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The evolution of the space-time metric and physical fields inside a charged black hole is considered with 
allowance for the quantum-electrodynamic production of electron-positron pairs in a strong electric field. 
A consistent treatment of the processes leads to the conclusion that inside the black hole there is no 
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the structure of space-time is analogous to the structure of an uncharged (Schwarzschild) black hole. 
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5 1. INTRODUCTION 

Just a s  the collapse of a nonrotating, electrically 
neutral s t a r  leads to the formation of an uncharged black 
hole with Schwarzschild metric, the collapse of a char- 
ged nonrotating spherical s t a r  leads to the formation of 
a charged black hole with Reissner-Nordstrom metric 
and electric field E: 

-' dr'-Z (dfta+sinz €I &I), 

E=Q/r2, (1.1) 

where M i s  the mass of the black hole, Q i s  i t s  electric 
charge, and Q2 c G M 2  (units a r e  chosen for which c =  I). 
In contrast to the Schwarzschild metric, the metric 
(1.1) has two horizons (which a r e  determined by the 
condition .$I =goo = 0): 

The outer horizon r=r+ is an event horizon and has the 
same properties a s  the .horizon of the Schwarzschild 
metric. The inner horizon r = r- i s  a Cauchy horizon, 
i.e., if prior to the s t a r t  of the collapse of the s t a r  
initial Cauchy data a r e  specified a t  some instant in the 
whole of space, they determine the evolution only for 
the region r > r - .  In the region between the outer and 
inner horizons ( r - < r  <re),  the metric (1.1) can be  con- 
veniently rewritten in synchronous form by introducing 
the proper time in the T frame of reference': 

and, to avoid confusion, replacing the spacelike coordi- 
nate t by x. Then (1.1) takes the form 

ner-Nordstrom for charged bodies4s5). It can be as- 
sumed that the same i s  true for  the formation of a black 
hole from an initially strongly asymmetric body. Out- 
side the black hole, al l  radiative modes of physical 
fields that have their sources on the collapsing body are  
also damped a s  t - m. 

Finally, the evolution of the metric of the black hole 
and the behavior of physical fields within the event 
horizon r, have recently been analyzed. In Ref. 6, the 
following result was proved for the case of a Schwarz- 
schild black hole: If the deviations from spherical 
symmetry a r e  small on r,, then inside the black hole 
the metric tends in the limit t - w  to exact spherical 
symmetry except for an ever  contracting zone near the 
true singularity r = 0, where the perturbations grow. 

For  the investigation of the internal structure of a 
charged black hole, the presence of the Cauchy horizon 
r- i s  of the greatest importance. The stability of r- 
against small perturbations of different types has been 
investigated in a number of papers.'-' It was shown that 
this horizon i s  unstable against small  perturbatiods that 
ar ise  outside and on the boundary of the black hole." 

The aim of the present paper i s  to investigate the real 
structure of space-time that ar ises  inside a black hole 
as a result of the collapse of a charged body when al- 
lowance i s  made for quantum processes of particle pro- 
duction in strong fields. 

In Sec. 2, we consider the process of external dis- 
charging of a charged black hole and determine the 
range of variation of Q and M for which the problem of 
the existence of a Cauchy horizon i s  nontrivial and re- 

where the dependences ,,(?) and a(7) are given in explicit 
quires study of concrete physical processes. In Sec. 3, 

form by (1.3). Note that in the synchronous frame of 
we investigate the evolution of the electric field and the 
metric inside the black hole due to pair production in 

reference the inner and outer horizons correspond to a 
fictitious Kasner singularity of the form (1,0,0). the case when without allowance for pair production the 

electric field would be greater than the critical E ,  = nm2/ 
It has been shown in a number of papers that if a body eti (when the pair production process is strong). section 

collapses with small departures from spherical sym- 4 is devoted to the opposite case of a weak field E c E , .  
metry and without rotation, then in the space exterior In Sec. 5, we compare the magnitudes of the quantum 
to r+ in the limit t - w the metric tends to a static and classical effects that lead to instability of the Cauchy 
metric (Schwarzschild for neutral o r  Reiss- horizon. 
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52. EXTERIOR CHARGE OF A BLACK HOLE 

The evolution of the metric and the electric field in- 
side a charged black hole depends on the ratio of Q to 
M. We here establish the range within the exterior 
charge Q of a black hole formed a s  a result of collapse 
can vary. 

First ,  a s  we have already said, a black hole can ar ise  
only i f  Q ~ G M  or  Q/e 5.4 X 1 0 5 ~  (g), where -e is the 
charge of the electron (the region below the line 1 in 
Fig. 1). If i t  i s  assumed that the electric charge of the 
black hole is of the order of the electric charge of the 
s t a r  from which i t  was formed by collapse, then 

where rn i s  the mass of the electron (see, for example, 
Ref. 10). However, there exist mechanisms for in- 
creasing the charge of the black hole by accretion." 

