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INTRODUCTION longitudinal motions, a s  well as the influence of the 
quantum recoil and the interaction of the particle spin 

The channeled-particle energy connected with the with the effective radiation field, which become appre- 
transverse motion takes on discrete values, since this ciable for emission from particles of sufficiently high 
motion is finite. Thompson1 has pointed out that one of energy. It was shown in the same paper that there 
the effects that lead to the change of the level popula- exists an optimal channeled-particle energy at which the 
tion may be the spontaneous transitions between the spectral density of the radiation power reaches a maxi- 
transverse energy levels of the protons. In this case mum. 
the radiation, according to Thompson, should lie in 

It should be noted that the character of the particle 
the infrared region. He did not perform, however, the 

motion in the case of channeling in crystals has much in 
corresponding calculation of the spectrum. A more de- 

common with motion in special periodic electromagnetic 
tailed analysis shows that nonrelativistic channeled pro- fields, which are  produced in devices called undulators. 
tons should actually emit in the infrared region in tran- A sufficiently complete review of the results of the the- 
sitions between t raverse-energy levels. Unfortunately, ory of undulator radiation can be found, for example, in 
the emission intensity turns out to be too small  for this R ~ ~ ~ .  11 and 12. In cases when the motion of the than- 
phenomenon to be observable in practice. neled particles can be considered within the framework 

In contrast, a s  f i rs t  show theoretically by K ~ m a k h o v , ~  of classical mechanics, some results of the theory of 
ultrarelativistic electrons and positrons emit mainly in undulator radiation can be used also to calculate the in- 
the x-ray and gamma bands. The emission intensity is tensity of dipole radiation in planar channeling. 
so high that it can exceed considerably the intensity of 
the known types of radiation, such a s  synchrotron and At the same time, as will be shown below, the emis- 

transition radiation o r  bremsstrahlung. This strong sion of channeled particles exhibits a number of quali- 

difference between the emission of protons and posi- tative differences from undulator radiation. 

trons having identical total energies is due to the Dop- 
pler effect. It was therefore natural for A. Vorob'ev, 
Kaplin, and S. Vorob'ev, who did not take this effect 
into account, to arrive a t  incorrect conclusions con- 
cerning the intensity and spectral distribution of the 
emission from channeled electrons (for details see Ref. 
A \ 

Following Kumakhov's pioneering work,' in view of 
the great  practical importance of channeled particles a s  
a high-power source of x rays and gamma rays, the 
theory of this phenomenon was diligently developed. 
Thus, for example, Kumakhov and his co-workerse7 
made a detailed analysis of the angular, spectral, and 
polarization characteristics of the dipole radiation of 
channeled particles, and reviewed also the effect of 
stimulated emission. Bazylev and Zhevago8-lo consid- 
ered the influence of the frequency and spatial disper- 
sion of the electromagnetic field in the crystal on the 
emission process, and analyzed the characteristics of 
the emission as functions of the energy of the channeled 
particles and of the form of the effective potential of the 
crystal. In another paper, one of us1' considered the 
effect of the parametric coupling of the transverse and 

The most quantitatively reliable results were obtained 
so  fa r  for the case of planar channeling of posi- 
t r o n ~ . ~ ~ * ~ - ' ~  The harmonic-oscillator potential, which 
i s  usually used in this case to calculate the emission 
spectra, is close enough to the actual potential of the 
channel. This cannot be said in the case of electron 
channeling. Therefore the results  of the theory of 
emission by channeled electrons, obtained to date,4-9*'3 
a r e  only qualitative in character. Yet greatest practi- 
cal interest attaches precisely to emission by elec- 
trons. 

In this paper we develop the theory of emission from 
high-energy electrons in planar and axial channeling. 
We present the results of the calculation of spectra of 
radiation having different polarizations, for several 
models of effective potentials of the crystal planes and 
axes, which a r e  closest to the actual form of the poten- 
tial. Our results will be compared in detail with the 
corresponding results by others, and it will be shown 
in particular that the theory of emission from planar 
channeled particles, developed by Baryshevskii and 
 other^,'^*^^ is on the whole in e r ro r .  
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1. GENERAL EXPRESSIONS FOR THE EMISSION 
PROBABI LlTY 

The spectral-angular probability density of the emis- 
sion of a photon of energy w and polarization e in a unit 
time by an electron (positron) can be represented in the 
following general form (see, e.g., Ref. 17, Sec. 44): 

Here k is the momentum of the emitted photon; d62 is 
the differential of the solid angle; F is the aggregate of 
the quantum numbers of the final state of the electron; 
j is the electron current-density operator; i,n = l , 2 , 3  
a re  indices that number the spatial components of the 
vectors (A=m =c = 1). The quantity in the parentheses 
denotes a matrix element of the operator of the inter- 
action of the particles with the radiation field, describ- 
ing the states 1 1 )  and I F )  with energies E, and EF.  

We assume the electron to be ultrarelativistic (E >> I), 
so that the interaction of the electron spin with the elec- 
t r ic  field of the planes o r  axes of the crystal can be 
neglected. This neglect is made possible by the small- 
ness of the quantity (U0/E)', where Uo is the character- 
istic value of the interaction of the energy with the 
planes o r  axes of the crystal (for details see  Refs. 6 
and 9). As will be made clear below (see also Ref. Id), 
emission by channeled particles takes place mainly a t  
photon energies much lower than the particle energies 
(w << E). It is then possible to neglect the recoil due to 
the photon emission, and also the interaction of the 
electron spin with the effective field of the radiation." 

