
and the constant satisfies a,- 1. 

As can be seen from (351, the departure of the metric 
from the Milne metric due to the nonvanishing mass is 
in this case too negligibly small. Thus, all the models 
we have found remain self-consistent for massive fields 
as well. 

We thank A. k Grib for numerous helpful discussions. 
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A study is made of the behavior in a magnetic field of a pion condensate that is either homogeneous 
(with characteristic wave vector kozO) or inhomogeneous (the physically interesting case of a pion 
condensate in a nucleon medium has ko-p,, where p, is the nucleon Fermi momentum). An expression 
is obtained for the spatial distribution of the pion and magnetic fields in a medium with a pion 
condensate in an external homogeneous magnetic field H .  It is shown that the pion condensate is a 
superconductor of the second type with Ginzburg-Landau parameter x> 1. The structure of the mixed 
state of the system is studied. For a homogeneous condensate, it is the same as for a metallic 
superconductor of the second type. For an inhomogeneous condensate in the range of variation of the 
external magnetic field H,, < H  <HIc, (where Hc,-H,/ . \ /x  is the lower critical field, and H', , -H, ,  
where H, is the thermodynamic critical field) plane layers of the normal phase arise. These layers are 
parallel to the plane (Ito, H) (161H). At values of the magnetic field in the region H',, < H < H,,, where 
H,, is the upper critical field, the structure of the mixed state for an inhomogeneous condensate is the 
same as for a homogeneous condensate. It is shown that the value of H,, for an inhomogeneous 
condensate is finite, irrespective of the amplitude of the condensate field at H =O. The magnetic 
susceptibility x of the system is found. It is shown that the qualitative picture of the phenomena that 
occur does not depend on the actual choice of the model of the pion-nucleon interaction but only on 
whether the condensate is homogeneous or inhomogeneous. 

PACS numbers: 21.65. + f 

INTRODUCTION than for the other particles, a re  pions. Muclear matter 
is a potential well for pions, whose depth increases 

The phenomenon of rearrangement of a boson vacuum with increasing density of the nuclear matter. There- 
in strong fields of various types-scalar, electric, nu- fore, at a sufficiently high density n a pion condensate 
clear-was f i rs t  investigated by Migdal in 19'71.' He must be formed in a nucleon medium.' 
showed that in a sufficiently strong field forming for a 
particle a potential well an-instability ar ises  that leads In Refs. 2 and 3, and then in Ref. 4, a method was 
to rearrangement of the ground state of the system, developed for finding the spectrum of pion excitations 
i.e., to a phase transition with the formation of a Bose in nuclear matter with number of neutrons N approxi- 
condensate. The formation of the condensate stabilizes mately equal to the number of protons 2, and also in a 
the system and leads to a reduction of i t s  energy. The neutron medium with Z << N. It was found that in both 
lightest bosons, for which the instability occurs earl ier  cases the instability leading to the formation of the pion 
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condensate occurs a t  a density n, close to the density of 
normal nuclei: nOz0.17 IT3. The value of the critical 
density depends strongly on the phenomenological pa- 
rameters in  the theory of finite Fermi systems, which 
a r e  inadequately known. Therefore, a t  the present time 
i t  is impossible to say with certainty that a pion con- 
densate is o r  is not present in nuclei. On the basis of 
the available experimental data, i t  can only be con- 
cluded that nuclei a r e  close to the phase-transition 
point. This is indicated by an analysis of al l  phenomena 
in which a significant par t  is played by processes of 
one-pion On the other hand, the absence of 
a fairly strong pion condensate field in nuclei is, for 
example, indicated by analysis of single-nucleon ab- 
sorption of slow pions by n ~ c l e i . ~  Even if there is no 
pion condensate a t  the density of nuclear matter n =no, 
it will ar ise  a t  a higher density of the medium. In this 
case, the gain in the energy from the formation of the 
pion condensate may compensate the loss in energy due 
to the greater density of the nuclear matter. In such a 
case, one could have the existence of nuclear systems 
of a qualitatively new kind-superdense n~clei . '~ '"~ 
One could attempt to synthesize superdense nuclei (with 
atomic weight A - 10') in a collision of heavy ions of 
high energies (of the order of 1 Ge~/nucleon). The cal- 
culations of Refs. 11 and 12 show that in such collisions 
nuclear matter may become several times denser than 
the normal nuclear density. The estimates made indi- 
cate that a pion condensate can form during the colli- 
sion time (7,- sec and T , , ~ ~  2 sec) (Ref. 13), 
and the resulting heating of the nuclear matter does not 
apparently lead to its complete d i~appearance. '~* '~  The 
presence of a strong electric field facilitates the occur- 
rence of a pion condensate. There could therefore also 
exist supercharged nuclei with "bare" charge Z 2 l /e3 
(e i s  the electron charge) of the protons that a re  stable 
by virtue of pion and electron condensation in the nu- 
clear matter with density n-n, in an electric field.2*'6*'7 
The existence of superdense (with atomic weight A 2 lo3) 
and supercharged nuclei could in principle make possi- 
ble the existence of s t a r  nuclei of arbitrary sizes right 
up to those of neutron stars,  these being stable because 
of the nuclear and electromagnetic f o r c e ~ . 8 * ~ ~ * ' ~  

In nature, dense nuclear matter with density n Zn, is 
probably present in the interior of neutron stars.  The 
presence of a pion condensate significantly softens the 
equation of state of a neutron s t a r  and thus influences 
important characteristics of neutron s t a r s  such a s  their 
masses, radii, moments of inertia, etc. For example, 
the maximal possible mass  of a star,  moment of iner- 
tia, and radius for fixed mass a re  smaller than in a 
theory that discounts the possibility of pion condensa- 
tion. In the presence of a pion condensate, the rate of 
cooling of a neutron s t a r  formed by a supernova ex- 
plosion is considerably increased.'' A pion condensate 
can also have a significant influence on the dynamics of 
neutron stars.  When certain conditions are  achieved, 
some of the star will go over to a superdense state in a 
hydrodynamic time T -  10-4-10-3 sec. In principle, such 
a phenomenon could provide another mechanism for ex- 
plaining supernova  explosion^.'^ A detailed study of 
these and other consequences of pion condensation in 

neutron stars and references to the sources can be 
found in the reviews Refs. 20-22. 