The main process that limits Q above i s  the quantum- 
electrodynamic process of e'e- pair production from the 
vaccum by a strong electric field. In the case of black 
holes, this process was considered by Markov and 
fro lo^,'^ and also in Refs. 13 and 14. In this process, 
one of the particles of the pair, which has the same 
charge a s  the black hole, escapes to infinity, and the 
second i s  captured by the black hole. Energetically, 
this process is possible if 

As we shall see  below, the problem of the existence of 
the inner Cauchy horizon i s  nontrivial only for black 
holes with M g. Therefore, in the present paper 
we restrict  ourselves to considering black holes whose 
gravitational radius r+ = 2 G ~ / c '  appreciably exceeds the 
electron Compton wavelength X =  Vmc,  which corre- 
sponds to the condition M >> 3 3 1017 g." 

Note that electron-positron pairs (and other particles) 
could be produced by the gravitational field of the black 
hole by itself (Hawking effect). However, this last  ef- 
fect can be ignored if 

We calculate the rate of electric discharge of the char- 
ged black hole through the process of electron-positron 

pair production. We consider the case when the in- 
equality (2.2) is satisfied with a wide margin, i.e., eQ/ 
r+ >> mc2 (otherwise, discharging hardly occurs in prac- 
tice and Q remains constant). Then a t  infinity the pro- 
duced electrons and positrons a r e  ultrarelativistic. In 
this case, in the calculation of the number of pairs pro- 
duced in the electric field of the black hole we can use 
the approximation of an electric field that i s  constant 
in time and space. 

Indeed, if 

the condition of applicability of the approximation of a 
constant field is3' E'/E<< eE/mc2, and for E >> EE, (Ref. 
16) i t  i s  the condition Ef /E  <<(eE/Ec)'I2. In the region 
r- r,, which makes the main contribution to the creation 
effect, the f i r s t  inequality is always satisfied under the 
adopted condition e ~ / r ,  >> mc2, and the second i s  i f  

which i s  identical to (2.3) apart from the numerical 
coefficient. 

It i s  well known that the specific rate of e-e' pair 
creation in a constant electric field is given by the ex- 
pression (see, for example, Ref. 17) 

This expression i s  also true for E BE, if N is the mean 
number of created pairs. Then the rate at which the 
black hole loses electric charge is 

I+ 

If Q/Y? >> Ec, integrating (2.6), we find that, irrespec- 
tive of Q,, the value of Q decreases to the value -Ql 
= nm2c3rt/eii in the very short  time 

if M > 5 x loL8 go4) In reality, the discharge time will be  
longer, since in Eq. (2.6) we have not taken into ac- 
count the time needed for the produced particle to 
escape from the black hole o r  fall into it. The precise 
determination of p, requires specification of the con- 
crete mechanism of formation of the initial charge Q, of 
the black hole. 

There follows then a stage of slow discharge (E <E, 
everywhere, Q <Q,). In the limit t -m, Q a l/lnt. 

Since the characteristic time of the process of collap- 
s e  of the s t a r  and formation of the black hole is of order 
r+/c, in this time Q decreases to the value 

where A = e2(2n&)-1(r,/k)2 >> 1. For  Q << GM, we have 
numerically 

FIG. 1. Different regions of values of the change Q and mass where M i s  measured in grams (line 2 in Fig. 1)- Lines 
M of the black hole. For the boundaries of the region, see the 1 and 2 intersect a t  the point M = 3  x lo4' gZ10'Mo and 
text. Q/e =2  X lo4'. 
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The further decrease of Q for  an exterior observer is 
s o  slow that i t  can be ignored and Q regarded a s  con- 
s t an t  However, an observer falling into the black hole 
and moving in the T region could see (and indeed will 
see, as we shall show below) how the value of Q de- 
creases a s  a result of quantum processes with decreas- 
ing coordinate r, which in the T region is timelike. For  
such an observer, the surface of the horizon r = r, re- 
mains in the past. 

The main aim of the present work i s  to ascertain 
whether there exists a nonsingular inner Cauchy hori- 
zon in a charged black hole. In the allowed region be- 
low the lines 1 and 2 in Fig. 1, there is a large region 
in which a negative answer (i.e., absence of a Cauchy 
horizon) i s  clear from the very beginning. Indeed, from 
the physical point of view the singularity must be re- 
gacded a s  being not where the curvature invariants be- 
come infinite but where they a r e  still finite but s o  large 
that the classical theory of gravitation becomes invalid 
because of quantum-gravitational effects (namely, 
( R ~ ~ ~ ~ R ~ ~ ~ ~  1 -li4, I,= ( G E / C ~ ) ~ / ~ =  1.6 X cm). It i s  
natural to refer to such a singularity as physical, in 
contrast to the mathematical singularity determined by 
the condition that the invariants o r  other physical char- 
acteristics of the gravitational field a r e  infinite. 

