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Isotropic cosmological models determined by vacuum quantum 
effects 
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The evolution of cosmological models with scalar or spinor quantized fields is studied. In the class of 
spatially homogeneous isotropic models, all self-consistent models are found in which the metric is 
determined by vacuum quantum effects of massless fields. It is shown that the obtained results are also 
valid for massive fields. 

PACS numbers: 98.80. - k 

1. INTRODUCTION the singularity, it can be assumed that this  result i s  

One of the main problems of cosmology i s  the de- 
scription of the evolution of the Universe near the cos- 
mological singularity. A s  follows f rom the Penrose- 
Hawking theorems,' if the dominant energy conditions 
are satisfied for  the mat ter  that determines the metr ic  
it is impossible to avoid the occurrence of singularities 
in classical  general relativity. At the same time, it is 
known that allowance for  quantum effects leads to viola- 
tion of the dominant energy conditions.' At the present  
time, a completed theory of quantization of the gravita- 
tional field does not yet exist,  and it is therefore expe- 
dient t o  consider the part played by quantum effects in 
the framework of a semiclassical  scheme, in which the 
gravitational field is classical  but the fields of part icles 
are second quantized. Such a scheme corresponds to 
the single-loop approximation to a fully quantized 
theory. 

On dimensional grounds, one can conclude that the 
semiclassical  approach is valid fo r  a gravitational field 
characterized by a curvature that is small compared 
with the Planck curvature, p << G-'/'- cm-' (G is 
the gravitational constant; we use a system of units in 
which Zi =c  = 1). If i t  is found that certain quantization 
effects of the matter  fields are sufficient t o  eliminate 

also t rue  when quantization of the gravitational field is 
taken into account. 

In the present  paper, we solve the self-consistent 
problem of the evolution of isotropic cosmological mod- 
els with quantized sca l a r  o r  spinor fields. The condi- 
tion of self-consistency takes the form that the external 
gravitational field produces a vacuum energy density 
and p re s su re  of the quantized sca lar  o r  spinor fields 
that are required fo r  the creation of this gravitational 
field in accordance with the Einstein equation. As will  
be shown below, in the c lass  of homogeneous isotropic 
cosmological models there  exist models that are self- 
consistent in this sense and do not possess singulari- 
ties. This makes it possible to interpret  the occur- . 

rence of the Universe as a manifestation of an instabil- 
ity of the vacuum state of a quantized field. 

In Sec. 2 of the present  paper, we formulate the equa- 
tions of self-consistency of the cosmological models 
with sca lar  o r  spinor quantized fields. In Sec. 3, the 
self-consistency equations a r e  solved in the case of 
mass l e s s  fields, and we find all isotropic models de- 
termined by vacuum quantum effects. These models in- 
clude de Sitter models of Planck dimensions and models 
that coincide asymptotically with Milne's model. In 
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Sec. 4, we find the corrections to the results of Sec. 3 
that arise when allowance is made for a mass of the 
field. We show that for realistic masses, satisfying the 
condition Gm2 << 1, the obtained models remain approxi- 
mately self-consistent. 

2. SELF-CONSISTENCY CONDITIONS FOR ISOTROPIC 
COSMOLOGICAL MODELS 

We consider a second-quantized scalar o r  spinor field 
in a homogeneous isotropic space with metric 

ds2=g,,dz'd2=az (q) [dq2-ymsdx"dxB], (1 

where Y , ~  is  the metric tensor of the three-space of 
constant curvature x = +1, 0, -1, and 9 i s  the conformal 
time, which is related to the synchronous proper time 
t by v=Jdt/a. 

Suppose that a t  the time 9, the quantized field i s  in 
the vacuum state 10). Because the metric (1) i s  non- 
stationary, for 9*9, the state 10) will no longer be a 
vacuum state. In Refs. 3-5, by means of various meth- 
ods of regularization, mutually consistent finite expres- 
sions were obtained for the expectation values of the 
operator of the energy-momentum tensor of massless 
quantized fields with spin u with respect to the state 
10): (T:O,')Z=O'. These expressions have a local nature 
and a r e  interpreted a s  polarization of the vacuum by the 
gravitational field. In Ref. 6, by means of the method 
of n-wave regularization proposed in Ref. 7, expres- 
sions were obtained for the total energy-momentum 
tensor (T::'),n of quantized fields with mass, these ex- 
pressions containing both local terms identical to those 
obtained in Refs. 3-5 as well as nonlocal terms de- 
scribing particles produced by the gravitational field. 