Calculations show that in neutron s t a r s  there a r e  
probably strong magnetic fields of intensity greater than 
10'' G (on the surface) and 10'' G (in the interior). Such 
strong fields can arise as a result of contraction of the 
s t a r  on the transition of a white dwarf to the state of a 
neutron star.  An estimate of the characteristic magni- 
tude of the magnetic field can be obtained from the con- 
dition of conservation of the magnetic flux during con- 
traction (HR2=const) due to the freezing of the magnetic 
field in the matter of the s t a r  (because of i t s  high elec- 
tr ical  conductivity). In addition, as a result  of the mo- 
tions of the internal layers of the s t a r  directly after i ts  
formation the magnetic field is twisted and may be in- 
creased by several  orders of magni t~de. '~  We note also 
that strong magnetic fields could also ar ise  in collisions 
of heavy ions of high energies (-GeV/nucleon). Indeed, 
a rough estimate of the characteristic value of the mag- 
netic field h gives 

hr-Jlc, r-R=roAh, J-ZeclR, 

whence 

h-H. (Ze')'", H.=m.%cslefi=3.5.10'8 r G .  

The following question arises: How do such strong 
magnetic fields influence the structure of the pion con- 
densate, the presence of which in the system leads to 
such significant consequences? 

The influence of a magnetic field on the properties of 
a homogeneous (with characteristic wave vector k,=O) 
condensate was studied for  the f i rs t  time in Ref. 24. 
The treatment was in the framework of the a model 
without allowance for the pion-nucleon interaction (the 
nucleons were prescribed as an external background to 
satisfy the condition of electrical neutrality of the sys- 
tem). It was found that in this case the homogeneous 
pion condensate has the properties of an ordinary me- 
tallic superconductor of the second However, 
in a nucleon medium the pion condensate is inhomoge- 
neous (the wave vector of the condensate is ko"PF, 
where pF is the nucleon Fermi momentum). Therefore, 
the aim of the present paper is to study the behavior of 
an inhomogeneous pion condensate in nuclear matter in 
a strong magnetic field.'' 

In the f i r s t  section of the present paper, for the ex- 
ample of the simplest model of pion condensation in a 
scalar field (the S-wave attractive TN interaction could, 
for example, play the part  of the scalar  field) and a 
magnetic field we consider the properties of a homoge- 
neous condensate. The model is close to the model of 
Harrington and ShepardZ4 and the Ginzburg-Landau the- 
ory of superconductivity of In Sec. 2, we 
study the properties of an inhomogeneous condensate in 
a realistic model of pion condensation in nuclear matter 
and a homogeneous magnetic field. We find the distri- 
bution of the pion and magnetic fields in a nuclear me- 
dium filling a half-space (Sec. 2.2); we show that the 
pion condensate has the properties of a type 11 super- 
conductor (Secs. 2.2 and 2.4); we investigate the struc- 
ture of the mixed state, and we find the values of the 
critical fields and the magnetic susceptibility of the 
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system (Secs. 2.3 and 2.5). In the conclusions, we 
formulate the results  and discuss their possible appli- 
cations. 

1. HOMOGENEOUS CONDENSATE. MODEL OF 
THE SCALAR FIELD 

1 .l. Lagrangian of the model. Higgs effect 

The Lagrangian density of the complex pion field cp 
interacting with the external scalar  field U and the elec- 
tromagnetic field A, has the form (here and in what 
follows, we use pion units R=m,=c = 1 and e2/4n = 1/13?') 

where X is the constant of the pion-pion interaction, and 
F,,= 8,AV - aYA, . Suppose -U= U,> 1 in the whole of 
space. Then as a result of spontaneous breaking of the 
symmetry of the ground state of the system, the vacuum 
expectation value of the pion field is nonzero: 

We represent the pion field cp in the form cp = p  exp( i~) ,  
where p and X a r e  arbitrary real  functions of the coor- 
dinates and the time, and we go over in the Lagrangian 
density (1.1) to the fields p' = a  - p and X' =x, which a r e  
calculated from the new vacuum p =a,  X = 0. After this, 
the equations for p' and A: =A, - 8 , ~ '  in the approxima- 
tion linear in p' and A' take the form 

As can be seen from (1.3) and (1.3'), charged particles 
do not remain in the system, the Goldstone bonson (x') 
has been absorbed by the gauge transformation, and the 
photon has acquired the mass  m ,,= &a. Thus, we 
have the Higgs effect. Because the photon acquires 
mass in a weak external magnetic field, the system has 
the property of superconductivity. The Meissner effort 
arises-the magnetic field is expelled from the volume 
of the superconductor. The analogy between different 
models of quantum field theory with spontaneous sym- 
metry breaking of the ground state of the system and 
the theory of superconductivity is well known." 

We now turn to the study of superconductivity of the 
pion condensate in finite volume. Suppose there is only 
an external static magnetic field H = curl  A,, 
A,= (0, &, 01, and the scalar field 

-U. for S O  
u= { 0 for *>o 

is such that 0 in the region x < 0 and w$= 0 for X >  0. 

