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We consider three-frequency nonstationary interaction of waves in a quadratically nonlinear medium. The 
low-frequency high-initial-intensity pump wave is not subject to decay instability, so that the nonlinear 
interaction regime can be described in the given-pump-field approximation. The cases of excitation of a 
wave at the sum-frequency by a long pump pulse and a short signal pulse, and the converse situation, are 
discussed. Analytic and numerical methods are used. Effects of nonlinear disperse spreading are 
described, as is also the breakup of the excited pulse into subpulses. 

PACS numbers: 42.65.B~~ 42.50. + q 

1. 1NTRODUCTION of nonlinear three-frequency interactions of pulses to 

The study of synchronous (resonant) interactions in 
dispersive media plays a fundamental role in various 
branches of physics, such a s  plasma physics, nonlinear 
optics, or hydrodynamics. In the last decade, much 
progress was made in the development of the theory of 
nonstationary interactions of modulated waves (wave 
packets) (see, e.g., Refs. 1-3). The most advanced i s  
the description of the interaction of pulses in first- 
order approximation of dispersion theory, which takes 
into account the difference between the group velocities. 
The method of solving the inverse scattering problem 
yielded in this case a general analytic solution of the 
system of three equations for the complex amplitudes? 
However, by virtue of the complicated form of the so- 
lution3 at arbitrary boundary (or initial) conditions, it 
cannot always be used in the analysis of the concrete 

the analysis of parametric processes (decay instabili- 
ty)4*5 and second-harmonic generation by short pul- 
se~ .~ ' '  The nonstationary interaction of another type, 
wherein a high-intensity low-frequency wave (pump) is 
mixed with a weak signal of another frequency, result- 
ing in production of a wave at the sum or  difference 
frequency, remain practically uninvestigated. Wave 
generation at difference and sum frequencies plays an 
important role in nonlinear optics.' To describe the 
excitation of picosecond and subpicosecond pulses it is 
necessary to develop a nonstationary theory that 
takes into account the specifics of this problem. Of 
principal nontrivial interest in this case is the develop- 
ment of a theory of the nonlinear frequency-conversion 
regimes. In the present article we have attempted to fill 
this gap. 

situations. Therefore, in addition to the approach dev- We consider nonstationary interaction of three pulses 
eloped by Belavin and Zakharov: use i s  made also of propagating in a general case with different group vel- 
other methods of solving the equations (for example, ocities. Since the powerful pump pulse is not subject to 
the given-field method, or asymptotic methods), and decay instability, the nonlinear frequency-conversion 
the numerical experiments a r e  used more and more regimes are well described in the given-pump-field ap- 
extensively. proximation. We discuss in the paper the physics of the 

Until recently, most attention was paid in the theory interaction of a short signal pulse with a long pump 
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pulse and vice versa. By combining analytic methods 
with numerical experiments we were able to draw the 
complete picture of nonstationary excitation of a short 
pulse a t  the sum (difference) frequency. The article re- 
ports such effects as nonlinear-disperse spreading and 
the breakup of the excited pulse into subpulses. 

2. SHORTENED EQUATIONS. SOLUTION METHODS 

We consider the interaction of three modulated waves 
with average frequencies w3 = w, + w, in a medium with 
nonlinearity. In first-order approximation of dispersion 
theory, the slow changes of the complex amplitudes of 
the waves A ,(t, z)  a r e  described by the reduced equa- 
t i o n ~ ' - ~  

where v,=t - z/uj,v =uf - u:, z is the coordinate, t is 
the time, u, is the group velocity, y , is the nonlinearity 
coefficient, and A k = k, - k, - k,. 

At z =0, we specify the boundary conditions: 

A&, 0 )  = E N .  (4) 
We a r e  interested in the case when the low-frequency 
pump wave, say of frequency w,, has an intensity great- 
ly exceeding the intensities of the two other waves: 

max IEt( t )  1 Bmax IE,,a(t) 1 .  (5) 
To simplify the exposition that follows it  is advan- 

tageous to set the initial amplitude of one of the weak waves 
equal to zero. We consider the case of generation of a 
wave a t  the sum frequency w,, putting 

Aa ( t ,  0) -E, ( t )  =O. (6) 
The excitation of a wave at the difference frequency w,, 
when E,(t) =0, is analyzed by the same procedure. 