In the required region, Q < < G M .  At the same time 

In the region r-<< r<< r+, the metric (1.4) i s  approxi- 
mately a vacuum Kasner metric with exponents (-1/3, 
2/3,2/3) and the electric field does not influence the 
evolution of the metric. We also have 

A nonsingular Cauchy horizon exists if lr(r-)l>> t,= l,/c, 
i.e., i f  the influence of the electric field on the metric 
becomes significant before a physical singularity is 
reached. In Fig. 1, we have drawn the line 

Q MH - = 6"G" (Ac) "*- 2.7.10'JP' (g) 
e e 

(line 3)." It is obvious that a s  a result of the influence 
of quantum, and also dissipative processes the charge 
Q(r) can only decrease with decreasing r (i.e., with 
increasing proper time 7). Therefore, if the external 
charge Q of the black hole lies in the region below the 
line 3, we can immediately say, without going into a 
detailed consideration of the processes taking place in- 
side the black hole, that a nonsingular inner Cauchy 
horizon does not exist, but instead there ar ises  a 
vacuum singularity similar to the one in the Schwarz- 
schild metric in the limit r - 0. 

Note that a s  a consequence of this we do not have to 
consider the existence of an inner horizon for black 
holes with "natural" value of Q determined by (2.1). 
The point i s  that the straight line (2.1) l ies below the 
line 3 up to masses so  large (M = 1060 g) that they a re  
incompatible with the present size of the Universe (M,,, 

=lo5' g for a= 1). 

Further, lines 2 and 3 intersect at M = 5 x loz8 g ( 4 0  
Earth masses) and Q/e = 4 x loz3. Therefore, in the 
region lying above line 3 the inequalities r+ >> X, (2.3), 
and (2.4) a re  satisfied with a huge margin. 

93. DAMPING OF THE ELECTRIC FIELD BELOW 
THE EVENT HORIZON THROUGH THE PRODUCTION 
OF ELECTRON-POSITRON PAIRS 

We now turn to the study of the physical processes in- 
side the charged black hole. In the synchronous T 
frame of reference (1.4) the electromagnetic field re- 
mains, a s  before, plrely electric and does not depend 
on the spatial coordinates. E(r)  increases during the 
contraction, i.e., with decreasing r(r) .  In Fig. 1, we 
focus our attention on the range of Q and M values for 
which E > E, in the T region near  the inner horizon and, 
therefore, e'e- pairs a r e  produced rapidly there. For 
this, we draw in Fig. 1 the line E (r  = r - )  = Q/rf = E, (line 
4). For  Q < < G M ,  the equation of line 4 simplifies: 

(In Secs. 3-5, c = 1.) Lines 2 and 4 intersect a t  M = 6  
x g, ~ / e  =2  ~ 1 0 ~ ~  (for which Q / G M  = 0.6). In Sec. 
3, we shall consider the region bounded by the lines 2, 
3, and 4, in which pairs a r e  produced rapidly and the 
curvature for r = r- i s  less  than the Planck curvature. 

In the considered region, i t  may be assumed that Q 
<<GM. Then r-<<r,, and for r - < < r < < r +  

This is the vacuum Kasner regime, and in the f i rs t  
approximation the electric field does not influence the 
evolution of the metric. It follows from (2.8) that on 
line 2 and to the right of i t  E ( r  = r,) << E,, and therefore 
strong pair production begins for ( r  I<< r, when E in- 
creases  to E,, i.e., in the stage (3.2). 

The produced pairs a r e  accelerated by the field, 
which leads to a current that decreases Q and E. We 
shall show below that the damping of the electric field 
does not occur monotonically but through weakly damped 
oscillations. It i s  important to emphasize that a s  a re- 
sult of the considered processes the field cannot exceed 
the critical value E, for more than a short time (this 
will be discussed below). To show this, we assume 
the opposite, that the field has increased to E,>E,. In 
this case, a s  we shall show, the field amplitude would 
rapidly decrease to E, during a characteristic time 7,. 

The further decrease of the amplitude E occurs very . 

slowly, and we shall ignore it. Deferring to the end of 
the section the calculation of r0 (it i s  of order lo-"- 
10-l9 sec), we consider the further evolution of the elec- 
tr ic field and the space-time metric. 

The energy density of the produced particles increases 
a s  )71-2/3 until their relaxation, when they are  
two opposite fluxes of ultrarelativistic particles moving 
along the x axis, and a s  cc 1 r 1 -*I3 after the re- 
laxation of the particles, when they can be described by 
the equation of state p = c/3. Therefore, the produced 
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particles cannot change the asymptotic behavior (3.2), 
which leads to a true singularity. This could be done 
only by an electric field. The strong damping of E for  
E >E, has the consequence that E during the stage (3.2) 
does not exceed E, f o r  17 rO (Q decreasing). For  17 1 
<rO, the quantum effects do not succeed in significantly 
reducing Q during the hydrodynamic time I T  1. There- 
fore, for 1 7 ( <  r0 the change in Q can be ignored, and 
the electric field increases, a s  in (1.1): 

E z E .  ( ~ d . 1  T 1 ) "3-3r-2. (3.3) 

We now find what condition 7, must satisfy i f  the elec- 
tric field i s  not to influence the metric (3.2) down to 
times 17 1 - t t ,  when the true singularity occurs (cf. the 
discussion in Sec. 2). This occurs if 

whence 

Therefore, i f  the condition (3.5) is satisfied, then, ir- 
respective of the actual mechanism of relaxation of E 
to E,, the electric field cannot influence the vacuum 
asymptotic behavior (3.2). As a result, a Cauchy hori- 
zon does not ar ise  inside the charged black hole [as we 
have said above, i t  would correspond to an asymptotic 
behavior of the form r(7) = const, a(?) cc 17 1 a s  17 1 - 01, 
and there i s  instead a true singularity of the same form 
a s  in the case of an uncharged black hole. 