We seek the pion field cp(t) in the form ~ ( t )  
= c p  exp(iwt). The frequency of the field in a system of 
sufficiently large volume can be found from the condi- 
tion of total electrical neutrality of the system. In our 
case, i t  follows from the condition p, = 89/8w = 0 that 
w=O. In accordance with (1.1), the energy density is 

where h =  curl A is the microscopic magnetic field. 
From (1.1) and (1.4), we obtain equations for the pion 

and magnetic fields: 
(V-ieA) '9-wo2cp-A lq 12q=0; 

A A -  =jP+jd div A=O, 

jp=-ie (q '~q-q~cp' ) ,  id=-2e '~  1 q 12. (1.5') 

Equations (1.5) and 71.5') a r e  completely analogous to 
the equations of Landau and Ginzburg's phenomenologi- 
cal theory of supercond~c t iv i ty .~~  When there i s  no 
spontaneous symmetry breaking of the ground state of 
the system, the "paramagnetic," j,, and "diamagnetic," 
j,, contributions to the current compensate each other, 
so  that the superconducting par t  proportional to the 
vector potential A does not remain in the current. 
Therefore, the phenomenon of superconductivity is ab- 
sent in "normal" systems. This is the case, for exam- 
ple, for an electron gas in the absence of pairing.30 In 
our model, the part  of the current j, does not make a 
contribution proportional to A when the "corrected" 
wave function of the ground state of the system is sub- 
stituted in it, i.e., the wave function of the ground state 
has a "hardness" property. 

1.2. Penetration of magnetic field into a region 
with pion condensate. Two characteristic lengths 

Suppose the field H is parallel to the z axis, i.e., 
along the medium-vacuum interface. As follows from 
(1.1), (p and cp' a r e  continuous on the boundary x = 0. 
Instead of these boundary conditions, we shall use the 
simpler condition cp I,,=0, which, a s  is readily seen, 
is approximately satisfied for sufficiently smooth vari- 
ation of cp. For the magnetic field, Ai(x) (,=,=H. 

As can be seen from (1.51, under the condition that 
the magnetic field is sufficiently weak, namely, is such 
that the length over which the trajectory of the motion 
of a particle in  the homogeneous magnetic field i s  
curved, R = I/-, satisfies R2 >> lHIQ, where ZM and I ,  
are,  respectively, the characteristic length of variation 
of the magnetic and pion fields in the medium, the de- 
pendence on A in this equation can be ignored, after 
which i t s  solution can be readily found: 

Under the condition x =lH/l, >> 1, Eq. (1.5') has the 
solution 

As can be seen from (1.6) and (1.6'), a t  the critical 
point (wg= 0) of pion condensation 1,,1, - .e, but the 
ratio of these lengths remains constant: 

x= (h/2e2)'". (1.7) 

In the theory of superconductivity of metals, the pa- 
rameter x is called the Ginzburg-Landau parameter. 
Since the constant X characterizes the hadron interac- 
tion, X>> e 2  and x >> 1. In this case, we have a type I1 
superconductor. It is shown in Sec. 2.4 that for x >> 1 
the surface energy of the interface between the normal 
and superconducting phases is negative. It is this in 
fact that is the cause of the distinction between type-I 
and type-11 superconductors. The presence of a nega- 
tive surface energy in type-I1 superconductors is  re- 
sponsible for the existence of a mixed state in a certain 
range of values of the magnetic field. 
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1.3. Thermodynamic critical field H, 

The critical field Hc is defined a s  the intensity of the 
external magnetic field at which the superconducting 
phase (Irp I =a,  B==A=O, where B is the magnetic 
induction vector, and the bar denotes averaging over 
the volume of the system) and the normal phase (Irp 1 
= 0, B=H) a r e  in equilibrium. We shall study the equi- 
librium for given volume, magnetic field, and tempera- 
ture T =  0. At the same time, the Gibbs free energies 
of the phases must be equal. 

The Gibbs free energy is 

where M= B- H is the magnetization and E is the ener- 
gy. Here and in what follows, we take the volume V 
equal b unity. In the normal region (rp = 0, B= H) 

G=Pl2 ,  (1.9) 

and in the superconducting region, in accordance with 
(1.4) and (1.6) 

G=-oa'lW+Ha. (1.10) 

Equating (1.9) and (1.10), we obtain 
- 

H.=-ooZ/Th. (1.11) 

For H< H, and H>Hc superconducting and normal states, 
respectively, a r e  advantageous. In deriving (1.61, we 
have used the condition R2>> ZH1,, which now takes the 
form H << H,. Generally speaking, i t  is only in this 
case that the ground state of the system is not disturbed 
by the magnetic field and the complete Meissner effect 
occurs. 

1.4. Structure of the mixed state 

The analysis of the structure of the mixed state of the 
system for a homogeneous pion condensate differs in no 
way from that in the case of ordinary metallic type-I1 
superconductors, given, for example, in Ref. 26 o r  the 
monograph Ref. 31. Therefore, we shall restrict  our- 
selves to a brief description of the physical picture and 
give some results, which a re  required for comparison 
with the corresponding result for an inhomogeneous 
condensate. 

Since the surface energy of the interface between the 
normal and the superconducting phases i s  negative, the 
regions of penetration of the normal phase must have 
the maximal possible surface. Under conditions of 
cylindrical symmetry of the system (HI1 z ) ,  such a 
structure corresponds to parallel, periodically a r -  
ranged vortex filaments, within which the magnetic 
field is concentrated and decreases smoothly in space 
over distances -1,, and the pion field is absent and 
reaches an equilibrium value a t  distances "I, from each 
filament. An estimate of the lower critical field H,,, a t  
which the f i r s t  filament appears, can be readily ob- 
tained by comparing the Gibbs energy of one filament of 
radius -1, (of order -Hc;1g) and the energy of the pion 
contiensate displaced from the volume of the filament 
(of order -(WVX)~;). The calculation gives 

Taking into account'the interaction between neighboring 
filaments, one can find the magnetic susceptibility of 
the system and the structure of the lattice formed by the 
filaments in  the plane perpendicular to the direction of 
the magnetic field. As H- H,,, the magnetic suscepti- 
bility behaves as 

x--(H-He*)-' In-'(H-He,) +m. (1.12) 

A triangular lattice of filaments is energetically the 
most advantageous. With a further increase of the ex- 
ternal magnetic field, the number of vortex filaments 
increases, and the distance d between the neighboring 
filaments decreases and when d -1, the superconducting 
state disappears. This occurs when the magnetic field 
increases to the upper critical field H,,. The calcula- 
tion gives 

