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An interaction law for charges moving in a medium with velocities exceeding the speed of light in the 
medium (a generalization of Coulomb's law) is derived from Maxwell's equations. It is shown that a 
charge moving in the wake of a l i e  charge is attracted to the latter. The interaction law is used for a 
discussion of high-energy electron beams moving in a medium with velocities exceeding the speed of light 
in that medium. Self-compression of the beam is found, an effect due to the electromagnetic interaction 
of the relativistic electrons. A one-dimensional model is used to obtain estimates of the characterisic 
times and of the values of the initial electron density and energy in the beam that are necessary for the 
existence of the effect. 

PACS numbers: 41.80.Dd 

In high-power electron beams with energies of the or-  
der of 1 MeV and higher, the particle velocities a r e  
close to the speed of light and may surpass the speed of 
light in material media (e.g., in dielectrics). It is in- 
teresting to  derive the interaction law between charges 
which move in a medium with velocities exceeding the 
speed of light ~super luminal"  velocities)-an interac- 
tion law which generalizes Coulomb's law. 

In the present paper, making use of the solution ob- 
tained for the field produced by an electron moving with 
constant velocity, we consider the interaction of super- 
luminal charges with an external field. The result ob- 
tained here is used for a study of the collective interac- 
tion of superluminal electrons in  the beam. We neglect 
the energy losses of the electrons in their passage 
through matter, since the losses of each electron axe 
small  and of the same order, and do not influence their 
mutual positions in space. This way of posing the prob- 
lem is valid for times which a r e  shorter than the life- 
time of the directed beam of superluminal electrons in 
the medium, but allow us to obtain simple estimates. 

For stationary motion of the electron in  the medium 
6. < V<c) the energy dissipation can be represented by 
two terms: the energy dissipation r, in the external 
electromagnetic field, and the losses rv on the wave- 
front of the proper field of the electron, (Vavilov-Cher- 
enkov radiation). For all beam particles the losses rV 
will be of the same order of magnitude, and, a s  was 
shown by Tamm and Frank,3 they a r e  negligible com- 
pared to bremsstrahlung losses. The energy dissipa- 
tion rv determines a field in a small neighborhood of 
the wavefront. Therefore the mutual spatial disposition 
of the electrons in the beam will be determined by the 
asymptotic behavior of the field [the solutions (1.11, 
(1.2)], and the influence of rv may be neglected. 

By the method of invariant integrals !just as was done 
in the case of subluminal velocities4) one can obtain 
f rom Eqs. (1.1) and (1.2) for the case of superluminal 
motion of an electron in  an external field E,={E,}, H, 
=CHoJ 

r,,=eE,,, j=x, y, z. (1.3) 
Here I?,, is the irreversible work of the external field ", 
when the singularity (the electron) i s  displaced by one 

THE OF ONE IN unit of length along the x j  axis. If the external magnetic A MATERIAL MEDIUM 
field vanishes H,=O, then r,, a r e  the components of the 

The asymptotic representation of the stationary elec- force acting on the charge. 
tromagnetic field of an electron of charge e < 0 moving 

We note that the external field is considered in the 
with velocity V<a along the z axis, in a comoving frame electron's proper (comoving) coordinate frame attached 
of reference (a  frame attached to the electron), has the to the relativistic electron. 
form1v2 

-2eiV'z 2eN4zi 
Ez - (1.1) 2. COLLECTIVE INTERACTIONS 

E ( P )  Ei - e (z'-P?) X ' 
r2-z2+yz, zi=z, y; Let another electron el be situated inside the wake 

2eVPzi-, (1-az/c') 
Hi - Hz-0, (1.~1 (Mach cone) of a f i r s t  electron e, which moves with 

(i-V2/c1) (zZ-WP) qs ' superluminal velocity V>a. For e l  the external field 
P/a2-l peVIca-l zi-,=~, -2, IVt - - - > 0, will now be the field (1 .I), (1.2) created by the electron 
1-V1/cZ 1-V"/c2 e,. It is easy to see that el is always attracted to the 

where E, and Hi a re  the components of the electric and preceding electron e,: r,,=e,E,>O. 
magnetic fields, C( and E a re  the relative magnetic per- We note that el interacts with the field left behind by 
meability and the dielectric constant, and a =c ( c ( & ) - ~ / ~  the electron e,, therefore there is no reaction of e l  on 
is the speed of light in the medium. The solutions (1.1) 
and (1.2) a re  defined inside the Mach cone of the super- eO' 

luminal electron, i.e., in the region z 2  - P r 2 > 0 ,  z < 0; One-dimensional system. We consider the behavior 
outside this cone the proper field of the electron van- of a system of relativistic electrons in  a medium, and 
ishes . confine ourselves to a one-dimensional semi-infinite 
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chain of electrons that at the initial instant a re  equidis- 
tantly separated by intervals b, a model for which a 
simple analytic solution can be obtained. 