We now show that the inequality (3.5) i s  indeed satis- 
fied with a large margin. For  this, i t  i s  necessary to 
solve the problem of the production of electron-positron 
pairs in an external homogeneous variable electric field 
with allowance for the back reaction of the produced 
pairs on the field. Problems of this kind have not 
hitherto been studied systematically; only simpler pro- 
blems of pair production in a given external field with- 
out allowance for the back reaction have been solved. 

We consider f i rs t  the single-loop approximation, in 
which the evolution of the homogeneous electric field is 
described by one of the Maxwell equations, 

where $= e$ya$ is the Heisenberg current operator in 
the external electric field Ea(7) wi:thout allowance for 
radiative corrections, and 10) i s  the initial (vacuum) 
Heisenberg state vector (a magnetic field does not 
arise). In the metric (1.4), Eq. (3.6) takes the form 

The spinor zj satisfies the equation 

[i~*(trD,+ieA,) - r n ] ~ = O ,  (3.8) 

where yu a re  the covariant y matrices, Du is the gener- 
alized covariant derivative of a spinor, and 

Separating the variables in the standard manner a s  in 
flat space-time (see, for example, Ref. 17), and squar- 
ing, we obtain an equation for the time-dependent part 
of the spinor? 

A necessary condition for the applicability of the 
single-loop approximation is the possibility of describ- 
ing the electric field classically. The criterion for this 
is (see, for example, Ref. 18) 

where T i s  the characteristic time of variation of the 
field. 

If the inequality (2.4) is satisfied, the value of the an- 
gular momentum of the particles characteristic for the 
problem will be 

( p ,  i s  the physical momentum of the particle perpendi- 
cular to the direction of the electric field), and in what 
follows we shall therefore regard j a s  a continuous 
variable. In the region above line 3, for 1 ( > t,(E/e2)314 
=2  - sec and when the inequality (2.2) is satisfied, 
the characteristic time required by a particle to ac- 
quire in the field E a relativistic velocity parallel to the 
field, 

is much shorter than the characteristic time of varia- 
tion of the metric 17 1, and therefore the motion of the 
electrons and the positrons is basically determined by 
the electric field. This also enables us in (3.10) to take 
into account the dependence on the time 7 in r and a 
(but not in E and Q )  adiabatically. If 

where p,, is the physical momentum parallel to the elec- 
t r ic  field, then in (3.10) the WKB approximation is valid, 
and 

where a,, and Bb, a re  constants satisfying 1 a,, 1 + I?,, 1 
= 1. Note that in the case of an electric field in flat 
space- time (h = i- = 0) (3.14) i s  an exact solution of (3.10) 
for p, = m = 0. The quantity ( P ,  l 2  = n(k, j )  is the mean 
number of pairs in the considered mode. Because of 
the charge symmetry of the initial state and the pro- 
duction process, the population numbers in each mode 
satisfy 

n,- (k ,  i )  -n.*(k, i )  =n(k ,  i )  . (3.15) 

We assume that TI<< T (this will be verified later). 
Then the evolution of each mode will consist of long (-TI 
quasiclassical stages (3.14), during which the contribu- 
tion of the mode to the total current (J,, = 2en,,) is vir- 
tually constant because of the fact that in the ultrarela- 
tivistic regime the change in the velocity is small, and 
of short stages, when (3.13) is violated and, on the one 
hand, the previously produced particles will change the 
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direction of their motion along the x axis, and, on the 
other, new particles will be produced. 

We derive an equation that will describe the evolution 
of E and Q on time scales much longer than T, (but, 
naturally, much shorter than T and I T  1). In such an 
approach, the short stages will be  assumed to be in- 
stantaneous. In calculating the mean value of the cur- 
rent, we can in the f i rs t  approximation ignore the local 
polarization of the vacuum (i.e., the difference between 
the effective permittivity of the vacuum and unity), since 
i t  i s  k n o ~ n ' ~ * l ~  that this correction becomes of order 
unity only in exponentially large fields 

EIE.-exp{3nhleX), 

which we do not consider. But in (3.7) we must retain 
the contribution from pair production. Although the in- 
stantaneous contribution from production i s  less than the 
contribution from vacuum polarization [by ln(E/&,) 
times for E >> E,] ,  the former can, in contrast to the 
latter, accumulate with the course of time, and there- 
fore the integrated contribution from the production ef- 
fect over a long interval of time AT >> T~ is not small. 

The upshot is that (3.7) can be represented in the 
quasiclassical form 

the dot denotes differentiation with respect to 7. In 
(3.16), the contribution from the two spin states is taken 
into account; n i s  determined in (3.15). 

To close the system of equations, we must obtain an 
equation for n(k, j ,  7). In our approximation, the varia- 
tion of n (production o r  annihilation of particles) occurs 
almost instantaneously a t  the instant of time7' when 

The change i n n  can be  calculated in accordance with 
the formulas for particle production in a constant elec- 
tr ic field if the inequalities considered in Sec. 2 before 
(2.4) are  satisfied, i t  being necessary to replace the 
differentiation with respect to the time. These inequali- 
ties a r e  equivalent to the previously adopted condition 
T,<<T, I T  1. 