H . , = H . ~ ~ %  

It can be seen from the above values of the critical 
fields that H,, <<Hc <<H,,. At the critical point of pion 
condensation (oi- O), H,, and H,, vanish. Analysis 
shows that for values of the magnetic field in the inter- 
val H,, - H <<He, the regions with pion field cp + 0 a r e  
arranged a t  the points of a triangular lattice formed in 
the plane perpendicular to the direction of the magnetic 
field. The value of Hc, and the structure of the lattice 
for a homogeneous condensate a re  calculated in  the 
same way as is done in Sec. 2.5b for  an inhomogeneous 
condensate. Finally, for  the f ree  energy of the system 
when H,, - H << H,, we have 

where 71=?/(7)~.-   he magnetic susceptibility of the 
system tends to a constant as H- H,,: 

x-[q(2x2-I) ]-I.  (1.14) 

2. INHOMOGENEOUS CONDENSATE. PION 
CONDENSATION IN A NUCLEON MEDIUM 

2.1. The Lagrangian. The equations for the pion 
and magnetic fields 

We proceed from the Lagrangian density 

9=D-' (a ,  k") IcpI '-hlcp l'/2+5?'~+9'.. (2.1) 

Here 

o and k a r e  the frequency and wave vector, .lT(o,vk2) is 
the pion polarization ~ p e r a t o r , ~  A is the pion-pion cou- 
pling constant; and YB and Ye a re  the Lagrangian dens- 
ities of the baryon and electron subsystems, respec- 
tively. Varying (2.1) with respect to rp, we obtain the 
equation for  the pion field: 

D-'(a, kz)cp-hlcpl'cp-0, k=-iV. (2.2) 

This equation in an infinite nucleon medium with baryon 
density n>n, has the solution2' 

Here, o, and k, are  the frequency and wave vector of 
the condensate, which are  determined from the condi- 
tion of total electrical neutrality 8 3 / 8 0  = O  and the 
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We introduce the fields pl(r) and ~ ' ( r ) ,  which are  
measured from the new vacuum, s o  that 

cp- (a-p') exp(ikOr+ixt). 

FIG. 1. Dependence of -~-'(w,,k~) on k2 for three values of 
the nucleon density n: ni, nc, "2 (nl< % < %); nc is the density 
at which a pion condensate arises. 

minimum of the energy with respect to k ,  which is 
identical with the condition that there be no current in 
the ground state of the system. In Fig. 1, -D-'(w,, k2) 
is plotted against k2. The critical point of pion conden- 
sation (n=n,) is determined by the condition 

D-'(a,, k," -0. (2.4) 

For the energy density of the system, we obtain from 
(2 .l) 

where E ,  and Ee a re  the energy densities of the baryon 
and electron subsystems. 

As a rule, we shall be interested in wave numbers k 
near k,. It is sufficient to expand D-'(w,, k2) near the 
minimum in k2 and retain the terms of the expansion 
that are  -(k2 - kz). We have 

Then the Lagrangian density (2.1) in the coordinate rep- 
resentation can be rewritten in a form convenient for 
calculations (w = w,): 

In the Lagrangian density (2.7), we have introduced the 
interaction of the pion field with the static magnetic 
field. As can be seen from (2.7), the magnetic field is 
introduced into the Lagrangian density by the standard 
gauge substitution and the addition of the free-field 
Lagrangian density L, = -h2/2, where h = curl A, as 
before, is the microscopic magnetic field. The term in 
the Lagrangian containing the differentiation in fourth 
order is written down such that divj = 0. The equations 
for  the pion and magnetic fields have the form 

D-I(o, (k-eA)')cp-llcp 1 'cp=O, 

AA=- j, j=aP/aA, div A-0. 

Making the substitution rp = cp exp(ik r), we obtain 

For simplicity, we have omitted the nucleon and elec- 
tron parts of the current: 

Evidently, allowance for them will basically lead to an 
additional additive contribution to the magnetic suscep- 
tibility of the system that we obtain below. 

Then Eqs. (2.8) and (2.8') up to terms linear in p' and 
X' a r e  transformed to 

where A'= A- V X ' / ~ .  As can be seen from (2.9) and 
(2.9'1, the Goldstone boson has been absorbed by the 
gauge transformation, and the photon has become mas- 
sive. Thus, we have a Higgs effect. By virtue of the 
Higgs effect, the ground state of the system is super- 
conducting. 

2.2. Distribution of pion and magnetic fields in a 
nuclear medium filling a half-space 

Suppose the nucleon medium fills the half -space x < 0, 
so  that the density of nucleons is n, =n8(-x), n = const 
>n,, where 0 is the unit function, and suppose that there 
is a magnetic field which is homogeneous in the whole 
of space and is parallel to the medium-vacuum inter- 
face, H 11 z . Note that these simplifying assumptions 
probably correspond to a realistic situation. 

There a re  several  lengths that characterize the varia- 
tion in space of the pion and magnetic fields: l,, which 
is the length over which there i s  a variation of the am- 
plitude of the pion field in the nucleon medium: I,, 
which is the length over which the magnetic field h 
changes in the medium; R =I/-, which is the radius 
of curvature of the trajectory of a particle in the homo- 
geneous magnetic field; and 1, = l/k,, which i s  the length 
associated with the variation of the phase of the conden- 
sate field. Thus, for  an inhomogeneous pion condensate 
we have the additional length I,. All the characteristic 
values of the magnetic fields at which the various 
changes of the physical properties of the system occur 
are ,  as we have already partly seen in Sec. 1, due to 
the existence of these lengths. Because of the appear- 
ance of the new length I,, i t  is natural to expect new 
properties of a pion condensate in a magnetic field 
associated with the existence of this length. In addition, 
in the system there is, besides the direction H 11 z of the 
magnetic field, a further distinguished direction k,, 
which is due to the one-dimensionality of the pion con- 
densate and along which the superconducting current 
flows in accordance with (2.9'). As we shall shortly 
see, this also leads to important features in the be- 
havior of an inhomogeneous condensate. Note that the 
length I,, in contrast to  I, and I, (see Sec. 1.2), does 
not become infinite a t  the critical point of pion conden- 
sation (for w,=O). As can be seen from Fig. 1, the in- 
homogeneous pion condensate acquires a finite wave 
vector k,+ 0 abruptly a t  n =n,. 