In the one-dimensional system there will exist only 
forces directed along the axis of the chain; we denote 
by f,, the force acting on the m-th electron and due to 
the n-th electron h <m). The resultant of al l  the forces 
acting on the m-th electron is 

m-i 

F m = z  fm.. 
0-0  

~ c c o r d i n g  to Eqs. (1.1), (1.3), and (2.1) a t  the initial 
instant of the state of the system we obtain: 

It is a known fact that5 

hence 

Fl(b)<Fm(b)<nZF,(b) /G.  

As is clear from Eq. (2.2), for any n the forces F,(b) 
differ little from Fl(b). Therefore one can obtain a 
simple estimate of the behavior of a one-dimensional 
system by considering the motion of a single electron 
el in the field produced by e,. 

The motion of a charge in the field of a superluminal 
electron in a medium. For an arbitrary distance -b 
< z  < 0 we obtain from Eqs. (1.1), (1.3), (2.1) (a generali- 
zation of Coulomb's law to superluminal speeds) 

F,  (2) =2eZN2/&za. (2.3) 
We limit ourselves to the case of small  relative particle 
velocities. Taking (2.3) into account, the relativistic 
differential equation of motion of the electron el in  the 
moving coordinate frame has the forms: 

Solving the equation (2.4) with the initial conditions 
z = -b and dz/dt = 0 for t = 0, we obtain 

tK ' = [ - b z ( z + b )  ]"+b%arcsillL (z+b) /b i '" ,  

K = 4 e ' ( p Z - ~ - ' ) / m , ( I - p ~ ) .  (2.5) 
Let us estimate the characteristic time r within which 

the electron e l  approaches e ,  (and a system of two elec- 
trons is formed which is dense enough that quantum in- 
teractions not taken into account by the continuous-me- 
dium model become decisive for it), setting z = 0 in 
Eq. (2.5), 

T =nbL/BXz .  (2.6) 

We note that the quantities b, t, and 7 are  considered 
in the comoving coordinate frame of the f i rs t  electron. 
Going over to the laboratory frame b' = b (1 - 02)11 ', t' 
= t ( l  -j3')-lI2 we obtain from Eq. (2.6) 

As can be seen from Eq. (2.7) the effect of the elec- 
trons approaching each other is most important in a 
narrow region of energies (velocities) of the particles, 
where T' a r e  small. In other words, the velocities V 
must be significantly larger than a ,  but not too close to 

c, when the relativistic contraction of length scales be- 
comes important. For 8; = (3 + 2c)/5f the time r' takes 
on i t s  minimal value: 

5'14nmo 
r,'=x (i-e-l)-"(b') 71, X = - 2v23~lel  ' (2.8) 

where ~ = 6 . 4 3 7 1 O - ~ c m - ~ ~ ' s  for an electron beam. For 
instance, for  b'= 10-4cm (this is the order  of magnitude 
of distances in  pulsed electron beams) we obtain 
7:- 10-1°s. 

Electron beams. As was shown with the simple model, 
relativistic electron beams exhibit a mechanism for in- 
ternal organization of such systems (self-compression). 
Since the time T for which the formulation of the prob- 
lem remains valid is small, this mechanism can mani- 
fest  itself only for high-intensity beams (small b'). The 
necessary values of the particle density in the initial 
beam can be  estimated at 

The quantity T is the lifetime of a directed beam of 
superluminal electrons in the medium and is determined 
by the interplay of two factors: the deceleration of the 
electrons t o  the speed of light in the medium and the 
losses due to excitation and ionization of the bound elec- 
trons of the material medium. For high energies 
(P>> 0,) a more precise estimate of the critical density 
can be obtained from the relation (2.7). 

Allowance for  the spatial distribution of the electrons 
in the beam shows that the forces acting inside the sys- 
tem stop being directed along the axis of motion, i.e., 
there a r e  forces directed towards the boundary of the 
Mach cone. However, the lat ter  effect occurs only near 
the forward electron (an end effect), and in the f a r  zone 
the forces a re  balanced by the action of the other super- 
luminal electrons. Moreover, electrons situated away 
from the axis of motion of the forward electron will also 
be acted upon by a Lorentz force that depends on the 
relative velocity of motion. 

We note that the mechanism of relativistic bunching 
of electrons in a beam discussed here is in principle 
valid for  arbitrary charged particles of like charge a t  
appropriate energies. A similar phenomenon with very 
short  characteristic lifetimes can be attributed to fields 
due to the transition radiation of charged relativistic 
particles in  arbitrary (nondielectric) media.' 
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