It i s  known that the mean number of pairs produced 
from the vacuum in a constant electric field in each 
mode is1' 

Hence, we have the equation 

The second term in the last  factor in (3.18) describes 
induced production o r  annihilation. 

It i s  convenient to represent (3.16) in a different form, 
which makes i t  possible to integrate over k. We multi- 

ply (3.16) by a and differentiate with respect to 7. Since 
the function n(k, j, T)  depends weakly on k in intervals 
Ak - eQT,a/rZ, i t  can be taken in front of the integrql 
over k. Using the condition T, << I T  1 to ignore all terms 
that contain h and i., and making a number of trans- 
formations, we obtain the equation 

The second term in (3.19) gives the change in  the cur- 
rent due to spontaneous production, and the terms in 
the integrand in the square brackets describe the chan- 
ge in the current due, respectively, to the turning of 
the already produced particles and to the induced pro- 
duction. 

Equations (3.18)-(3.19) form a complete system of 
equations that describe the evolution of the electric field 
in the single-loop approximation. Note that in their de- 
rivation we have, not made any assumptions concerning 
the values of the ratios T/ 1 T 1 and E/E,. 

Suppose T/ 1 T I << 1 and that a t  some time E = Q/rZ = E, 
and produced particles a r e  absent. Then in (3.19) there 
remain only the two f i rs t  terms, and this relation can 
be  readily integrated (with the dependence of r and a on 
7 ignored). The electric field vanishes over an interval 
of time T given by 

The result (3.20) differs only by the coefficient from 
the result obtained qualitatively by Zel'dovich in Ref. 
20; (3.21) agrees with the result of Parker and Tiomno.'' 

The electric field then changes sign and increases in 
modulus, and nonsinusoidal oscillations arise. The 
further evolution of the field was not considered in Ref. 
20, and in Ref. 21 no allowance was made for the inte- 
gral  term in (3.19), which leads to a change in T in the 
following cycles. During the first  cycles, the numeri- 
cal coefficient in T changes in a fairly complicated 
manner, but after a large number N of oscillations a 
smooth asymptotic behavior with slow variation with N 
is established. It can be shown that for E,>> E,,N >> 1, 
and NT<< I T  ( the period T and the amplitude E of the 
electric field and the current density J depend on N a s  
follows: 

TW (ln N )  -"I, Em (ln N)-"I,  I- (ln N)"#. (3.22) 

In the case of the production of Bose particles in an 
electric field for E >E,(m!, the time of significant re- 
duction of the electric field is -7'; therefore, the 0s-' 
cillations a r e  immediately dampedS8' The damping of 
oscillations with increasing N in the case of electrons 
i s  not due to the unlimited growth of the population 
numbers in each mode (as in the case of bosons) but to 
the fact that for a large number of modes the condition 
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n - $  begins to be satisfied; the main contribution to the 
integral in (3.19) i s  made by modes with 

Using the expressions (3.20)-(3.21) a s  estimates, we 
can verify that 7, << T (the conditions under which 7, 

<< 17 1 were elucidated earlier). Then the conditions of 
applicability of the approximation of a homogeneous 
field for calculating the pair production and the weaker 
condition (3.11) a re  satisfied. Thus, all the assump- 
tions made in the derivation of (3.18)-(3.19) a re  justi- 
fied. 

We now make a semiquantitative allowance for the ef- 
fects that arise in the higher perturbation orders  in 
(Y = e2/iie The main processes that lead to enhanced 
damping of the weakly damped oscillations of E and Q 
found above a re  the following: Coulomb collisions d 
the electrons and positrons and their annihilation into 
photons, and bremsstrahlung of the electrons and posi- 
trons in the external electric field. In addition, in the 
considered system plasma (two-stream) instabilities 
may arise. We consider these processes separately. 

The characteristic value of the total density n,+ =n,- 
= no in the oscillations satisfies no- E / ~ T ,  where T i s  
given by (3.20)-(3.21), E is the amplitude of the elec- 
tr ic field, and the energy of each particle i s  of order 
'if- eET. If the Coulomb logarithm i s  ignored, the time 
of free flight 7, of the particles until Coulomb collisions 
o r  two-photon annihilation is 

1 1 8' 
T,=-ss---- 

0,-..n or,n e'n ' 

Then (with allowance for the dispersion of the particles 
over the energies) 

( ) ( ) 2  for EBE. 

The frequency of the plasma oscillations under these 
conditions i s  

The main contribution to (3.25) i s  made by particles 
with $-m (although there a r e  few of them). The char- 
acteristic growth time of the two-stream instability is 
rp, - o;:, and 

TS, - (E/E.)IA for E >> Ec, 
T - E h  for E<t E.. 