We shall seek the distribution of the pion and magnet- 
i c  fields under the following simplifying assumptions: 
1) R2 >> lHIk. In this case, as can be seen from the ex- 
pressions (2.8') and (2.9'), the current can be treated 
in the approximation linear in A; 2) R2>> lHl:/Ik. Under 
this condition, the dependence on the magnetic field in 
Eq. (2.8) for the pion field rp can be ignored; 3) 1, >>I,. 

17 Sov. Phys. JETP 51(1), Jan. 1980 D. N. ~oskresenskijand N. Yu. Anisimov 17 



Then in the expression for the current, the pion field 
can be assumed equal to its equilibrium value I c ~  1 =a;  
4) 1, >>Ik. In this case, to find the spatial dependence of 
the amplitude of the pion field, we can assume that the 
amplitude is a weak function of the coordinates. 

In the absence of a magnetic field, the direction k, 
would be in no way distinguished. To find the pion field 
cp in a finite system, i t  was assumed in Ref. 32 that 
$ 1 1  x (in our notation). In the equation for the amplitude 
of the pion field, the retained terms had derivatives of 
lowest order [they were of the type (k,v)'p', and terms 
of the type A2p' were ignored]. Then the solution to Eq. 
(2.8) that decreases at the boundary has the form 

cp=ath [ (IXI-X~)I,'%~] exp [i(kox-o,t) 1, 
(2.10) 

~(0, Z,=y"'ko 1 oo 1 -I, zo=O. 

In our case, there is a distinguished direction-the di- 
rection of the magnetic field, whose presence destroys 
the initial symmetry of the system. As can be seen 
from (2.8') and (2.9'1, k, is parallel to A. We shall seek 
the pion field q in  the form 

q=af (x) exp (ikoy-io.t), (2.11) 

where f is a function that varies over the length 1,. The 
equation f o r  f (x) can be obtained from Eq. (2.9) for p' 
by the substitution p1- 4f. It can then be seen from 
(2.9) that (k,~)f(x)= 0 and (2.10) is not a solution to the 
problem. We seek a solution to (2.11) perturbively, 
setting 

f=l-$I-$2- ..., lB$ lB$p . . .  . 
We obtain 

cp=n{l-C, exp (xll,) cos (x11p+C2) 
-'l,,C? exp(2xl1,) [ l + s i n z ( x l ~ f  C,) I-. . .)exp[i(k,y-act) I ; 

Ip=ySll oo 1 '"; C1, C2=const. 
(2.12) 

Note that both (2.10) and (2.12) are obtained under the 
assumption i,, 1, >>Ik, which is justified in the case of 
weak supercriticality n -n,<< n,(Iw,l '<< 1). In what 
follows, we shall also assume that this condition is sat- 
isfied. 

The pion field (2.12) decreases over a shorter length 
than (2.10) (1, << 2,). Therefore, the surface part  of the 
energy of the system is less  for a pion field of the form 
(2.12) than for (2.10). [Of course, in the y direction in 
a finite system for  H=O the characteristic length of 
variation of the pion field is, as before, the length I,, 
and in a spherically symmetric nucleus a solution of 
the type (2.10) with x,= (R2 - y2 -z2)1/2 is, a s  before, 
valid.] To determine the constants C, and C,, we must 
use the boundary conditions to Eq. (2.9). As follows 
from the Lagrangian (2.7), the boundary conditions to 
the equation for the pion field ~ p  (for A = 0) consist of 
continuity of the quantities 

azVcp+aJVAcp, Acp, a,Vcp, cp, 

where 

within the system (n>n,) and, respectively, 1, -1, 0 
outside i t  (n  = 0).=' It i s  easy to show that for  1, >> 1, one 
can use instead of them the simpler approximate condi- 
tions cp(O)= qi(0) =o. Hence, we obtain C l = f i ,  C2=n/4. 

The equation for  determining the magnetic field (2.8') 

[(2.g1)] with allowance for the boundary condition A:(O) 
= H has the solution 

For x>O, we have A = & =  (O,Hx,O). 

As can be seen from (2.12) and (2.131, the Ginzburg- 
Landau parameter is 

since I W, 1 << 1 for n -n, << n, and, in addition, A>> e2. 
Note that the parameter x (2.141, in contrast to  the cor- 
responding quantity (1.7) for a homogeneous condensate, 
becomes infinite at the critical point (n =n,) of pion con- 
densation. In finding (2.13), we have, to simplify the 
calculations, ignored the second term in the current 
(2.9') compared with the first .  As can be  seen from the 
result, this is valid for  not too small H fH>> HJU, 
where H,= I wOl2/fi). Using the obtained solutions 
(2.12) and (2.13), we can readily verify the applicability 
of the approximations used in their derivation. All the 
approximations a r e  satisfied if 

As will be seen from what follows, H, plays the part  of 
a thermodynamic critical field. For H << H,, a com- 
plete Meissner effect occurs. 

2.3. Thermodynamic critical field H, 

We now establish whether it is energetically more 
advantageous for given external field H fo r  the super- 
conducting ( 140 1 = a ,  B = 0) o r  normal (q = 0, B = H) phase 
to exist. For this, as in Sec. 1.3, we compare their 
Gibbs f ree  energies. According to (1.8) and (2.51, in 
the superconducting phase 

G=-opllW+F, (2.16) 
and in  the normal phase G =H2/2. Equating these ex- 
pressions, we find 

H.= 1 l2/1h. (2.17) 

For H <  H,, the superconducting state in the interior of 
the system is more advantageous than the normal state. 
Note that if a pion condensate were a supercosductor of 
the f i r s t  and not the second type, H, would have the 
physical meaning of the field that destroys the super- 
conductivity. 

2.4. Surface energy of the interface between the 
superconducting and normal phases 

Since x >> 1, it  is natural to  expect that the pion con- 
densate is a type I1 superconductor. Indeed, we shall 
show that the surface energy of the interface between 
the normal and superconducting phases is negative. 