As a result, the electron o r  positron can be regarded 
in this case as a spinless particle. The matrix elements 
of the current take the form 

while the wave functions and *F satisfy the equation 

This equation is obtained from the exact second-order 
Dirac equation after neglecting the terms of order 
(Uo 

2. EMISSION I N  PLANAR CHANNELING 

In planar channeling, the effective crystal potential 
U(r) depends only on the distance x to the crystallo- 
graphic plane. Therefore the wave function of the chan- 
neled particle is of the form 

y , ( r )  = (2E,") -" exp (ipi"p)$t(z).  (4) 

Here I={~:, i}, p: denotes the projection of the initial 
particle momentum on the channeling plane, p is the 
radius vector and lies in the channeling plane. The ini- 
tial wave function q,(x) of the transverse motion satis- 
fies an equation of the Schrzdinger type 

where Ey = (1 +p12)1'2 is the initial energy of the longi- 
tudinal motion and &, (E:) is the quantized energy of the 
transverse motion and depends parametrically on the 

longitudinal energy E:. 

On going from Eq. (3) to Eq. (5), we have represented 
the total energy in the form of the sum E =Elt+ E, and 
have neglected, as we should, the quantity (E/E ' )~.  

The wave function *F (r) of the final state of the par- 
ticle is similar in form to (4). We note, however, that 
the wave functions Jln(x; E:) and the energy levels ~ ~ ( 2 ; )  
differ generally speaking from the corresponding func- 
tions qn(x; 2;) and levels E,(E:), because of the para- 
metric coupling of the transverse motion with the longi- 
tudinal motion. 

Since the photon energy is assumed to be low enough 
(w << E) ,  we can use the relations 

where v,, = BEi/Bp: is the longitudinal particle velocity. 

After calculating with the aid of wave functions of the 
type (4) the matrix elements (2) of the current we ar- 
rive a t  the following results for the spectral-angular 
probability density of the emission per unit time: 

Here G i f  = &,(E!) - &,(E;), E; = E; - k , , ~ , ,  [see (6)] 

18' (u= GJ d'.'t: 5') $,(I; E tU)axp( ikg)dz ,  

(8) 
j:;' (k , )  = jq , ' (x;  Ecll)$, (2 ,  E,It) exp ( i k g )  dz. 

For photons that a re  linearly polarized in the emission 
plane2) we have I ,  = 0 and I,= 1, while for photons polar- 
ized perpendicular to this plane we have I ,  = 1, 1 ,  = 0, 
k , = k @  coscp is the projection of the photon momentum on 
the direction normal to the channeling plane; 6 << 1 and 
40 a r e  the polar and azimuthal emission angles, the Oz 
axis is chosen along the longitudinal velocity v,,, x'(w) 
= w v w 2  << 1 is the average dielectric susceptibility of 
the crystal, and w, is the plasma frequency of the crys- 
tal  electrons. 

The derivative a e / a ~  depends on the concrete form of 
the potential and is of the order of the ratio &/E. Thus, 
under the condition3' & E  2 1 the parametric dependence 
of the levels of the transverse energy on the energy of 
the longitudinal motion becomes quite appreciable. The 
same can be stated also concerning the parametric de- 
pendence of the wave functions of the transverse motion. 

The transverse-motion wave functions can pertain to 
either the discrete or  to the continuous spectrum of the 
transverse energy. If the ,initial state of the particle i s  
in the continuous spectrum and the final in the discrete 
spectrum, then expression (7) describes radiation ac- 
companied by capture of the particles into the channel- 
ing regime. If both states lie in the continuous spec- 
trum, then expression (7) corresponds to bremsstrah- 
lung in successive collisions of particles with the crys- 
tal  planes, and in the latter case an important role may 
be assumed by the influence of the periodicity of the 
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potential U ( x ) ,  which leads to coherence of the emission 
from different planes. In the remaining cases, the per- 
iodicity of the potential can as a rule be neglected.8vl0 

3. CONNECTION WITH OTHER RESULTS 

After summation over the photon polarizations (I, = I ,  
= 11, expression (7) becomes a particular case of a 
more general result  obtained by Zhevagolo [see Eqs. 
(10) and (11) in  Ref. 101. 

If E E  < 1, the matrix elements of the current (a) can be 
expressed in terms of the dipole moment of the transi- 
tion 

If we disregard also the frequency dispersion of the 
electromagnetic field [x'(w)= 01, then we get the result 
(24) and (25) of the paper of Beloshitskii and K ~ m a k h o v . ~  

In the quasiclassical limit, when the quantum num- 
bers  of the states of the discrete spectrum are  large 
(i,f >> 1), and their difference is relatively small 
( l i  - f 1 << i), the quantum quantities in (7) and (8) can be 
replaced by the corresponding classical quantities, and 
the summation over the final states can be replaced by 
summation over the harmonics, in accordance with the 
scheme: 

Here n is the number of the harmonic of the radiation, 
wo is the frequency of the classical periodic transverse 
motion, T = 2r/w0, is the kinetic energy of the 
transverse motion averaged over the period, 

and v,(t)=dx(t)/dt. The equation for the transverse 
component of the particle trajectory x ( t )  is 

In this case  expression (7) agrees with the analogous 
result of the theory of undulator radiation, obtained by 
Alferov et  al. [see expressions (2) and (14) in Ref. 121. 

Estimates show that at relatively low particle ener- 
gies (5100 MeV) there a r e  only several  transverse-en- 
ergy levels, s o  that the classical description of the mo- 
tion of the channeled particles becomes utterly inapplic- 
able. At sufficiently high energies, when [I,E 2 1, the 
character of the motion of the channeled particles be- 
comes classical, but the condition of applicability of the 
dipole approximation for  the calculation of the radiation 
no longer holds. This is one of the characteristic fea- 
tures of radiation produced by channeling when com- 
pared with radiation in undulators, where the particle 
motion is practically always classical. 