In accordance with what we have said in the Introduc- 
tion, the self-consistent cosmological models must sat- 
isfy the equation 

Here it is assumed that the metric of space-time is en- 
tirely determined by the vacuum quantum effects of the 
scalar o r  spinor fields (by vacuum polarization and par- 
ticle production from the vacuum). In their turn, these 
quantum effects are  entirely produced by the gravita- 
tional field corresponding to the given metric. An at- 
tempt to solve Eq. (2) in the quasi-Euclidean case for a 
scalar field (u=O) was made in Ref. 8. However, be- 
cause of the uneliminated indeterminate form on the 
right-hand side of (2) a contradictory result was ob- 
tained in Ref. 8. 

As is well known, for fixed metric (1) the vacuum ex- 
pectation values of the energy-momentum tensor have 
the form 

Here, (T:O,')' does not depend on the mass  of the field 
and is calculated in Refs. 3-6 for arbitrary expansion 
law a (9): 

where we have introduced the notation 

By J , ,  we denote the tensor that in the metric (1) has 
the components 

The second term in (3) contains, in general, terms that 
a r e  nonlocal with respect to 9 and vanish for m = 0. 

As can be seen from (5), '"H,, contains derivatives of 
third and fourth orders ing,,. Substitution of such 
t e rms  in  the right-hand side of Eqs. (2) radically 
changes the nature of the solutions, rendering them un- 
p h y ~ i c a l . ~  Therefore, we eliminate from (4) the term 
containing "'Hi, by means of a finite renormalization of 
the constant in front of R2 in the unrenormalized La- 
grangian of the gravitational field. This is possible, 
since 

At the same time, the tensor ")Hi, introduced in Ref. 
10 cannot be obtained in the general case by variation 
of a local action and is conservative only in conformal- 
ly flat spaces. 

Going over to the self-consistent problem (2) and us- 
ing (3), (41, and the explicit expression for (T::')" (Ref. 
l l ) ,  we obtain the 00 component of the Einstein equa- 
tions (u=O): 

Here, the dot denotes the derivative with respect to 9, 
w2= A2+m2a2, A is the dimensionless momentum, and 
g , ( ~ )  is a solution of the oscillator equation 

which is obtained from the Klein-Gordon-Fock equation 
with conformal coupling after separation of the spatial 
variables. The functiong,(q) is fixed by the require- 
ment of a positive frequency at the initial time 9,. This 
requirement is equivalent to the condition of diagonality 
of the Hamiltonian of the quantized field H(9$, whose 
ground state is the vacuum 10) (Ref. 12). For x = + l ,  
the integration in (6) can be replaced by summation 
over X=l ,2 , .  .. . 

We do not require the spatial components of (2), since 
they reduce by virtue of the fact that the energy-rno- 
mentum tensor (4) is conservative to the equations that 
a r e  obtained from (6) by differentiation with respect to 
9. 

For a spinor field, using (4) and the explicit expres- 
sions for the nonlocal terms,'*'' we write the 00 compo- 
nents of Eqs. (2) in the form 
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The functions f, satisfy the equations 

which a r e  obtained from the generally covariant gener- 
alization of the Dirac equation after separation of the 
spatial variable. In the case x = +l ,  the integration in 
(8) is replaced by summation over A =  3/2,5/2,. . . . 

As can be seen from (6) and (81, the self-consistency 
conditions are  integrodifferential equations for the un- 
known scale factor a(q), containing it both explicitly 
and implicitly (the functions f and g depend on it). We 
shall seek solutions to (6) and (8) in two stages. First, 
we consider the case m = 0, when nonlocal effects a r e  
absent, as a result of which (6) and (8) a r e  transformed 
into ordinary differential equations for  a (q). We then 
calculate the corrections that ar ise  for m + 0. 

3. MASSLESS FIELDS 

For m = 0 and x = 0, +I, the self-consistency condi- 
tions (6) and (8) take the form 

~ ' + x = a ~ - '  (C2+x) ', (10) 

where ii =~(180rr/G)'/~, C = (lnii), and a, a r e  defined in 
(5). 

For x = 0, Eq. (10) has not only the trivial solution 
a h ) =  const corresponding to Minkowski space-time but 
also the nontrivial 

The solution (11) describes a de Sitter space of the f i r s t  
kind in orispherical coordinates1 with curvature 

For x = + l ,  the solution of (10) is 

This metric corresponds to the same de Sitter space 
(with spherical spatial sections). 

It is obvious that the obtained models have s izes  of 
the order of the Flanck length. This means that they 
can be significantly changed when allowance is made 
for quantization of the gravitational field. 

We now consider the case x = -1. The self-consis- 
tency conditions (6) and (8) take the form 

where b,= 4~,/3a,. 