Suppose the interface is the plane (y,z), and HZH,. 
Because of the presence of the surface, the f ree  energy 
contains additional surface terms: 1) the negative cor- 
rection 

0 

2) the positive correction 
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ds is the area of the surface). Therefore, 

This resul t  is valid for  both a homogeneous and a n  in- 
homogeneous pion condensate. The presence of the 
negative surface energy is responsible f o r  the part ial  
penetration of the  magnetic field into the nucleon medi- 
um i n  the range of fields Hcl < H < H,,. 

2.5. Structure of the mixed state 

A. Beginning of the penetration of the magnetic field 
into the condensate. The inhomogeneity of the pion con- 
densate leads to qualitative changes i n  the structure of 
the  mixed state. It can no longer have a filamentary 
structure, as in the case  of a homogeneous condensate, 
since, besides the direction of the magnetic field H, 
there is the further distinguished direction k o l H ,  along 
which the superconducting current  j flows. Therefore, 
the system is a s t ruc ture  of periodically arranged nor- 
mal  plane &, H plane) layers  of width -I,, between 
which there a r e  superconducting regions. In the theory 
of the superconductivity of metals, such a s t ruc ture  was 
considered in Ref. 33, though for  natural physical rea-  
sons i t  was found there that this s t ruc ture  is l e s s  ad- 
vantageous than the filamentary s t r ~ c t u r e . ~ '  

We obtain an  est imate of the lower cri t ical  field f i r s t  
from simple qualitative considerations: a t  H - H,,, the 
energy per  unit a r e a  of a normal layer,  which is of 
order  -@l,, must be comparable with the energy of the 
pion condensate that occupied this layer (of order  
- w ~ l , / ~ ) .  This yields 

Hc, -HAL 
We now consider the determination of H, in more  de- 

tail. For  the vector potential A, we choose the gauge 
A=A(x)e,, where e, is a unit vector i n  the direction of 
y ,  and we take the origin x = 0 i n  the middle of the dis- 
tance d between the centers  of the layers.  We trans-  
form Eq. (2.8') [or (2.9')] into an  equation for  the mag- 
netic field h. Outside a layer,  a t  distances from i t  
much greater  than I , ,  this equation has the form 

d'h d 
L' - = h.  h (* ?) -H., 8.- const. 

dzZ 

We shall show below that H,, =H. From this we obtain 

In accordance with (2.7) and (2.9'), the energy density 
can be  written in the form 

E=-R Icp I ' /2+hz /2+jA.  (2.20) 

pression 

From the condition BG/BH, = 0 it follows that H, = H. 
Finally, 

Minimizing (2.24) with respect  to d ,  we find 

th z -~/ch'r=cH.Z/2xH' .  (2.25) 
This equation has  a solution only for  

H>H,,= ( c / 2 x )  ":He. (2.26) 

Thus, when H = H,, the formation of the f i r s t  layer be- 
comes advantageous. We find the magnetic susceptibil- 
ity of the system under the condition that H - H,, << H,,, 
i.e., there a r e  still only a few layers  and the distance d 
between them is much grea ter  than 1,. From (2.25) and 
(2.261, we obtain 

Substituting (2.27) i n  (2.221, we obtain 

As can be seen from the las t  expression, a t  the point 
H,, the magnetic susceptibility is singular. Comparing 
(1.12) and (2.29), we see  that fo r  an inhomogeneous con- 
densate the singularity i s  barely stronger than in the 
case  of a homogeneous condensate: 

When there is a further increase in the strength of the 
magnetic field (above the value H,,), more layers ap- 
pear,  the distance between them decreases,  and a t  
d -1, the layer s t ruc ture  is destroyed. An estimate of 
the corresponding magnetic field strength Hi, a t  which 
the layered s t ruc ture  completely disappears can be 
readily obtained from the expression (2.25). We have 

H,,'-xH.. (2.30) 

Despite the disappearance of the layered structure for  
H>H:,, there still remain regions with a weak pion 
field in the system. 

B. Complete destruction of superconductivity. The 
magnetic field completely destroys the condensate if the 
radius of curvature of the trajectory along which a par-  
ticle moves in the magnetic field becomes of the order 
of the length I , =  1/k0 associated with the phase of the 
condensate field. The estimate R-1, gives He,-kt/e. 
We consider the finding of H,, and the behavior of the 
system in the region of magnetic fields H,, - H << H,, in 
more detail. 

Using (2.12), (2.18), and (2.9'), we obtain from (2.20) Under the condition H,, - H << H,,, the pion field cp is 
an expression fo r  the total energy: 

weak irrespective of the value of i t s  amplitude fo r  H =O. 
I el.  2 * I z 1  ) 1 (2.21) Therefore, for  i t s  determination we can ignore the non- EW -- ( I - ~ ) + ~  J T [ h a + ~ z  

2h l inear t e rm ~ l c p  12cp in ~ q .  (2.8), after which i t  takes the 

c Z 3 ,  the a r e a  is S= 1. The magnetic induction is 
form 

B-E=H,, th d z ,  r = d / 2 1 ~ . .  (2.22) D-'(me, -(V-ieA)"cp=O. (2.31) 

Substituting (2.19) in (2.21) and using (2.22) for  the In Eq. (2.311, to determine H,, we can s e t  A = A o  be- 
Gibbs f r e e  energy of the system (1.8), we obtain the ex- cause the difference A - A ,  is quadratic in (P [see 
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(2.8'11. We shall seek q a s  the solution to the equation 
(V-teAo) 'q=-k$, (2.32) 

where the constant k' is determined by the condition 

D-'(o., k2)  =o. (2.33) 

The solution to Eq. (2.32) is exponentially damped as 
x -i=, and therefore i t  also satisfies all the require- 
ments imposed on the solution of Eq. (2.31). In (2.32), 
k '/2 plays the role of the energy of a nonrelativistic 
particle in a homogeneous magnetic field. Therefores1 

k'=(2m+l)eH+pZ2, m=0,1, .  . . . (2.34) 

To find H,,, we must se t  rn = 0, p,= 0. Equation (2.33) 
has two real  roots: kf and k:  (see Fig. 1). We choose 
the larger. Note that, for example, with increasing 
density n of the system k: increases, whereas kf de- 
creases. Thus, we obtain 

eHC1=k;. 
(2.35) 

A nontrivial circumstance i s  the nonvanishing of H,, 
at the critical point of pion condensation (at n =n,, w, 
=O). In other words, the mixed state disappears com- 
pletely only a t  a finite value of H,, irrespective of the 
amplitude of the pion field for H = O .  Such behavior, 
like the layered structure, i s  peculiar to the inhomoge- 
neous condensate. 