We compare now our result (7) with the second term 

of expression (15) of the paper of Baryshevskii and 
Dubovskaia,15 which, in  accordance with their own 
statement, describes the radiation due to transitions 
between discrete states of transverse motion. The 
presence of the factor I C , ) ~  and the summation over y 
in the indicated expression of Ref. 15 correspond to 
averaging over the initial states of the transverse mo- 
tion (see below). The factor 

~-'xP(-~'?~I&) ' I qm I 
for  a thick crystal (L- CO) and for  weak absorption 
(Imn (w) - 0) goes over into a product of the 6 function 
from expression (7) of the present paper and the length 
of the crystal L. In all other respects the two com- 
pared results  a r e  substantially different. 

According to Ref. 15, the radiation is always linearly 
polarized in  the plane containing the normal n, to the 
channeling planes and the momentum of the photon. 
According to our results  (7), such a polarization can be 
observed in  the general (non-dipole) case only in direc- 
tions parallel to the channeling planes. 

The dependence of the emission probability (7) on the 
angles 6 and 4p likewise does not agree with the corre- 
sponding relation obtained in Ref. 15. In addition, the 
matrix elements of the transverse component of the 
current, which a re  designated I,, in Ref. 15, do not 
contain the transverse par t  of the wave function of the 
emitted photon exp(ikp) in the integrand, in contrast to 
j$' of our Eq. (8). 

Thus, the results  of Sec. 3 of Ref. 15, as well a s  the 
analogous results  of the paper by ~ a r ~ s h e v s k i i  and oth- 
ers'' must be regarded as in error .  In our opinion, the 
general formula obtained by Bethe and Maximon'' for 
the calculation of the bremsstrahlung was used by the 
authors of Ref. 15 and 16 incorrectly. The point i s  that 
the wave functions of the channeled particles do not have 
the asymptotic form of a superposition of plane and 
spherical waves, as was assumed by ~ a r ~ s h e v s k i i  et  
a1 .,l5*l8 but a r e  localized in the region of the channel. 
The transverse component of the particle momentum in 
the crystal does not have a definite value, inasmuch as 
the transverse motion in the channeling is finite. Ac- 
cordingly, the general quantum formulas for  the calcu- 
lation of the radiation in channeling [see, e.g., Eqs. 
(4)-(7) of Ref. 101 differ substantially from the analo- 
gous equations for the calculation of the bremsstrah- 
lung. 

The problem of the radiation accompanied by the cap- 
ture  of a relativistic electron in the planar channeling 
regime was considered by Koptelov and Kalashnikov,lg 
and also by Ol'chak and Kala~hnikov.~' Unfortunately, 
their calculation must be admitted to be in er ror .  A 
comparison of the general expressions (28) in Ref. 19 
and of 2.31 in Ref. 20 with our result  (7) shows that the 
cited authors do not take into account the longitudinal 
component of the current j$', although the order of 
magnitude of i ts  contribution is the same as that of the 
transverse component j$'. Therefore the angular de- 
pendence of the radiation obtained in Refs. 19 and 20 is 
i n ~ o r r e c t . ~ '  The subsequent calculation of the emission 
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spectrum in these papers contains also several  gross 
er rors .  First, i t  was assumed that the initial wave 
function of the electron entering into the crystal paral- 
le l  to the crystal planes maintains during the instant of 
emission its initial plane-wave form. On the other 
hand, i t  is well known (see, e.g., Ref. 21), that under 
the corresponding conditions a very strong realignment 
of the wave function of the particle in the crystal takes 
place. The field of the planes can be regarded as a per- 
turbation only at entry angles 8, much larger  than the 
Lindhard critical angle 8,. At these angles, however, 
radiation of the type considered becomes insignificant. 
Second, the wave function of the final state was chosen 
in Refs. 19 and 20 to be  a superposition of transverse- 
motion wave functions. In fact, the emission process 
cannot lead to establishment of any coherence of the 
wave functions whatever, and the final state should be 
one of the "pure" quantum states. These e r r o r s  made 
it impossible to estimate correctly the role of this radi- 
ation. For example, in the opinions expressed in Refs. 
19 (page 14) and 20 (page 25) this radiation mechanism 
is claimed not to operate on positively charged parti- 
cles, although there a re  no grounds whatever for this 
claim. It is also stated (Ref. 19, p. 6; Ref. 20, p. 28) 
that this radiation mechanism is the principal one for 
electrons entering the crystal a t  angles much smaller 
than the Lindhard angle (6Jo<< 8,). That this statement 
is wrong is clear even from the fact that under the con- 
dition 8, << 9, the population of the continuous-spectrum 
states is negligibly small compared with the population 
of the bound states (see Sec. 5). However, even a t  entry 
angles 9,=8,, when the above-barrier states a r e  pre- 
dominantly populated, the principal mechanism (in the 
sense of the value of the spectral density) of the radia- 
tion is that occurring in transitions between above-bar- 
r i e r  states. The corresponding estimates were made by 
Akhiezer and c o - ~ o r k e r s . ~ ~  

An earlier  paper by Kalashnikov, Koptelov, and Ryaz- 
a n o ~ , ~ ~  in which the spectrum of the radiation produced 
by capture of nonrelativistic electrons in the channeling 
regime, also seems wrong to us. First, the very form- 
ulation of the problem in the case of nonrelativistic 
electrons becomes meaningless, since no channeling 
effects exist for such electrons. If the electron energy 
becomes less  than several  MeV, then the channeling 
effects give way rapidly to diffraction effects (see, e.g., 
Ref. 24). Second, even if no account is taken of this 
important circumstance, and heavier nonrelativistic 
particles a re  considered in place of electrons, the 
emission spectrum should, according to (6) and (71, 
differ substantially from the corresponding spectrum 
calculated in Ref. 23. The Doppler effect for nonrela- 
tivistic particles is insignificant (u,, << I), and the fre- 
quency of the emitted photon coincides with the trans- 
verse-motion energy difference wzDif. For  the poten- 
tial model used in Ref. 23 and a t  a fixed angle of elec- 
tron entry into the crystal, the emission spectrum 
should therefore be monochromatic, contrary to the re- 
sults of Kalashnikov et ~ 1 . ~ '  The energy of the emitted 
photon is in  this case comparable with the depth of the 
potential well, i.e., i t  ranges from several electron 
volts to several dozen electron volts (depending on the 

material and on the .channel), and is not equal to several  
keV, as stated in Ref. 23. 