Equations (1)-(3) with boundary conditions (4)-(6) 
were solved by us for Gaussianpulses E j  = E,, exp(-t2/r3 
by numerical methodslO; the results a re  shown be- 
low (see Figs. 2 and 4) in the form of plots. At the 
same time, taking into account the specifics of the 
problem, we can propose effective approximate analytic 
methods of solving the system (1)-(3). In fact, at the 
chosen relations (5) between the initial amplitudes no 
decay (parametric) instability of the pump wave devel- 
ops in the medium, i.e., the nonlinear distortions of the 
envelope of the high-intensity pulse of frequency w, a re  
quite negligible, A,(t, z)  = E,(q,). In other words, it can 
be assumed with high degree of accuracy that the right- 
hand side of (1) is equal to zero, so  that the initial sys- 
tem of equations can be linearized: 

The solution of Eqs. (7), (8) can be written in integral 
form1l"3. 

where R is the normalized Riemam function (see the 
Appendix). The concrete form of the Riemann function 
depends on the amplitude-phase modulation of the pump 
E,( t )  and on the ratio of the detunings of the group vel- 
ocities v,, and v,, (see the Appendix). At the upper and 
lower limits of integration a t  y = 0 and y = z we have ?? = 1. 
We note that the linear frequency conversion regime 
(y, =0) corresponds to B r 1. 

With the aid of (9) i t  is particularly convenient to an- 
alyze the conversion of the frequency of an ultrashort 
delta pulse in the field of a given pump pulse, when the 
dispersion effects (or the group-delay effects) begin to 
manifest themselves ahead of the nonlinear ones (see 
Sec. 3 .I). If the ratio of the nonlinear and dispersion 
effects is reversed, it is better to use the diffusion ap- 
proximation (see Sec. 3.2). On the other hand, if the 
pump pulse has the shortest duration, then in the case 
of group-velocity mismatch in all the waves, many fea- 
tures of the process of the nonlinear interaction a re  
described by stationary solutions of the system (7), (8) 
(see 4.2) and in the case of group synchronism with the 
pump they a r e  described by asymptotic expressions 
that follow from (9) (see Sec. 4.2). 

We consider next typical cases of interaction of pul- 
s e s  with different durations. 

3. QUASICONTINUOUS PUMP WAVE AND 
SHORT SIGNAL PULSE 

Let the initial signal E,(t) have a duration 7,. As the 
result of the group-delay effects, the durations of the 
weak waves A,(t) and A,(t) can increase over the dis- 
tance z to a value 7,+ I v,, 1z [this follows from a simple 
analysis of Eqs. (1)-(3) in t e rms  of the characteristic 
variables]. If the complex amplitude of the pump wave 
E,(t) does not change significantly over the time inter- 
val 7, + I v,, 12, then i t  can be regarded formally a s  con- 
stant when Eqs. (7) and (8) a r e  integrated. In the ab- 
sence of nonstationary effects in the pump wave, the 
Riemam function is expressed in terms of the Bessel 
function of zeroth order J,(x) [see @.I)] and the solution 
(9) can be written in the form 

Here I , ,  =(y,y3~~,)-1'2 is the nonlinear length. 

In (10) the nonlinear effects due to the reaction of the 
excited wave A, on the input signal a r e  described in 
terms of a Bessel function and manifest themselves 
over lengths z 2 l , , ,  while the nonstationary effects due 
to detuning of the group velocities of the weak waves 
v,, a r e  described in terms of the initial amplitude of the 
input signal with retarded argument E2(v3 + v3,y) and 
manifest themselves over distances that exceed the 
group-delay length l , , ,  =T,/ 1 v3, I. Depending on the ratio 
of the characteristic lengths I,, and I,,, we can separate 
six different wave-interaction regimes (Fig. 1). 