The solutions of Eq. (13) for the + and - signs in front 
of the radical a r e  

where co=  l/a, c,,,= J m  and we have introduced 
the notation 

The constants of integration a re  chosen such that the 
time 1 varies from 0 to +-. (The case of vector field is 
considered in Ref. 14.) 

The asymptotic behavior of the solutions (14) for 
small  and large q is given by 

where ko= 1.554, kll,= 1.498, a0=3.458, al l ,= 7.798. 

The corresponding values of the scalar curvature are  

It can be seen from (16) and (17) that models with the 
scale factors (14) for  q = 0  have sizes of the order of the 
Planck length and contract to a point as 17 increases to 
+w. The effects of quantization of the gravitational field 
ignored here must have an appreciable influence on the 
evolution of such models. 

The asymptotic behavior of the solution (15) is de- 
scribed by the formulas 

where do= 1, e,= 1/6, d l l , = f i ,  ell,=0.107, f0=0.245, 
fl,,= 0.211. 

The behavior of the scalar curvature is determined by 
the expression 

where ro= 4, rll,=1.571, h,=48, hll,=4769. 

As follows from (18) and (19), the models defined by 
formula (15) expand without limit a s  q varies from 0 to 
+-, beginning a t  q = 0  with a size of the order of the 
Planck length. It can be assumed that for such models 
when 17 2 1 the effects of quantization of the gravitational 
field a r e  unimportant. According to (18), for 7]>> 1 (in 
fact, i t  is sufficient that 7 2 3) the obtained nonsingular 
models a re  described by the Milne metric [in terms of 
the synchronous proper time a(t) = t]. Thus, a t  large 17 
the model approaches locally to Minkowski space. 

4. VACUUM QUANTUM EFFECTS OF MASSIVE 
FIELDS 

To take into account the corrections to the results ob- 
tained above that arise when m #O, we consider f i rs t  a 
massive scalar field in the de Sitter space with the 
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metric (1) and the scale factor 

a ( q )  =aolq 

6 ,  is for the time being assumed to be an arbitrary pa- 
rameter). We shall specify the vacuum state of the field 
by the requirement that the Hamiltonian be diagonal as 
q- +GO; this choice of the vacuum agrees with the one 
adopted in Refs. 15-17. 

To calculate the nonlocal terms on the right-hand 
side of (6), it is necessary to solve the oscillator equa- 
tion (7) with the scale factor (20). Its solution, deter- 
mined by the positive-frequency requirement as q- +-, 
is 

where HY(1)(z) is a Hankel function of the f i r s t  kind, and 
v = [(1/4) - / .L~] ' /~,  /.I =mao. 

The terms in  (3) that do not depend on the mass  of the 
field take the following form in the metric with the 
scale factor (20): 

We now calculate (Tfi')" [the terms with the integral 
over k in  (6)]. Substituting in  (6) the explicit expression 
(21) for the solutionsg,(rl) and reversing the order of 
integration with respect to X and q', we obtain 

where 

The integrals of each of the t e rms  in  (24) separately 
diverge. Using a procedure analogous to dimensional 
regularization, for the integral I in (23) we find 

where $(z) is the logarithmic derivative of the I? func- 
tion. 

Substituting (25) in  (23) and determining the three- 
space components of the energy-momentum tensor from 
the condition of i t s  conservativeness, we obtain, using 
(3) and (22), 

where g,, denotes the metric tensor of the de Sitter 
space. As can be seen from (261, the geometrical 
structure of (T:,O)),, reflects the symmetry of the four- 
space. The result  (26) was obtained earl ier  in Ref. 15 
by the generalized f function method and in Ref. 16 by 
the method of covariant point splitting. For scalar 
field with minimal connection a result analogous to (26) 
was obtained in Ref. 17 by the method of adiabatic reg- 
ularization. 

We now consider a spinor field. The solutions of Eqs. 
(9) in the metric (I), (20) corresponding to our choice 
of the vacuum have the form 

nhq % '  
f a (n )  = t i  exp (F?) ~ : 1 , , , ( 1 ~ ) .  

Making a calculation using (27) analogous to the scalar  
case, for the quantity in the curly brackets (8) we have 

We consider limiting cases of the results (26) and 
(28). For spaces with small  scalar  curvature R = 12/a2, 
<< m2 (the radius of curvature large compared with the 
Compton length) >> 1 and 

where A,= 1/1260 and A,l,=31/20160. 

The self-consistent solution (11) corresponds, in con- 
trast ,  to a very large curvature R >>m2, since for the 
masses of all known elementary particles Gm2 << 1. In 
this case, we obtain 

< ~ : ; ' > , . , = ~ d l ~ g , ~ n ' ,  (30) 

where B,= 1/69120 and B,/,= 11/138240. 