We now turn to the calculation of the free energy and 
the magnetic susceptibility of the system for H,, - H 
<< H,,. As before, we shall for simplicity assume n -n, 
<< n, and use the Lagrangian (2.7) instead of (2 .I). The 
solution to Eq. (2.32) corresponding to H =Hc2(k2=kE) 
has the form 

(P= c e i'= C,,, exp[imky- ( ~ - ~ , , , ) ~ / 2 1 ~ ] ,  

q =0, since (2.36) corresponds to the smallest eigen- 
value of Eq.  (2.32). The choice of k will be discussed 
below. 

We require periodicity of (2.36) with respect to x and 
y. This imposes a restriction on the coefficients C,: 

C,=C,+,. (2.37) 

We find the coefficients C, and the structure of the 
lattice formed by the regions with cp P 0 in the plane 
( x , ~ )  from the condition of vanishing of the variation of 
the energy. Replacing cp in (2.7) by q (1 + E )  and equating 
to zero the terms linear in E ,  and using 4. (2.32) and 
also an expansion of k: as n-n,, 

k,%kp'+ I ool (y/2);" 

we obtain 

Here, A, = A - A, is the correction in the f i rs t  order of 
perturbation theory to the vector potential of the homo- 
geneous magnetic field A, for Hc2 - H << Hc2, and the bar, 
as before, denotes averaging over the volume of the 
system. Integrating (2.38) by parts, and introducing 
h, = curl A,, we obtain 

(2.39) 

From (2.38) and (2.36), we can obtain the relations 

- 
Using the fact that in the absence of a condensate ( q  1' 
= O  and h,= 0, we obtain from (2.40) and (2.38) 

Substituting h, from (2.41) in (2.39) and using the obvi- 
ous relation 

h,=H-H,,+h., 

and also (2.3), we have 

For the magnetic induction B and the magnetic suscep- 
tibility X of the system i t  follows from (2.41) and (2.42) 
that 

The f ree  energy of the system (2.7), with allowance for 
(2.8) and (2.43), takes the form 

i.e., has a negative correction for B< H,,. 

Note that our derivation i s  also suitable for the case 
of a homogeneous condensate. In this case, it i s  neces- 
sary to replace wol by unity in the expressions 
(2.38)-(2.45). 

In the theory of the superconductivity of metals the 
values of 9 were compared by a numerical calculation 
for two types of lattice: square (all C, equal) and tri-  
angular (C,, = C,, C, = iCJ. It was found that the pa- 
rameter 9 is smaller for the triangular lattice.=l The 
quantity k in (2.36) can also be found from the minimum 
of 9. Since the solution (2.36) in the case of an inhomo- 
geneous condensate differs from the analogous solution 
for a homogeneous condensate only by the different 
value of I ,  this result remains valid. Thus, the t r i -  
angular lattice with q + 0 a t  i t s  points formed in the 
plane perpendicular to the direction of the magnetic 
field is energetically the most advantageous. In con- 
t ras t  to the expression (1.14) obtained fo r  a homoge- 
neous condensate, for an inhomogeneous condensate the 
magnetic susceptibility of the system vanishes at the 
critical point of pion condensation (at n =n,). Note that 
the correction to the f ree  energy of the system is pro- 
portional to I w,] ' and vanishes as n- n,. Therefore, 
the finiteness of Hc, as n-n, does not lead to any con- 
tradictions. 

CONCLUSIONS 

Thus, studying the properties of a homogeneous (in a 
simple model) and inhomogeneous (realistic case of 
pion condensation in a nucleon medium) pion condensate 
in an external magnetic field, we have obtained the fol- 
lowing results. 

1) The pion condensate in the magnetic field has  the 
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properties of a superconductor of the second type with condensate influences the dynamics of the transition of 
Ginzburg-Landau parameter n >> 1. We have found that a supernova to the state of a neutron star. The point is 
for an inhomogeneous condensate n - w a s  n - n,, that the Meissner effect must hinder the penetration of 
whereas for  a homogeneous condensate n- const a s  the magnetic field, which is frozen into the matter and 
n -n,. increases as a result  of the motion of the internal lay- 

e r s  of the s tar ,  into the interior of the system, and this 
2) The structure of the mixed state of the system for may lead to a change in the distribution of the magnetic a homogeneous condensate when H >  H,, is the structure 

field in the s t a r  and to additional dissipative processes. 
of vortex filaments arranged (in the section) a t  the . In heavy-ion collisions, strong magnetic fields can 
points of a triangular lattice. For the inhomogeneous probably also arise (see the rough estimate of the mag- 
condensate there is formed a structure of plane (k,, H 

netic field in the Introduction). In our opinion, a calcu- plane) "normal" layers, this disappearing when the 
lation of the magnetic field that ar ises  in this process 

magnetic field H is raised above the value H;,-H,. For would be helpful in elucidating the possibility of a con- 
H,, - H<< H,, in both cases the system takes the form of 

densate's existing in such a system. In nuclei, if there 
a triangular lattice formed by regions with nonzero pion 

is a pion condensate in them, i t s  superconductivity 
field in the plane perpendicular to the direction of the 

could lead to a number of effects, for it could 
magnetic field. change the magnetic moments of the nuclei and their 

3) For a homogeneous condensate. the critical mag- moments of inertia. - - 
netic fields H,,, H,, H,, vanish at the critical point of 
pion condensation. For the inhomogeneous condensate, 
H,,, H,, H;, also vanish as n - n,, and H,, remains 
finite irrespective of the initial amplitude of the pion 
field for H =  0. This is due to the presence of the addi- 
tional length 1,- l/k,, which characterizes the change in 
the phase of the condensate field and ar ises  abruptly at 
n =n,. 