Thus, the observed orientational maxima in the x-ray 
par t  of the radiation produced by nonrelativistic elec- 
trons was explained2' on the basis of erroneous theoret- 
ical results. At the same time, the role played by 
channeling as a whole in the radiation process was in- 
correctly represented in Ref. 23. For example, it was 
stated that the action of the averaged potential of the 
planes cannot lead by itself t o  emission in the case of 
transitions between above-barrier states. This con- 
tradicts completely our conclusion (see Sec. 2) as well 
as the results  of Akhiezer et a1 .22 

4. POPULATION OF TRANSVERSE-MOTION STATES 

The expressions obtained for  the emission probability 
should be  averaged over the initial states I i )  of the 
transverse motion. The distribution over the levels is 
formed when the particles enter the crystal. If all  the 
beam particles enter at a definite angle 6J,=pdE to the 
plane, then the relative probability Pi  of the capture on 
a level is determined by the corresponding coefficient 
of the expansion of the plane wave in the transverse- 
motion wave functions: 

The correlation of the phases of the various coeffi- 
cients of qrn and t&, which a r e  the wave functions in the 
momentum representation, is substantial over distances 
1 -2n/wnrn from the crystal boundary. Thus, the state 

z ) of the transverse motion with discrete energy is I" 
completely formed over distances 12 2 n / ~ , , , + , . ~ ~  

A s  the particles move into the interior of the crystal, 
the initial distribution over the levels i s  generally 
speaking changed. This change is both the result of 
radiative processes and the result of particle scattering 
by quasifree electrons of the crystal and by the vibrat- 
ing lattice sites. Formally, to determine the distribu- 
tion over the levels, i t  is necessary to solve the kinetic 
equation for the density matrix of the transverse-motion 
states. This, however, is beyond the scope of the pres- 
ent paper. 

In the classical approach, the initial amplitude of the 
transverse oscillations of the particles in  the channel 
is given by 

The averaging of the emission probabilities over the 
initial states of the transverse motion is replaced in 
this case by averaging over the initial transverse coor- 
dinate x,. The quantum condition that the correlation of 
the phase shifts of the wave functions become weaker in 
the classical limit corresponds to the requirement that 
the particle executes a sufficient number of oscillations 
in the crystal to be able to regard the channeling pro- 
cess as assuming a steady state. When the particle 
leaves the crystal the localized wave functions of the 
transverse motion $,(XI a r e  restructured back into a 
superposition of plane waves with different directions 
of the transverse momentum. This restructuring takes 

34 Sov. Phys. JETP 51(1), Jan. 1980 Bazy lev et  a/. 34 



place over the same lengths 1 a s  at the entry. 

It follows from the foregoing that the condition for 
the applicability of the developed theory is, on the one 
hand, a sufficiently large crystal thickness L >> 1, and 
on the other, a sufficiently weak absorption of the pho- 
tons in the crystal l,(w)>>l (1, is the photon mean free 
path), s o  that the main contribution to the radiation is 
made by the internal region of the crystal. Estimates 
show that the last  condition is always satisfied for pho- 
ton energies w- w:L, corresponding to the maximum 
spectral distribution of the radiation. The influence of 
the crystal boundary on the spectrum of the considered 
radiation can therefore be neglected in the essential 
frequency region. 

5. PLANAR CHANNELING OF POSITRONS 

In this case the potential U(x) takes the form of a 
parabola practically everywhere within the limits of 
channel 

u(z) - 4 u d I 6 ,  

where the coordinate x is reckoned from the median 
plane. For the quantities that enter in the expression 
for  the spectral-angular distribution (7) we get 

the 

where C f f ,  and Jc! are  defined by ( Ju .  =Jf ,,): 

(2E) (sign It.)'-'', i>f', 

The remaining symbols are defined in Ref. 10 [Eqs. (21) 
and (2211. 

In the classical limit we have 

where J,, is a Bessel function, a = (k.p/2)(~/U,)~/~, m 
=If-f11/2, andB=w~/4w& The maximumvalue of 
the spectral density of the energy radiated a t  the f i rs t  
harmonic is reached at the frequency 

corresponding to 8 = 0. For positrons entering the crys- 
tal at an angle 8, << 8,, the maximum contribution to the 
radiation at the frequency WE& is made by positrons 
with transverse energy E =Uo, which have the maximum 
oscillation amplitude. For example, for the (110) 
planes of diamond d = 1.26 A, U,= 23 eV. For this case 
the frequencies wE&(U,,) corresponding to the maximum 
of the radiation at the f i rs t  harmonic a re  listed in the 
table for  different positron energies. The table gives 
also the results of the measurements of Miroshnichenko 
et aLZ5 As shown by a detailed calculation based on 
the developed theory, there is also good agreement be- 
tween the form of the emission spectrum and the ex- 
perimental results. A more detailed comparison of the 
results of the theory and experimenta5 will be published 

TABLE I. 

by us in a separate paper. 

The emission by above-barrier positrons (E > Ud is 
determined in the classical limit by the equations 

1:) = - (T) 2Uo 'I' e 2 ~ ( d ~ ( h ) m ~ .  sin D 
dk ," Y =-- ",' =-.. 