3.1. Weakly nonlinear process of frequency conversion 

This case is characterized by the fact that the non- 
stationary effects begin to manifest themselves ahead of 
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FIG. 1. Regions of existence of different frequency-conver- 
sion regime in interaction of a short signal pulse and a long 
pump pulse. I and 11-linear regimes, 111-IV-nonlinear, I 
and V-quasistationary , 11-IV and VI-nonstationary . 

the nonlinear ones, I,,, <I,,. In the case of a weakly 
nonlinear interaction we can separate the following fre- 
quency-conversion regimes. 

I. The regime z < 1, ,, < I,,-the well known quasista- 
tionary linear regime,' for which we put in (10) J, = 1 
and E,(TJ, + v,;Y) = E,(TJ,). Taking this into account we 
have 

Al=-iy¶zEI(qI)Ez(qa) ,  (11) 
i.e., the waveform of the pulse a t  the sum frequency w, 
duplicates the waveform of the initial signal of frequen- 
cy w,, while the amplitude increases in proportion to 
the distance. 

II. The regime l,,,<z <I,, is likewise a well known 
nonstationary linear regime: in the description of which 
we can, putting J, - 1 in (lo), obtain the equation 

* 
Aa-- iy lEi(qi )  j dy Ez(qs+vsry). (12) 

0 

Over lengths exceeding the group length z > I,,,, the 
sum-frequency pulse acquires an almost rectangular 
form; its duration increases like T,(z) = I v,, ( z , and the 
peak amplitude saturates: 

Since T,(z)>T,, the input pulse E,( t )  can be regarded 
a s  a delta pulse. It is interesting to note that if 

..- 

then the pulse a t  the sum frequency is not excited effec- 
tively in this regime. 

III. The regime I,, < z  <1~,/1,,,-the first  stage of non- 
stationary weakly nonlinear interaction?, In this re- 
gion, the input signal can be regarded, as before, a s  a 
delta function in the integrand of (lo), so  that the Bessel 
function can be taken outside the integral sign a t  the val- 
ue of the argument y =-q,/v,,. Therefore the envelope 
of the pulse a t  the summary frequency is described by 
a Bessel function 

The argument of the Bessel function has a maximum 
value x,,=z/l,, a t  the center of the pulse a t  TJ, =TJ, 
=(v,, + v3,)z/2 and is equal to zero a t  the edges of the 
pulses a t  q1 = v3,z and TJ, = v,z. It is seen thus that a 
distance z 2 l,, the rectangular shape of the pulse A, is 
distorted. 

During the initial stage of these distortions we can ex- 
pand the Bessel function in a ser ies  

It follows from (14) that when the nonlinear regime is 
reached an intensity dip is produced a t  the center of the 
pulse 7, =qO, where A, -(I- za/12,,1. Next, a t  z 2 I,,, the 
distortions become stronger, the pulse breaks up into 
subpulses, and on the edges (on the leading and trailing 
edges, q, = 0 and TJ, = v,,z) two principal subpulses of 
largest amplitude a r e  formed. 

The number of subpulses increases a s  the wave prop- 
agates and the duration of the principal subpulses de- 
creases. When the length of the latter becomes com- 
parable with the initial duration of the input signal 7, 

(this takes place over a length z - 1~,/1,,,), the second 
stage of the nonstationary weakly nonlinear interaction 
sets  in. 

IV. The regime z > 1~,/1,, , .  During the second stage 
of the weakly nonlinear regime, the Bessel function in 
the integrand of (10) varies more rapidly at the edges 
of the pulse A, than the initial amplitude E, of the input 
signal, a s  a result of which the envelope of the pulse 
at the sum frequency assumes a complicated irregular 
shape. 

