realized; only low-frequency
waves can be thermo-magnetic.

D1) @2 >» v >»>w?:
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Y2 v

Q.
v (@, V)
T 20,2Q

o=: QVT),

(43)
(eQe*—3w5%).

The electrical field of the wave has components parallel
to n(x-axis), Q,(z-axis), and a component E,. In that
case

EJEA~VT. (44)

Weak growth and weak damping occur when Q,2 (3/
E)‘/zw,.

4. THERMO-ELECTROMAGNETIC WAVES WHEN
THERE 1S NO CONSTANT MAGNETIC FIELD

Since Kopylov® has considered effects when there is
no constant magnetic field present, we shall briefly dis-
cuss also that case. Three relative directions of the
vectors » and VT are here possible:

a) #||vT. The dispersion equation for the transverse
wave has the form

9 (e0’—x?) Fiowy +io,* (kVT) =0, (45)
Putting w? < w3 we have
w=xVr  {=—vxie’ (46)

(since usually »* «< w3).
The longitudinal component is independent of vT.

b) w L VT. The presence of vT manifests itself only
in that for a wave with an electrical field which has
components parallel to » and v7T, the ratio of the first
to the second is «v7 and equals

m,‘uVT

ea?(0+iv)— 0o,

(47)

c¢) The vector » has components », and », (parallel
and perpendicular to v7T). Two thermo-electromagnetic
branches are possible. Firstly, a branch for which the
electrical field is at right angles to the (x, vT)-plane:

(48)

Secondly, a branch with an electrical field which has
components parallel to » and vT:

Ll
o=xVT, =—wx .

(49)

In all three cases the frequency and the damping are
the same when w? < w3: the waves are low-frequency
waves and are weakly damped for the condition, which
can be realized in metals and semi-metals, VT >»>vn/
wi. If, however, w2 > wi, the frequency and damping

are independent of V7.

0=xVT, y=—vx'/o,"

When 2,=0 there is a weakly damped longitudinal
wave. It can leave the crystal only in the non-linear
process of turning into a transverse wave® and we shall
not consider this in the present paper.
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