" 00 

siu D 2n 2Uo i 
jja1- '(B)'(") 7 ,  UO-T (T)l'' ucsii.(oJe). s 

( N - - L .  a'--- 

g-kd(e/4Uo) ", h-k.de18(2EUo) 'h, 

D-nn+kJ/2+kzd/4[2E/ ( e -UI)  I"'+ (mi-  2nd) amin(U JE)", 
(11') 

6. PLANAR CHANNELING OF ELECTRONS 

The parabolic-well approximation can be used also to 
describe planar channeling of electrons with transverse 
energies close to their minimum, when the distance 
from the electron to the channeling plane does not ex- 
ceed the radius of the crystal atoms. However, i t  is 
precisely in this case that a relatively strong scattering 
of the electrons by the individual atoms of the plane and 
by the electrons of the crystals should take place, and 
with it also relatively rapid dechanneling. 

In a larger range of distances x from the plane, as 
noted in Ref. 10, a potential closer to the real  one is of 
the form 

U ( z )  --Uolch'(zlb). (12) 
The well depth Lr, and its width b should be chosen such 
as to make (12) as close a s  possible to the exact form 
of the potential, for example to the potential obtained by 
Appleton et a1 .as in the Moliere approximation for the 
potential of an atom of the plane, with account taken of 
the isotropic thermal vibrations of the lattice. 

The solid curve of Fig. 1 shows the potential of the 
(100) plane of carbon a t  normal temperature, with ac- 
count taken of the influence of the neighboring planes, 
as caldulated in accordance with the results of Ref. 26. 
The dotted curve is theornodel relation (12) with U, 
= 12.8 eV and b = 0.174 A. The figure shows also the 
transverse-energy levels of an electron with total ener- 
gy 1 GeV. 

The solutions of the SchrCidinger equation (5) with the 
potential (15) are, a s  is well known,27 

The functions qn in (13) a re  normalized by the condition 
($,, 16,) = 6,". Corresponding to these functions a re  the 

35 Sov. Phys. JETP 51(1), Jan. 1980 Bazylev et at. 35 



FIG. 1. Potential of the (100) plane of carbon as a function of 
the distance to the plane. The solid curve is the result of the 
calculation of Appleton et aZ. The dotted curve is the model 
function U (  xj = Uo cosh-2 a x  with parameters Uo = 12.8 eV and 
a-'= 0.174 A. The horizontal lines show the discrete level of 
the transverse energy of an electron of energy E = 1 GeV chan- 
neled by the (100) plane in carbon. 

transverse-energy eigenvalues 
e,(E) =- (2Eb2)-*(s-n)'.  

In (13) and (14) we have s =s(E),  where 

s ( E )  --'I,+ (*/,+2b'U&)'h, E=th ( z l b ) ,  n-0, 1, 2, . . . I s ] ,  

C:(5) is a Gengenbauer polynomial in 5, and [s] is the 
integer part  of s. Thus, for the quantities that deter- 
mine the emission frequency [see (711 we obtain the 
following expressions: 

To calculate the matrix elements of the current (8), 
we represent each of the polynomials in the corres- 
ponding wave functions as finite sums in the powers of 
the quantity (1 - 52).28 It then becomes possible to inte- 
grate in (8) with respect to  the variable 5. As a result 
we get , ,,, 

(s-i) (sr-f)  I'(s+bi) r ( s l + b f )  
E ) ( k .  8. s t )  = [ (-1) I + r n  22(t+m)-1 

i! f! 
1-0 m-0 

- s [  ( i + l )  (2s+l- i )  ]"'j:;!,,(k., s + i ,  s') 1. 

We have introduced here the notation 

f *  i, f - even, 

I r + l + m + 2 q '  i ,  f - odd, 
g p =  2 ( r + l + m ) ( r + l + m + ' / 1 )  

i, f - of different parity, 

~ ' ~ ~ - w b ~ U o / ( * / ~ + s ) ,  

C: a re  the binomial coefficients, and b),=a(a +l) .  . . (a 
+ k  - 1) is the Pochhammer symbol. 

The dipole approximation corresponds to relatively 
small  parameters q << 1. From the orthonormality con- 
dition of the wave function follows the equality5' 

Calculations of the capture probability amplitudes 
Jin(pr) (10) lead ts the following result: 

r (  (s-n)/2-ipSb/2) 1 1 r (&-n+. i )  b l'ls 

r ( s -n)  n! (s-n) 

The obtained expressions (16) and (17) a r e  particular- 
ly suitable for practical cal culation of the electron 
emission spectrum when the number of transverse-en- 
ergy levels is not too large: i 5 10. This corresponds 
to electron energies E s 1 GeV. 

Numerical calculation of (16) shows that the probabil- 
ity of the radiative transitions in the potential (12) de- 
creases more slowly than in a parabolic potential when 
the difference between the quantum numbers (i -f) in- 
creases. Therefore in planar channeling the electron 
radiation should have a broader spectrum than the posi- 
tron radiation. Contributing to this is also (when aver- 
aging over the initial states) the non-equidistant charac- 
t e r  of the transverse-energy spectrum (14). Compari- 
son of (15) and (11) shows that the characteristic fre- 
quencies of the emission by the electrons is several  
t imes higher than that by positrons, owing to the small- 
e r  width of the potential well (b <d/2). 

The emission spectrum of the above-barrier electrons 
is determined by Eqs. (ll '),  in which the substitution 
Uo- -(Io must be made. 

7. EMISSION IN AXIAL CHANNELING 

In axial channeling of an electron it can be assumed 
in f i rs t  approximation that the electron moves in the 
field of one atomic chain. The states of the electron 
a re  characterized in  this case by a definite projection 
of the momentum on the crystal axis. In addition, ow- 
ing to  the axial symmetry of the potential, the projec- 
tion of the angular momentum on this axis is conserved 
in the course of the motion. Positrons move in the 
case of axial channeling in  the field of several crystal 
axes that a r e  close to one another. In this case, gen- 
erally speaking, the potential has no axial symmetry. 