3.2. Nonlinearly disperse spreading 

Assume that in the course of the wave interaction the 
nonlinear effects that manifest themselves ahead of the 
dispersion effects, 1,,<1,,, (Fig. 1). Although the ef- 
fects produced thereby a r e  described a s  before by Eq. 
(lo), the analysis of this equation becomes difficult. It 
is expedient here to use the method of slowly varying 
amplitude. We reduce Eqs. (7) and (8) to a single equa- 
tion (the pump amplitude A, will be assumed constant 
a s  before): 

We seek the solution of (15) in the form 

A , = C + ( ~ , ,  z) exp (UII,~) +C- (r),,, z) exp (-u/&I). (16) 

In the absence of dispersion effects, v,, =0,  the partial 
amplitudes do not depend on the distance transversed 
(the waveform of the pulse is preserved) and a r e  de- 
termined completely from the boundary conditions: C+ 
=C- = (y3/4y ,)1'2~,(q,). In the presence of group-veloc- 
ity detunings v,,, the amplitude profiles C, become dis- 
torted. Since we assume the dispersion effects to be 
weaker than the nonlinear effects, we can assume that 
the amplitudes C, vary slowly compared with the expon- 
ential factors exp(iiz/l,,). This gives grounds for em- 
ploying the known method of slowly varying amplitude. 
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Substituting (16) in (15) and discarding the second der- 
ivative a2C,/az2, we obtain the parabolic equation 

d C , / a ~ = r i D b C , / a q , , ~ ,  D = ~ / ~ V , ; L , ~ .  (17) 

Obviously, the detunings v,, of the group velocities lead 
to nonlinearly diffuse spreading of the pulse. The 
boundary conditions for the partial amplitudes a r e  

Solving the diffusion equation (17) with the boundary 
conditions (181, we obtain from (16) the general expres- 
sion for the amplitude - 

A,=-i(y3MnDzy2)" dy  Ez (y ) s in [ z l ln l -  ( y - q a V ) 2 / 4 D ~ l .  (19) 
-a 

In particular, if a Gaussian pulse of frequency w, is 
applied a t  the input to the medium: 

then, integrating (19) and taking (20) into account, we 
obtain the waveform of the pulse excited a t  the frequen- 
cy w,: 

A 3 = - i ( y , 9 / y 1 ~ . ( z )  )'Elo e x p [ - q a v Z / ~ s l ( z )  I 
x sin (z / lnl  +zqaV2lLgpfi3 ( z )  -arctg(z/LSpr) ). 

(21) 

The duration of the generated pulse increases here with 
distance: 

where the length of the nonlineraly disperse spreading 
is equal to 

Equations (19) and (21) describe the excitation of the 
pulse F, in the regions I, V, and VI (Fig. 1). A conse- 
quence of the strong nonlinear interactions is the partial 
suppression of the dispersion spreading of the excited 
pulse: f irst ,  broadening of the pulse A, begins not a t  
the group length z =I,, , ,  as in the linear regime 11, but 
later, a t  the length L,,,>l,,,; second, the nonlinearly 
dispersed spreading is slower than in the linear regime 
II [see (12)], where 7 ,  = ~ , z / l , , ,  [cf. (22)]. Thus, the 
group delay effects with respect to the weak waves be- 
come substantially weaker in the strong pump field. 

The waveforms of the generated pulse during different 
stages of the conversion a r e  shown in Fig. 2. 

4. SHORT PUMP-WAVE PULSE 

Assume that a short pulse pump and a long signal 
pulse E,(t)=const. a r e  applied to the input of the non- 
linear medium. Now the nonstationary effects a r e  char- 
acterized by two group lengths: l,,, =T,/ 1 v,, ) and 1, ,, 
= r l /  1 vZ1 1 , while the nonlinear effects a re  characterized 
a s  before by the nonlinear length I,, =(v,y$:,)-112 (El ,  
is the peak amplitude of the pump pulse). Depending on 
the ratio of these lengths we can distinguish between six 
frequency-conversion regimes (see Fig. 3), where we 
have put for the sake of argument 1,,,>1,,,. The class- 
ification of the regimes a t  I .,, < l,,, o r  a t  equal group 
lengths I , , ,  =I,,, o r  in the case of group synchronism 
with the pump I , , ,  , I, , ,  can be easily obtained in 
analogy with Fig. 3. 