To estimate the bremsstrahlung intensity, we must 
consider in more detail the motion of a particle. Its 
characteristic transverse momentum is p,- (~ER)'/', 
and the energy and longitudinal momentum change in 
accordance with the law 

where 7 i s  the time of motion of the particle since pro- 
duction o r  from the time of last turning (7 >> 7,). The 
angle of turning of the direction of motion of the particle 

from the time T to the end of the period T > 7 is 

On the other hand, radiation i s  emitted in an angle 8, 
- Y-'. F o r  E >> E,, 

and therefme to estimate the intensity of the radiation 
for E >E, we can use the formulas for  synchroton radia- 
tion (the emission in a given direction is produced by a 
small  section of the trajectory). The characteristic 
frequency w, of the maximum in the spectrum of the 
classical radiation under the given conditions i s  such 
that 

Therefore, we a r e  in the ultraquantum situation, when 
the main fraction of the emitted energy (of the order of 
the particle energy) i s  given to a single ph~ ton .~ '  Using 
the formula for the intensity of quantum synchroton 
radiation (see, for example, Ref. 18) 

I=J+"E: (e2/A)'=, (3.29) 

we find that for E >> E, the total energy emitted by one 
particle during the period T is 

A8-8ea/A. (3.30) 

It can be seen from this that for  E >> E, the amplitude of 
the oscillations of E decreases significantly during 
ii/e2 - 137 oscillations. After averaging over times 7 

>> T, the rate of decrease in the amplitude of the oscil- 
lations of the electric field E is given by the equation 

We here ignore the logarithmic damping of E (3.22) ob- 
tained in the single-loop approximation, since i t  i s  in- 
significant over an interval of 137 oscillations. Similar- 
ly, i t  can be found that for E<< E, the amplitude E de- 
creases  appreciably during 1 3 7 ~ , / E  oscillations. 

Comparing (3.241, (3.26), and (3.31), we see that of 
the three considered processes the most important a r e  
radiative losses for E/E, > lo4 and plasma instabilities 
otherwise. For  E - E,, the time 7, i s  approximately two 
orders  of magnitude longer than r,,. Integrating (3.311, 
we obtain the time of damping of the field from the 
initial value E, >> E, to E, due to radiative losses: 

(rO does not depend on E,). 

It i s  possible that plasma instability will decrease 7, 

by a further one o r  two orders  of magnitude. However, 
we shall not consider the plasma instability in detail, 
since the estimate (3.32) f.or 7, already shows that the 
inequality (3.5) i s  satisfied with a large margin. 

Thus, we conclude that the damping of the electric 
field due to quantum-electrodynamic effects in the re- 
gion bounded by the lines 2, 3, and 4 in Fig. 1 is suffi- 
cient to have the consequence that a true vacuum singu- 
larity of Schwarzschild type ar ises  instead of a non- 
singular Cauchy horizon. 
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$4. INFLUENCE OF PRODUCED PARTICLES ON 
THE EVOLUTION OF THE METRIC IN  THE CASE 
WHEN THERE IS NO STRONG ELECTRIC 
DISCHARGING 

- 

We now consider the last uninvestigated region of Q and 
M lying between lines 1 and 4 in Fig. 1. In this region 
E(Y-Y-)<< E,, and therefore pair production does not 
lead to an appreciable decrease of the electric field. 
However, there i s  formed a certain (in general, small) 
number of particles, which a re  accelerated by the 
electric field to ultrarelativistic energies, their mo- 
mentum being directed virtually along the x axis. We 
show that the presence of even a small number of such 
particles has the consequence that a Cauchy horizon 
cannot be formed. 

The evolution of the metric (1.4) with matter in the 
form of an electric field and ultrarelativistic particles 
is described by the system of equations 

Here, 8 i s  the mean energy of a particle, and n = d / a r 2  
i s  the density of the produced electrons, $ =  const. An 
influence of the terms containing$ i s  manifested only 
for r very close t o r - ,  and therefore in accordance with 
(2.5) 

where Q,  i s  the external charge of the black hole. 

In the absence of produced particles (d= O),  the me- 
tric (1.4) would have the asymptotic behavior a = a, ) TI, 
r - r- as  T - 0 (T < 0). We show that for $ + 0 this is im- 
possible; for if such an asymptotic behavior did hold, 

8ne.d sgn Qo 
Q=Qo + 8 lnltl,  

a. 

where E, i s  the energy density of the electron-positron 
pairs, whereas the left-hand sides of the first  two equa- 
tions of the system (4.1) increase slower than T-'. 

Therefore, these equations cannot be satisfied for arbi- 
trarily small T. 

A more careful investigation shows that during the 
stage (1,0,0) 

and the subsequent variation of fh can be ignored. The 
change in Q i s  also small if we a re  in the region some- 
what above line 3: 

Q/e>3 .  M"* (g), (4.5) 

which corresponds to the condition E,/E (r - r - )  > 90. The 
condition (4.5) simultaneously ensures the absence of 
oscillations of E. 

During the (1,0,0) stage, E,-T-'. When re becomes 
of the order of the energy density of the electric field, 
E,; E2/8?r, there commences the stage 

which, under the fulfillment of the condition (4.5), ex- 
tends effectively to the time when GE,- 1/1:, and the 
true singularity commences. Therefore, in this case 
too, a nonsingular Cauchy horizon cannot be formed. 