Thus, in the general case the wave function of the 
particle has in the case  of axial channeling the form 
[cf. (411 

Yl(r) = (2EiU)-" exp(ip:"e)rpi(p), (18) 

where p is a radius vector perpendicular to the crystal 
axis, the lat ter  being chosen to be the Oz axis. The 
wave function of the transverse motion satisfies the 
equation 

where Ap is the Laplacian .in two-dimensional space. 

The spectral-angular density of the radiation proba- 
bility can be represented in the form 

36 Sov. Phys. JETP 51(1), Jan. 1980 Bazylev et aL 



where 

n, is a unit vector in the direction of the projection of 
the photon momentum on the xOy plane, 4 = k B a ,  and 
the frequencies Gi,, are determined by the first  relation 
in (8). 

It i s  known that Eq. (19) has an analytic solution only 
for model dependences of the potential, such as  U(p) 
ap2 or U(p) ap-I, which a re  precisely close to the real 
potential of the crystal axis (see below). Further calcu- 
lations, however, a re  greatly complicated because of 
the degeneracy of the states in such fields. We confine 
ourselves therefore to the classical approximation, the 
w e  of which in the case of axial channeling i s  justified 
at electron energies higher than -100 MeV. The transi- 
tion to the classical description, when the motion be- 
comes periodic, follows a scheme analogous to (9): 

l i t  + j . ( ~ =  +j  e x p i - i n m r ~ i ~ p ( t ) +  i ~ ~ z ( t )  ~ v ( t ) * ,  
0 

# -  vpt-vpt ( t )  
v ( t ) - d ( t ) , l ) ,  ~ z ( t ) = = - j  *, (22) 

e 

The parameters of the transverse component of the 
electron trajectory in the potential Up are  determined by 
the values of the transverse energy and angular momen- 
tum M relative to the crystal axis2': 

and also by the condition that the tangential component 
of the transverse momentum be continuous on the crys- 
tal boundary: 

In these equations, 8, is the angle of entry of the elec- 
tron relative to the axis, p, i s  the distance from the 
point of entry into the crystal to the axis, cos@,=P/p,, 
and P i s  the impact parameter. The spectral-angular 
distribution of the radiation energy on moving along a 
definite trajectory should then be averaged over all 
possible trajectories, which correspond to all possible 
Po and @a. 

In axial channeling of electrons, the values of the po- 
tential near the equilibrium position of the atoms of the 
axis is well approximated by a parabolic well of the 
type 

U ( P )  =PP', (25) 
wherethe coefficient fl differs noticably from the crys- 
tal t e m p e r a t ~ r e . ~  

In a potential of the form (25), the electron moves 
along an ellipse: 

f ( t )  =a s in(o, t+6) ,  y"(t) =b oos(oot+8) (26) 

with frequency w,= (2/3/~) ' /~. 

The Cartesian system of coordinates 20; i s  chosen 
such that its axes coincide with the axes of the ellipse. 
The crystal axes pass through the origin. The semiaxes 
a and b of the ellipse, and the angle of inclination of the 
ellipse axes to the Ox axis of the fixed coordinate frame 

xOy (the Oy axis is parallel to the direction of the initial 
transverse momentum) a re  determined by conditions 
(23) and (24). 

I£ we are interested only in the spectral distribution 
of the radiation, then the orientation of the ellipse rela- 
tive to the axis of the fixed coordinate frame xOy is im- 
material and can be arbitrary and convenient for inte- 
gration with respect to the azimuthal angle. It must 
also be borne in mind that when account i s  taken of the 
anharmonic corrections to the potential (251, precession 
of the ellipse sets in. After averaging the inclination 
angle of the ellipse axis over the precession period, the 
spectral-angular distribution of the radiation also 
ceases to depend on the azimuthal angle. With the aid of 
(23) we obtain the values for the semiaxes of the ellipse: 

a=p, (A+B)  12, b=po (A-B)  12, 

where A=(1+qz+2q cos @,)'", B= ( l+qz -2q  cos cD,)", q=Oo/pooo. 

The condition for the applicability of expression (25) 
for the potential are the inequalities a a a,, b s a,, , 
where a,, is the radius of the atom. These inequalities 
determine the limits of the region of electron capture on 
orbits of the type (26) as functions of the entry angle 8, 
relative to the crystal axis. 

In the case considered i t  is easy to obtain 
ektl=e/2, ~ . A Z  ( t )  -c sin 2o,t,, (28) 

where c = wwo(b2 -a2)/8. We introduce the notation 

Calculation of these quantities leads to the result 

a 
r- [ ( a  cos p)' + ( b  sin @.l", x=uctg . 0-arctg (,tg l )  . 

S, is the angle between the major semiaxis of the ellipse 
and the projection of the photon momentum on the trans- 
verse plane. 

In particular, in the case of transverse motion along 
a circle a = b, x = JI = S,, c = 0 and the contribution to the 
sum over m is made only by the term with m =O. In 
this case the formulas become much simpler 

and we arrive at the result known from the bremsstrah- 
lung theory for the distribution of the radiation in the 
case of motion along a helical line (see, e.g., Ref. 30, 
Sec. 10). 

It follows from (27), however, that only a relatively 
small number of electrons that land in the vicinity of the 
points with coordinates 8,/w,, @,= 0 or n, i s  cap- 
tured on orbits close to circular (a % b). The over- 
whelming majority of the captured electrons move along 
ellipses with eccentricities noticably different from 
zero. In this case, in contrast to motion on a circle, 
longitudinal oscillations of the particles hz (t) are ex- 
cited [see (28)]. At sufficiently high energies (EE 2 I), 
as follows from an analysis of (30), these oscillations 
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lead to a noticable increase of radiation at higher har- 
monics and, contrarywise, to  some suppression of the 
radiation a t  the f i rs t  harmonic. 