The waveforms of the sum-frequency pulse A, a t  the 

FIG. 2. Results of numerical experiments for an input signal 
pulse of Gaussian shape Ez = Ezo exp (-t 2/r22) and for a mono- 
chromatic pump wave El = El,, = const. The distortion of the 
waveform of the exciting pulse as it  propagates in the nonlin- 
ear medium i s  shown (z/ldz=2-a, 10-b, 20-c) at various 
levels of the pump amplitude ( z ~ ~ ~ / z ~ ~ =  0.2-upper row. 1- 
middle, 3-low row). 

different conversion stages, observed in the numerical 
experiments, a r e  shown in Fig. 4. 

4.1. Linear frequency-conversion regimes 

In the linear regimes 1-111, which correspond to a 
Riemann function It = 1, the waveform of the input signal 
A, is not distorted, and the amplitude of the excited 
pulse is [see (9) and cf. (12)] 

I. The regime z <I,, ,  < I , , ,  is quasistationary; the 
group-delay effect does not manifest itself, and the 
waveform of the excited pulse duplicates the waveform 

a 
I 

1 2% h"* ~/i",, 

FIG. 3. Regions of existenw of different regimes of frequency 
conversion in the interaction of a short pump pulse and a long 
signal pulse. I-111-line ar regimes, IV-VI-nonline ar , I, 
IV--quasistationary, 11, 111, V, VI-nonstationary. It is as- 
sumed that Zlni > Zua. 
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FIG. 4. Result of numerical experiments for a short Gaussian 
pump pulse El =Eio exp (-t2/rt2) and a monochromatic input 
signal Ez =Ez0 = const. The distortion of the waveform of the 
excited pulse in the course of its propagation is shown (z/bi 
= 1-a, 3-b, 5-c, 7-d) at different levels of the peak pump 
amplitude and at different relations, between the group velocities 
(ldi/l,,= 1.25, l,3i/Zlni = 0.5, v 2 i v ~  > 0-upper row and lv31/lnl 
= 0.71, lA = Z ~ l ,  vziV3t < 0-lower row). 

of the pump pulse A,=-iy,E,E,(q,)z [cf. ( l l)] .  If the 
pump intensity is large, I,, < I, ,, , then a t  a distance z 
=I,, the linear regime I goes over into the nonlinear 
quasistationary regime IV. At lower intensities, I,, 
> L,,, the conversion regime remains linear with in- 
creasing s, but beyond the group lengths z > 1, ,, the 
process of wave interaction becomes nonstationary. 

11. The regime I,,, <z  <I,,, , l,, > l,,, is nonstationary 
and is due to the influence of only one of the detunings 
of the group velocities (in our case, v,,). In this region, 
the pulse A, acquires a rectangular shape with amplitude 

and with duration 7, - 1 v,, lz that increases with the dis- 
tance [cf. (12)]. Since the group dispersion effects a r e  
stronger than the nonlinear ones, I,,, <I,,, the latter can 
become substantially weakened o r  become completely 
suppressed. At moderate intensities I,,, <I,, <(~311v,l)112 
the linear nonstationary regime I1 gives way to the lin- 
ear  regime V, but this does not occur over the nonlin- 
e a r  length (as in the transition from I to IV), but a t  a 
larger distance z -l~,/l,,,. If the amplitude of the pump 
pulse is relatively small, I,, > (&,,L ,1)1'2, then the dis- 
persion group effects suppress the nonlinear interaction 
to such an extent that in region 111, which follows region 
II, the linear process of frequency mixing continues a t  
all distances (no reaction by A, on A, appears). 

III. The regime z > l,,, >lV3, is nonstationary; the 
pulse A, continues to broaden, 7, - 1 v,, lz, but i t s  edges 
acquire stationary forms. 