8 5. COMPARISON OF THE CLASSICAL 
GRAVITATIONAL AND QUANTUM-ELECTRODYNAMIC 
INSTABILITIES OF THE CAUCHY HORIZON IN  A 
CHARGED BLACK HOLE 

In the preceding sections, we have shown how pair 
production in the electric field under the event horizon 
of a black hole leads to the disappearance of the Cauchy 
horizon in a self-consistent solution. Here, we wish 
to note that instability of the Cauchy horizon already 
ar ises  a t  the classical level, a s  was shown in Ref. 9. 
One can pose the problem of how nonspherical electro- 
magnetic and gravitational perturbations change if a s  
initial conditions on the event horizon one introduces 
the natural laws of damping of the fields outside the 
event horizon found in Ref. 3 in the case of an unchar- 
ged black hole and in Refs. 4 and 5 in the case of a 
charged black hole when these laws a r e  continued analy- 
tically to the event horizon itself (this method was al- 
ready used to analyze perturbations inside an uncharged 
black hole in Ref. 6). These laws of damping corre- 
spond to the assumption that the sources of the fields 
a r e  on the collapsing star. We give here the answer 
for this problem (for more detail, see Ref. 22). 

Let @ be the characteristic function that describes 
a weak linear perturbation (for example, a model 
scalar perturbation) on the background of the Reissner- 
Nordstrom metric. Then, whereas on the outer hori- 
zon far  from the surface of the collapsing body, i.e., 
f o r u = i - r * - a  a n d ~ ~ = t + r * = c o n s t > > G M ,  where 

we have in accordance with Ref. 4 

IQ =const. u-(2'+z) (5.1) 

where 1 i s  the multipolarity of the perturbation, in the 
region near the intersection of the inner and outer hori- 
zons in the unperturbed solution ( t  >> GM, r - < r < r + ,  IY* I 
<< t )  

and near the inner horizon (71 - m, u = const>> GM) 

where A and B a re  certain constants satisfying the 
condition 

their actual values depending on the type of the pertur- 
bation. For  example, in the case of scalar perturba- 
tionsg 
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The constant factor in Eqs. (5.1), (5.2), and (5.3) i s  the 
same. 

On the inner horizon, d i s  finite, but invariants of the 
type g*O, iO,,, and also quantities such a s  the energy 
density of the perturbation measured by an observer in 
a freely falling frame of reference diverge. In parti- 
cular, 

However, in this case a self-consistent treatment of the 
problem i s  impossible, and one can speak strictly only 
of instability of the Cauchy horizon in the linear ap- 
proximation. 

Thus, there exist two kinds of instability, quantum 
and classical, which lead to the disappearance of the 
Cauchy horizon. Which of them i s  the stronger? It i s  
obvious that the quantum instability in the regime of 
strong discharging (see Sec. 3) i s  certainly stronger 
than the classical instability, since i t  a r ises  far from 
the Cauchy horizon. In the case of the regime of weak 
discharging (Sec. 4), both instabilities (the quantum and 
the classical) become important in a narrow region near 
the Cauchy horizon (for r - r-<< r-). The order of gsow- 
th of the instabilities during the stage when they can be 
regarded a s  perturbations is the same (to logarithmic 
accuracy); a s  can be seen from (4.4) and (5.6), the con- 
tribution to the right-hand side of the Einstein equations 
is proportional to ( r  - r-)-I. The numerical coefficient 
in (5.6) depends on the initial conditions and i s  therefore 
somewhat uncertain, though there a re  no grounds for  
believing that i t  decreases rapidly with decreasing Q 
for given M. Since the coefficient A in (4.2) contains 
exp(-E,/E(~-)), i t  can be seen that for sufficiently small 
E(r-)  (i.e., significantly above line 4 in Fig. 1) the 
classical instability i s  in the general case stronger than 
the quantum instability. 

86. CONCLUSIONS 

In the present paper we have shown that systematic 
study of quantum-electrodynamic processes below the 
event horizon of a charged black hole makes i t  possible 
to construct a self-consistent solution for this region of 
space-time. Using this solution, we have shown that 
these processes destroy the Cauchy horizon, which 
exists in the idealized classical Reissner-Nordstrijm 
solution, and lead to the occurrence of a true singu- 
larity. On the other hand, classical (nonquantum) per- 
turbations also lead to a similar situation (see Sec. 5). 
It i s  therefore to be expected that during the gravitation- 
a l  collapse of a real (with deviations from spherical 
symmetry) charged nonrotating s t a r  the structure of the 
space-time within the event horizon r+ will be similar to 
the space-time structure of an uncharged (Schwarzschild) 
black hole. 

A preliminary consideration also suggests that rotation 
of the collapsing s t a r  will not qualitatively change this 
conclusion. 