4) We have found the magnetic susceptibility of the 
system. In the case H- H,,, i t  is singular. For homo- 
geneous condensate, the singularity is barely smoothed: 

As H- H,, the magnetic 'susceptibility tends to  a con- 
stant. For an inhomogeneous condensate, i t  tends to 
zero a s  n-n,, whereas for a homogeneous condensate 
it remains finite. 

Thus, there a r e  significant differences between the 
behavior of homogeneous and inhomogeneous conden- 
sates in the magnetic field. Note that we have nowhere 
used the explicit form of the dependence of the polariza- 
tion operator on k2 and w .  Therefore, the results a re  
fairly general. 

The values of the critical fields obtained here have the 
order of magnitude 1016-1019 G. If in the interior re: 
gions of neutron s tars  there a r e  magnetic fields with 
H'H,,, the pion condensate in this case will disappear 
completely, which renders the equation of state of the 
s t a r  harder. For H-H,, calculations of the equation of 
state must be made with allowance for  the structure of 
the mixed state of the system studied in the present 
paper. For H<H,,, the magnetic field i s  completely 
repelled from the region with the pion condensate. As 
we have already said, knowledge of the equation of state 
is needed to determine very important characteristics 
such as the radii of neutron stars, their moments of 
inertia, masses, and so  forth. It is known that the nu- 
cleons in a s t a r  can have the property of superconduc- 
tivity,= though qUC1 << eLa, i.e., the superconductivity 
of the pion condensate "survives" at much higher values 
of the magnetic field; in addition, i t  exists in a different 
range of nucleon densities. 

It is possible that the superconductivity of the pion 

Finally, we note that in neutron s t a r s  the pion con- 
densate could have a domain structure with different 
directions of the wave vector in different domains. 
Then besides the considered interaction of the magnetic 
field with the pion condensate, one could also have par- 
tial "flowing" of magnetic lines of force between the 
domains, and also alignment of domains. However, the 
possibility of formation of such domains has not hither- 
to been investigated. 

We thank A. B. Migdal for constant interest in the 
work and valuable advice, and V. D. Mur and D. M. 
~hmel'nitsk: for discussing the results. 

Note added in proof (Nouember 25, 1979). While the 
present paper was in press,  a paper was published by 
V. L. Ginzburg (Pis'ma Zh. Eksp. Teor. 30, 345 (1979) 
[JETP Lett. 30, (1979)]), in which he proposes a gen- 
eralization of the phenomenologi'cal Ginzburg-Landau 
model to the case when the order parameter may have 
a nonzero wave vector. He expresses the hope that his 
model could be helpful in describing so-called super- 
diamagnets. We note that the expression for the free 
energy of this model is very similar to the expression 
(2.7) of the present work. Because of this, the qualita- 
tive results  of our paper are ,  under certain assump- 
tions, also obtained in the framework of the model pro- 
posed by Ginzburg. 

''some of the results of the present paper were published in a 
shortened form in Ref. 27. Recently, Harrington and 
shepard, in the framework of the cr model, also attempted to 
take into account nucleons in the problem of the supercon- 
ductivity of a pion condensate. They found the value of H,, 
the critical field for destruction of the pion condensate, if it 
i s  a type I superconductor. The lower critical field H d ,  if 
the pion condensate is  a type I1 superconductor, was esti- 

. 

mated under the assumption of a filamentary vortex structure 
of the mixed state of the system and, as can be seen from 
what follows, does not agree with the result of the present 
paper. In Ref. 28, fields satisfying H > H d  were not consid- 
ered. 

 ere and in what follows, we assume Vi, cpz * 0, ps= 0. Such 
a simplified description is accepted (see, for example, Refs. 
18 and 24). 

3 ) ~ o  obtain the boundary conditions to the equation for the pion 
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field, we regard the abrupt boundary a s  the limit of a 
smoothed boundary when the transition region tends to zero. 
We write down an equation for p with variable coefficients 
that hold in the whole of space, and the boundary conditions 
are  obtained by integrating it and then going to the limit of a 
sharp boundary. 
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Pendellosung radiation of an electron diffracted in a single 
crystal 

B. V. Fedorov 
Leningrad Institute of Nuclear Physics, USSR Academy of Sciences 
(Submitted 19 April 1979) 
Zh. Eksp. Teor. Fiz. 78, 4652 (January 1980) 

A quantum-mechanical analysis is made of Pendellosung radiation produced by diffraction of an electron 
in a single crystal, with account taken of the deviation from the Bragg condition in the final state of the 
electron. The formulas obtained for the angular distribution duplicate the result of I. M. Frank for the 
radiation of an oscillator moving in a refracting medium and oriented perpendicular to the velocity. 

PACS numbers: 61.14.Dc, 72.10. - d, 12.20. - m, 41.70. + t 

1. Frank1 h a s  developed the theory  of the  emiss ion  c a u s e s  a n  e lec t ron  diffracted i n  a c r y s t a l  to behave, 
of a classical osci l la tor  moving in a refract ing med- with r e s p e c t  to emiss ion ,  l ike a moving oscillator, 
ium. He h a s  shown that at nP> 1 (P = v/c, v is the oscil- i.e., when the e lec t ron  is diffracted Pendellosung radia- 

lator velocity, and n is the refract ive index) a number tion is produced at a frequency and  polar izat ion that 
of new phenomena appear ,  namely the anomalous and are determined by  the frequency and direct ion of the 

complex Doppler effects.  oscillations of the  diffracted electron.  It w a s  shown in 
Ref. 3 that nP > 1 (PII = u cos e,/c, 0, is the Bragg angle), 

It was previously noted2 that  the Pendellosung effect just as in the case considered by Frank,' the dependence 
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