4.2. Nonlinear conversion regimes 

When the pump pulse intensity exceeds a certain 
threshold, l,, < (1,311,,1)112, the linear regimes I and I1 
go over a t  a definite distance into the nonlinear regimes 
IV and VI, which a r e  characterized by the fact that the 
waveform of the input signal A, is distorted by the op- 

posing reaction of the excited pulse A,. In regions IV- 
VI the Riemann functions cannot be set  identically equal 
to unity, and i t s  concrete form must be taken into ac- 
count. We examine now the characteristic features of 
the nonlinear regimes. 

IV. The regime l,, < z < l,,, is quasistationary. The 
group velocities of all  three waves can be assumed 
equal: v,;= v,, '0, ql =q2 =q3. In this approximation i t  
is easy to obtain directly from (7) and (8) the solution 

A~=-i(y~/y,)"'E,e*sin( (ylys)"l E, (q,) I z). (25) 

The amplitude A, begins to oscillate with distance a t  z 
>I,,, and if  the pump pulse E,(q,) has a waveform other 
than homogeneous and rectangular, for  example 
Gaussian, then the excited pulse A, breaks up into 
subpulses. The total duration 7, does not exceed the 
duration 7, of the pump pulse. 

V. The regime 1, ,, < z < 1, ,, , I,, < (21, ,,)I l2 is nonsta- 
tionary in the case of group synchronism for one of the 
weak waves (v,, = O  in the situation of Fig. 3). The Rie- 
mann function is expressed in t e rms  of a Bessel func- 
tion [see (A.2)]. In the case of group synchronism of the 
excited pulse with the pump, v3, =0, we have 

= -  Y J 2 [ z -  I - v  l2dY]}. (26) 
0 0 

The pulse E, does not broaden but in contrast of the 
complete synchronism case (25) i t  is always chopped up 
under nonlinear frequency conversion even in the field 
of a rectangular homogeneous pump pulse. 

Beyond the group length z > I,,, , the waveform of the 
pulse is described by an asymptotic expression that fol- 
lows from (26): 

In the region V the argument g> 1 and a nonlinear con- 
version regime sets  in, in the course of which the pulse 
A, acquires a choppy asymmetrical form. The largest 
amplitude takes place on that front which is overtaken 
by the long pulse of the input signal. We have observed 
this picture qualitatively in the numerical experiments. 

If group synchronism is obtained between the signal 
wave and the pump pulse, v,, =O,ul =u,, q, =q,, then the 
pulse A, in the region V broadens as a result of the 
group-delay effect, and becomes strongly chopped up as 
a result of the nonlinear character of the conversion. 

VI. The regime z >I,,,, 1,,,,1,, < (1,311,,l)1t2. Qualita- 
tively, the picture of the interaction of the pulses is as 
follows. The leading(trai1ing) edge of the excited pulse 
A, moves with velocity u, > u, (u, <u,), and the other 
edge with the pump velocity u,; the total pulse duration 
v, increases with distance. The leading (trailing) part. 
of the pulse duration AT = T ,  1 v,, I / I v,, I ,  which propa- 
gates with velocity u,, is excited over the initial dis- 
tances z < I,,, and takes on the waveform typical of 
regime V. The succeeding part  of the pulse A, is ex- 
cited beyond the group lengths z > I , , , ,  I,,, in the steady 
state, i.e., the part of the pulse adjacent to the pump 
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pulse has a stationary form. 

It is convenient to calculate the stationary part  of the 
pulse A, directly from (7) and (8), putting aA,/az = 0. 
Depending on the ratios of the group velocities of the 
three pulses, one must distinguish here between two 
regimes: v,,v,, > 0 and v,,v,, < 0. We consider them 
separately. 