Our conclusions concerning the instability of Cauchy 
horizons within black holes and that the space-time 
structure inside a real black hole i s  similar to the 
structure of the Schwarzschild space-time below the 
event horizon force a re-examination of possible ways 
in which the end of gravitational collapse could be 
avoided. One such possibility considered earl ier  was 
that after .crossing the Cauchy horizon r- the contracting 
matter could begin to re-expand into a different part  of 
space-time, avoiding the true singularity. In this case, 
the space-time will have a complicated topology, and 
have so-called topological arms; see Refs. 23-25. In 
this connection, the possibility was considered of ob- 
taining information from other regions of space-time 
and from the regions within such topological arms,  this 
information arriving directly a t  the observer with the 
expanding matter o r  with particles that avoid passing 
through the true singularity. Such a possibility must 
now apparently be ruled out. Even if a replacement of 
contradiction by expansion within the black hole with 
the formation of complex topological structures is 
possible, i t  will still be necessary to pass through re- 
gions that from the classical (not quantum) point of view 
a r e  true singularities of space-time. For  the consistent 
study of processes in such singularities a quantum 
theory including gravitation i s  needed. 

"We use this opportunity to correct an inaccuracy in the ex- 
pression on p. 414 of Ref. 9 ,  in which we inaccurately spoke 
of instability of r- with respect to perturbations specified 
within r , ,  although instability of r, with respect to a pertur- 
bation specified on r+  can be proved. 

"The opposite case, which is  of interest in connection with 
the problem of the evaporation of primordial electrically 
charged black holes of small mass, was considered by 
page .15 

3 ~ h i s  condition makes it possible to calculate the probability 
of pair production with exponential accuracy. If the constant- 
field approximation is  also to give the correct pre-exponen- 
tial factor, the stronger inequality E ' / E  << h ? 2 ~ 2 / m 3 c 5  for 
E <<E, must be satisfied. In the actual situations considered 
below, this inequality is  satisfied. 

4'The change in M during the process of discharging i s  small 
( A M  <<M) if Q ~ < < ~ M ~ .  I f  Qo  - - C M ~ ,  then during the pro- 
cess  of discharging M o  may be reduced by more than a fac- 
tor of two. 

5' Note that on line 3 we have 7- >> Z, . 
6'In Eq. (3.10).  we have omitted a number of terms that a re  

small because of the conditions I m r /  h-1- I ma/~l- ml rl / t i  
> > l  and j>>l. 
We recall that the "instant of time" is in reality an entire 
interval A s - s l ,  A T < < ~ T ~ ,  T. 

8'Therefore, in reality the oscillations of the electric field 
cannot occur when E 2 7 x 104E,  because of copious produc- 
tion of n -meson pairs. 

$' Photons with frequency h/([ - liw) - 1 ,  which make the main 
contribution to the integrated intensity, a re  emitted under 
these conditions in the angle 0 - T 1 / ~  . 
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The evolution of cosmological models with scalar or spinor quantized fields is studied. In the class of 
spatially homogeneous isotropic models, all self-consistent models are found in which the metric is 
determined by vacuum quantum effects of massless fields. It is shown that the obtained results are also 
valid for massive fields. 

PACS numbers: 98.80. - k 

1. INTRODUCTION the singularity, it can be assumed that this  result i s  

One of the main problems of cosmology i s  the de- 
scription of the evolution of the Universe near the cos- 
mological singularity. A s  follows f rom the Penrose- 
Hawking theorems,' if the dominant energy conditions 
are satisfied for  the mat ter  that determines the metr ic  
it is impossible to avoid the occurrence of singularities 
in classical  general relativity. At the same time, it is 
known that allowance for  quantum effects leads to viola- 
tion of the dominant energy conditions.' At the present  
time, a completed theory of quantization of the gravita- 
tional field does not yet exist,  and it is therefore expe- 
dient t o  consider the part played by quantum effects in 
the framework of a semiclassical  scheme, in which the 
gravitational field is classical  but the fields of part icles 
are second quantized. Such a scheme corresponds to 
the single-loop approximation to a fully quantized 
theory. 

On dimensional grounds, one can conclude that the 
semiclassical  approach is valid fo r  a gravitational field 
characterized by a curvature that is small compared 
with the Planck curvature, p << G-'/'- cm-' (G is 
the gravitational constant; we use a system of units in 
which Zi =c  = 1). If i t  is found that certain quantization 
effects of the matter  fields are sufficient t o  eliminate 

also t rue  when quantization of the gravitational field is 
taken into account. 

In the present  paper, we solve the self-consistent 
problem of the evolution of isotropic cosmological mod- 
els with quantized sca l a r  o r  spinor fields. The condi- 
tion of self-consistency takes the form that the external 
gravitational field produces a vacuum energy density 
and p re s su re  of the quantized sca lar  o r  spinor fields 
that are required fo r  the creation of this gravitational 
field in accordance with the Einstein equation. As will  
be shown below, in the c lass  of homogeneous isotropic 
cosmological models there  exist models that are self- 
consistent in this sense and do not possess singulari- 
ties. This makes it possible to interpret  the occur- . 

rence of the Universe as a manifestation of an instabil- 
ity of the vacuum state of a quantized field. 

In Sec. 2 of the present  paper, we formulate the equa- 
tions of self-consistency of the cosmological models 
with sca lar  o r  spinor quantized fields. In Sec. 3, the 
self-consistency equations a r e  solved in the case of 
mass l e s s  fields, and we find all isotropic models de- 
termined by vacuum quantum effects. These models in- 
clude de Sitter models of Planck dimensions and models 
that coincide asymptotically with Milne's model. In 
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