Since the result (30) is exact for fields with m = 0, we 
may conclude that allowance for mass  does not change 
the conclusion drawn in the preceding section concern- 
ing the self-consistency of the de  Sitter models deter- 
mined by the vacuum quantum effects of the massless 
fields. 

We now consider the influence of the production of 
massive particles on the self-consistent solutions with 
w = -1. With regard to the solution (14), since Gm2 << 1 
for  ald known elementary particles, i t  is clear in ad- 
vance that the corrections associated with nonzero 
mass a r e  quite negligible. Let us consider in more de- 
tail the corrections to the solution (15). 

For t s t ,  =m", calculation of the corrections to 
(T:O,)),, in accordance with the method of Refs. I f  and 
13 and using the asymptotic behaviors (18) gives 

At the same time, the local terms of the energy-mo- 
mentum tensor on the right-hand sides of (6) and (8) 
have the order  

It is obvious that for t  <<t, the contribution of the quan- 
tities (31) can be ignored compared with (32). 

As is shown in Refs. 11 and 13, the production of 
massive particles occurs most intensively at t  " t ,  and 
for  t z t ,  

(T::' >"-6a /a ( t ) ,  (33 
where 6,= const. We shall assume that all the massive 
particles a r e  produced a t  the time t = t ,  and that from 
this time their energy-momentum tensor (33) begins to 
influence the expansion of the Universe. Then Eq. (12) 
is replaced by 

CI-i=aB-'[ (Cz-i)z+~o/3a,+0,ma], (34) 

where 0, = 480n26/a,. Solving this equation, we find 
asymptotically in the limit t  >>t,  
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and the constant satisfies a,- 1. 

As can be seen from (351, the departure of the metric 
from the Milne metric due to the nonvanishing mass is 
in this case too negligibly small. Thus, all the models 
we have found remain self-consistent for massive fields 
as well. 

We thank A. k Grib for numerous helpful discussions. 
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A study is made of the behavior in a magnetic field of a pion condensate that is either homogeneous 
(with characteristic wave vector kozO) or inhomogeneous (the physically interesting case of a pion 
condensate in a nucleon medium has ko-p,, where p, is the nucleon Fermi momentum). An expression 
is obtained for the spatial distribution of the pion and magnetic fields in a medium with a pion 
condensate in an external homogeneous magnetic field H .  It is shown that the pion condensate is a 
superconductor of the second type with Ginzburg-Landau parameter x> 1. The structure of the mixed 
state of the system is studied. For a homogeneous condensate, it is the same as for a metallic 
superconductor of the second type. For an inhomogeneous condensate in the range of variation of the 
external magnetic field H,, < H  <HIc, (where Hc,-H,/ . \ /x  is the lower critical field, and H', , -H, ,  
where H, is the thermodynamic critical field) plane layers of the normal phase arise. These layers are 
parallel to the plane (Ito, H) (161H). At values of the magnetic field in the region H',, < H < H,,, where 
H,, is the upper critical field, the structure of the mixed state for an inhomogeneous condensate is the 
same as for a homogeneous condensate. It is shown that the value of H,, for an inhomogeneous 
condensate is finite, irrespective of the amplitude of the condensate field at H =O. The magnetic 
susceptibility x of the system is found. It is shown that the qualitative picture of the phenomena that 
occur does not depend on the actual choice of the model of the pion-nucleon interaction but only on 
whether the condensate is homogeneous or inhomogeneous. 

PACS numbers: 21.65. + f 

INTRODUCTION than for the other particles, a re  pions. Muclear matter 
is a potential well for pions, whose depth increases 

The phenomenon of rearrangement of a boson vacuum with increasing density of the nuclear matter. There- 
in strong fields of various types-scalar, electric, nu- fore, at a sufficiently high density n a pion condensate 
clear-was f i rs t  investigated by Migdal in 19'71.' He must be formed in a nucleon medium.' 
showed that in a sufficiently strong field forming for a 
particle a potential well an-instability ar ises  that leads In Refs. 2 and 3, and then in Ref. 4, a method was 
to rearrangement of the ground state of the system, developed for finding the spectrum of pion excitations 
i.e., to a phase transition with the formation of a Bose in nuclear matter with number of neutrons N approxi- 
condensate. The formation of the condensate stabilizes mately equal to the number of protons 2, and also in a 
the system and leads to a reduction of i t s  energy. The neutron medium with Z << N. It was found that in both 
lightest bosons, for which the instability occurs earl ier  cases the instability leading to the formation of the pion 
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