In the regime v,,v,, > 0, the pump pulse travels more 
rapidly (u, >u,, u,) o r  more slowly (u, <%, u,) than the 
two weak waves; in the former case,  in the calculation 
of the stationary profile it is necessary to specify the 
conditions A,(% = -) =O,A,(q, = -) = E , ,  while in the latter 
case, the conditions a r e  A,(q, = -a) = O,A,(q, = -09) = E 2 0  

A s  a result of simple calculations we obtain (u, <u,,u,): 

Ap=-i(ysIv31 llr21vLII )IAE2 sin G; 

m (27) 
~ ( q t ) = ( ~ r y t / l v s r v z t l ) ' " J  dyEt(y). 

-- 
In the case u, >u,,u, it is necessary to reverse the sign 
of the lower limit of the integration. 

It follows from an analysis of (27) that if G(-) =na (n 
is an integer), then the amplitude A, outside the pump 
pulse, q, >r, ,  is equal to zero-the excited pulse is 
blocked, so  to speak, inside the pump pulse (to be sure,  
A, has a trailing edge AT =r, 1 v,, I / I v,, I that is excited 
in the region V). The energy of such a pulse does not 
increase with increasing z. On the other hand if G(m) 
= (2% + l)n/2, then the amplitudeA, has outside the pump 
pulse a constant maximum values that does not depend on 
the intensity lA1I2, lA31 = (y3(vsll/rzl v, ,J)~/~E,.  The pulse 
has a practically rectangular waveform (with compli- 
cated fronts); the duration of the pulse and the energy 
increase in proportion to the length z. 

Thus, in the nonlinear regime VI, if the dispersion of 
the group velocities is such that v,,v,, >0,  i t  is possible 
to alter  radically the waveform of the excited pulse and 
its energy, by varying the pump intensity [the parameter 
G(-I]. 

We note that in the particular case  v,, = v,, , u, =u, there 
exists a simple exact solution of Eqs. (7) and (8): 

In the region VI we have z > 1, ,, and 177, 1 < rlz, and 
formula (28) goes over into (27). This, as well a s  nu- 
merical experiments, confirms the validity of the pre- 
ceding statements that the exciting pulse has a station- 
ary  part. 

In the regime v,,v,, <0, the pump pulse propagates 
with intermediate group velocity u, <u, <u, o r  u, i u ,  <u,. 
In the former case stationary pulses correspond to the 
conditions A,(q, = --) = O  and A,(q, = -) = E,. The station- 
a ry  pulses now have a qualitatively different waveform 
than in the regime v,,v,, > 0, namely (u, <u, <u,). 

When the weak waves move away from the pump pulse 
in opposite directions after the interaction then, as seen 
from (29), the stationary part of the excited pulse A, 
has a smooth form [cf. the oscillatory regime a t  v,,v,, 
> 0 (27)]. If G (03) >> 1, then saturation of the stationary 
amplitude is observed: 

IAslsat=(ysIv~ll/rrI~ziI)'Ez. 

The duration and energy of the pulse A, increase in 
proportion to the distance z. 

APPENDIX 

1. In the case of monochromatic pumping, ~ , ( t )  =El, 
=const, and in the case of arbitrary group-velocity 
mismatches v,, and v,,, the Riemann function is expres- 
sed in t e rms  of a Bessel function of zero  order 

2. In the case of arbitrary modulation of the pump 
and group synchronisms for  the principal and excited 
waves, u, = u, (v,, = 0), 

On the other hand, if group synchronism obtains between 
the pump and the single pulse, u, =u, (v,, = O), then we 
have 

3. For  a bell-shaped pump pulse E,(T) =E , ,~osh-~  
(t/rl) and for  arbitrary mismatches v,, and v,,, the Rie- 
mann function is expressed in t e rms  of the Gauss hy- 
pergeometric function 

R=F(n, -n; 1; y),  (A .4) 
where 
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The luminescence spectra of thin anthracene single crystals in optical contact with quartz and gold were 
measured for the first time ever at low temperatures (1.7-100 K). It is shown that the presence of the 
metal layer leads to metallic quenching of the Frenkel excitons on the interface. Questions involved in 
the quenching of coherent and noncoherent excitons are discussed, as well as the peculiarities of the 
influence of a metallic substrate on the processes of exciton-phonon interaction in anthracene crystals. 