Let now the electron move all the time a t  distances 
from the crystal axis that a r e  larger than the radius of 
the thermal oscillations but smaller than half the dis- 
tance to the neighboring axis d/2. In this region, as 
shown in Refs. 31 and 32, a potential close enough to the 
real  one is of the form 

U P )  --alp, (32) 
where a! is a constant practically independent of the 
crystal temperature. In this potential, the transverse 
motion with nonzero angular momentum M relative to 
the axis is along a Kepler ellipse: 

Z ( t )  =a(cos %-e), t=ocl(&-e sin t), 

y"(t)=bsint, b=a(l-e')", o,-(2le()VaE*. 
(33) 

The frequency w, of revolution on the ellipse, in con- 
t ras t  to the considered case of a parabolic potential 
(251, (26), depends on the transverse energy E. In addi- 
tion, the crystal axis passes now through a focus of the 
ellipse and not through the center as in (26). The major 
semiaxis of the ellipse a and the eccentricity c a r e  de- 
fined, as is well known, by the equations 

a-u12lel, e==(1-21elMIIEa2)". 

From the conditions (23) we get the values of the maj- 
o r  and minor semiaxes and of the eccentricity of the 
ellipse as functions of the initial coordinates of the 
electron on the input surface of the crystal: 

The perihelion of the orbit p,,, = a ( l  - c) must be larger 
than a quantity on the order of the Thomas-Fermi radi- 
us a,, , and the aphelion pm, = a  (1 + c ) must be less  than 
half the distance d/2 to the neighboring axis, in order 
for the approximation (34) for the potential of the chan- 
nel to be applicable. These conditions together with the 
equalities (34) determine the limits of the electron cap- 
ture region on an orbit of the type (33) a s  a function of 
the entry angle 6,. The capture region is shown in Fig. 
2 for values of the parameter R =E62,d/4~ = 1. The 
curves drawn inside this region correspond to the de- 
termined eccentricity. The circle shown on Fig. 2 has 
a radius d/2. 

For the case of transverse motion in  a potential (32) 
we obtain E,,,= I & I ,  k,Az = c  sin[, where c = wwo(a2 - b2)/ 
2. The calculations of the quantities A(u' and A,!" [see 
(29)] yield 

We have introduced here the notation (35) 

oooaz+2n 
i-arctg ( t C t g  @) - arc. [ ( i+e 

2oOb sin @ 

FIG. 2. Region of crystal surface near the (100) axis of sili- 
con. The outer circle has a radius equal to half the distance 
d to the neighboring chain, while the inner circle has the ra- 
dius of the thermal vibrations at normal temperature. The 
shaded region corresponds to capture of an electron on rela- 
tively stable elliptic orbits. The angle of entry of the electron 
relative to the crystal axis is equal to the critical angle Or 
= ( 4 a / ~ d ) ' / ~ .  The curves inside the capture region correspond 
to different eccentricities of the ellipses. The Oy axis coin- 
cides with the direction of the perpendicular component of the 
electron velocity on entering the crystal. 

S, is the angle between the major semiaxis of the ellipse 
and the projection of the photon momentum on the trans- 
verse plane. 

In the particular case of motion on a circle e =O,a =b, 
X = X = O ,  p=aw6 and we arr ive  again, as in the analysis 
of expression (30), a t  the result (31). 

At sufficiently low electron energies ( I &  (E  << 1) we 
obtain the relations c <<n,n >> web + b), p =nc. In this 
limiting case, substitution of expressions (35) in the 
general formula (20) and integration over the angles 
can yield a relatively simple expression for the spectral 
distribution of the radiation power6' 

lel - 'Q 2e20 -z (1-2~+,+2~,,~) [lne2(ne) + ~"'(ne) e ( 1 - a ) .  -= 
d o  E 

0-1 
I 

where a,,= w/2nwoE2, O is the Heaviside function and 
j: is the derivative of the Bessel function with respect 
to the argument. 

In contrast to the parabolic potential (25), when an 
electron moves in  a potential (32) along an ellipse 
(e *0), in the dipole approximation (36) several  harmon- 
i c s  [-e1I2(1 - e)-'/2] with relatively high intensity are  
emitted, rather than one. The reason is that the trans- 
verse oscillations of the electron in  the potential (32) 
a r e  subject to substantial anharmonicity. 

In the case of high energies, when I E I E 2 1 the maxi- 
mum frequency of the emission a t  the n-th harmonic i s  
determined by a relation more general than (361, name- 
ly 

To calculate the spectral distribution of the radiation 
power i t  is necessary here to use expression (35) in i ts  
general form, i.e., to take into account the effects due 
to the fact that the radiation is not of the dipole type and 
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the parametric connection between the transverse and 
longitudinal motions. We note that under conditions of 
recent experiments on the emission of electrons on an 
axial the parameter 1 e 1 E was of the order 
of unity. Therefore these effects must be taken into 
account if the experimental results a re  to  be correctly 
interpreted ."I" 

A special case ar ises  when the electrons enter the 
crystal strictly along the direction of the axes (8, = O), 
i.e., with zero orbital angular momentum M = 0. In this 
case the trajectories of the electron lie in a plane pass- 
ing through the entry point p, and the crystal axis. 
Axial channeling of this type was considered by Nip et 
~ 1 . ~ ~  To calculate the radiation in axial channeling with 
zero angular momentum one can use the results ob- 
tained for planar channeling of electrons. We choose 
the Ox axis in the plane of the radial oscillations. Then 
the potential of the axis, a s  shown by an analysis of the 
results of Ref. 9, is well approximated by expression 
(12), where U, and b a re  suitable parameters. 