PACS numbers: 71.35. + z, 78.60. - b, 63.20. - e 

INTRODUCTION tence of metallic quenching of excitons on the anthra- 

A number of recent studies a r e  devoted to the pecul- 
iari t ies in the behavior of excitons near the surface of 
the crystal, especially i f  the lat ter  i s  in contact with 
another medium. For  molecular crystals, such a s  an- 
thracene, these investigations were carried out in Refs. 
1-6. In addition to the singularities of exciton reflec- 
tion and luminescence spectra, studies a r e  made a lso  
of luminescence quenching, which i s  important for  the 

cene-gold interface, and that the quenching depends sub- 
stantially on the temperature, An analysis of the dep- 
endence of the parameters of the electron band of the 
exciton luminescence (position and half-width) on the 
temperature and on the type of the substrate has made 
i t  possible to identify the different effects of metallic 
and dielectric substrates on the exciton-phonon inter- 
action in anthracene. 

determination of the behavior of Frenkel excitons on a 
f ree  surface o r  in the case of contact between the cry- EXPERIMENT 
stal  and another medium. The quenching of excitonic 

The investigated anthracene single crystals  were less  luminescence of a single crystal of anthracene was mea- 
than l pm thick and were grown by sublimation in an sured in Refs. 3 and 4 a t  room temperature a s  a func- 

tion of the thickness of the dielectric interlayer between inert  atmosphere from zone-purified (-100 zones) of 

the crystal and the metal. I t  was concluded that the material. No impurity bands whatever were observed in 
the luminescence spectra of these crystals  a t  low tem- quenching i s  due to annihilation of the excitons into 
peratures. One part of the anthracene crystal  was in electrons and holes on the separation boundary. 
optical contact with fused quartz and the other with a 

Theoretical investigations of the behavior of Frenkel semitransparent gold electrode. F o r  comparison, we 
excitons on a boundary with a show that the investigated also freely supported single crystals  of 
phenomena depend substantially on whether the excitons anthracene approximately 10 pm, with a gold semi- 
that come into play a r e  coherent o r  noncoherent. Thus, transparent layer evaporated on half of their  surface. 
f o r  example, if the excitons a r e  noncoherent then the 
presence of a metal can produce forces that drag the 
excitons to o r  from the metal, and metallic quenching 
of the excitons should be observed. To identify the type 
of excitons that manifest themselves in the spectra, i t  
is necessary to ca r ry  out the measurements a t  various 
temperatures, especially a t  low temperatures, when the 
excitons can be coherent7 There a r e  still no published 
reports of investigations of Frenkel-exciton quenching 
on an interface with a metal at  low temperatures. 

The luminescence spectra were measured in the tem- 
perature interval 1.7- 100 K. Stabilization and moni- 
toring of the temperature were by means of two germ- 
anium thermoresistors of the KGG type (which meas- 
ured the temperature in the range from room to helium 
and below). The accuracy of the temperature deter- 
mination was 0.05" in the interval 1.7-4.2 K and 0.1" in 
the interval 4.2-100 K. The spectra of the exciton lum- 
inescence of the anthracene were measured with a DFS- 
12 spectrometer. The luminescence was excited a t  an 

We report here the results of investigations of the angle <lo0 to the crystal  by a DRSh-250-2 mercury 
characteristics of the luminescence spectra of thin an- lamp through a UFS-6 fi l ter  (A,,, =365 nm). The anthra- 
thracene single crystals  which a r e  freely mounted and in cene emission spectra were registered from the side 
optical contact with quartz and gold, a s  functions of the of the f ree  surface of the crystal, with account taken of 
temperature in the interval from 1.7 to 100 K. We the light lost in the various substrates on the other side 
prove experimentally, for the f i rs t  time ever, the exis- of the crystal. Since the crystal  thickness was l e s s  than 
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