The spectral-angular distribution of the radiation in 
axial channeling with M = 0 is determined by expressions 
(71, (15), and (16). The distribution of the radiation 
must then be averaged over the coordinates p, and cp, of 
the point of entry of the electron into the crystal. Aver- 
aging over rp, is equivalent to averaging of (7) over the 
azimuthal angle cp. 

The electrons whose energy (reckoned from the bottom 
of the well) and angular momentum are  relatively small 
move all the time in the region of the maximum density 
of the electrons and of the nuclei of the crystal (pelf 
sa,). These electrons, as a result of their collisions 
with the electrons and nuclei of the crystals, become 
dechanneled more rapidly than the remaining ones o r  
move over to orbits with M+O that a re  farther from the 
axis. The slowest to  dechannelize a re  electrons with 
M # O  and with sufficiently high energies, which move on 
orbits of the type (33). An intermediate position is 
occupied by electrons with M=O and sufficiently low en- 
ergy, which stay only part  of the time in the region 
p sa,,. A more detailed analysis of the stability of dif- 
ferent orbits is beyond the scope of the present paper. 

CONCLUSION 

1. The calculation of the emission spectra of channel- 
ing particles is based on sufficiently realistic assump- 
tions concerning the form of the channeling potential. 
This calculation can be used for a detailed comparison 
of theory with experiment with arbitrarily high energies 
of the channeled particles. 

2. Calculation based on the developed theory shows 
that the spectral radiation density of the channeled par- 
ticles in spontaneous transitions between levels of the 
transverse motion can exceed by 2-4 orders of magni- 
tude the corresponding value for bremsstrahlung in an 
amorphous target in the emission frequency region 210 
MeV. The spectral density of the radiation on the de- 
channeling length can exceed by 3-5 orders of magni- 
tude the spectral density of transition radiation. Thus, 
the more rigorous approach confirms on the whole 

Kumakho~'s~* '*~ initial estimates of the radiation intens- 
ity. The corresponding estimates obtained by 
 other^'^^^^^^ a r e  based on erroneous results, and have 
therefore predicted either a negligibly small radiation 
intensity in the x-ray and y-ray bandss o r  else an in- 
tensity comparable with that of transition 

"The emission spectrum for planar channeling in the region w - E was calculated in Ref. 10. 
')This plane contains the photon momentum and the vector v,,. 
3)This condition is  satisfied at  electron energies 8 1 GeV and 
2100 MeV for planar and axial channeling, respectively. 

')The same can be sfated also concerning formula (3.10) of 
Ref. 20 for the probability of transition between discrete lev- 
els. 

5)This equation can serve as a check on the accuracy of the 
computer calculations. 

6)It must be borne in mind that at sufficiently low energies the 
condition for applicability of classical mechanics may not 
hold. 
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Interaction of weak pulses with a low-frequency high- 
intensity wave in a dispersive medium 

B. S. Azimov, Yu. N. Karamzin, A. P. Sukhorukov, and A. K. Sukhorukova 
G. V. Plekhanou Institute of National Economy 
(Submitted 28 June 1979) 
Zh. Eksp. Teor. Fiz. 78, 81-93 (January 1980) 

We consider three-frequency nonstationary interaction of waves in a quadratically nonlinear medium. The 
low-frequency high-initial-intensity pump wave is not subject to decay instability, so that the nonlinear 
interaction regime can be described in the given-pump-field approximation. The cases of excitation of a 
wave at the sum-frequency by a long pump pulse and a short signal pulse, and the converse situation, are 
discussed. Analytic and numerical methods are used. Effects of nonlinear disperse spreading are 
described, as is also the breakup of the excited pulse into subpulses. 

PACS numbers: 42.65.B~~ 42.50. + q 

1. 1NTRODUCTION of nonlinear three-frequency interactions of pulses to 

The study of synchronous (resonant) interactions in 
dispersive media plays a fundamental role in various 
branches of physics, such a s  plasma physics, nonlinear 
optics, or hydrodynamics. In the last decade, much 
progress was made in the development of the theory of 
nonstationary interactions of modulated waves (wave 
packets) (see, e.g., Refs. 1-3). The most advanced i s  
the description of the interaction of pulses in first- 
order approximation of dispersion theory, which takes 
into account the difference between the group velocities. 
The method of solving the inverse scattering problem 
yielded in this case a general analytic solution of the 
system of three equations for the complex amplitudes? 
However, by virtue of the complicated form of the so- 
lution3 at arbitrary boundary (or initial) conditions, it 
cannot always be used in the analysis of the concrete 

the analysis of parametric processes (decay instabili- 
ty)4*5 and second-harmonic generation by short pul- 
se~ .~ ' '  The nonstationary interaction of another type, 
wherein a high-intensity low-frequency wave (pump) is 
mixed with a weak signal of another frequency, result- 
ing in production of a wave at the sum or  difference 
frequency, remain practically uninvestigated. Wave 
generation at difference and sum frequencies plays an 
important role in nonlinear optics.' To describe the 
excitation of picosecond and subpicosecond pulses it is 
necessary to develop a nonstationary theory that 
takes into account the specifics of this problem. Of 
principal nontrivial interest in this case is the develop- 
ment of a theory of the nonlinear frequency-conversion 
regimes. In the present article we have attempted to fill 
this gap. 

situations. Therefore, in addition to the approach dev- We consider nonstationary interaction of three pulses 
eloped by Belavin and Zakharov: use i s  made also of propagating in a general case with different group vel- 
other methods of solving the equations (for example, ocities. Since the powerful pump pulse is not subject to 
the given-field method, or asymptotic methods), and decay instability, the nonlinear frequency-conversion 
the numerical experiments a r e  used more and more regimes are well described in the given-pump-field ap- 
extensively. proximation. We discuss in the paper the physics of the 

Until recently, most attention was paid in the theory interaction of a short signal pulse with a long pump 
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