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We construct a diagram technique for a spin glass in the vicinity of its transition without using the 
replica method. We obsetve a strong interaction of the large-scale longitudii gapless modes in the low- 
temperature phase. The lower critical dimensionality of the theory is d = 4.  When 4 < d  <6  the critical 
indices determine the magnetic susceptibility and the specific heat [A. B. Harris, T. C. Lubensky, and J. 
H. Chen, Phys. Rev. Lett. 36, 415 (1976)l. We show that there is no transverse spin stiffness in a 
Heisenberg spin glass. 

PACS numbers: 75.40.Fa 

1. INTRODUCTION elucidate these problems it  i s  necessary to study the 
behavior of the correlation functions in the low-tem- 

The problem of the existence and the properties of a perature phase, in a similar way as was done for or-  
phase transition in the spin glass state has in recent dered systems.' 
years been studied intensively both theoretically and ex- 
perimentally. Recent 'experiments1 and computer sim- 
ulations' show that the kink in the magnetic susceptibil- 
ity observed by Canella and Mydosh3 depends on the 
time of observation and does, therefore, not corre- 
spond, apparently, to a phase transition being present. 
Nonetheless, something like a phase transition is going 
on in the systems considered and a theoretical study of 
phase transitions in model spin glasses is  therefore of 
interest, a t  least a s  a first  approximation to an under- 
standing of the crux of the matter. 

We give a survey of the main theoretical papers on 
phase transitions in a spin glass. Edwards and Ander- 
son4 observed a phase transition in the framework of a 
self-consistent field theory in a system of spins with 
random alternating exchange interactions. The phase 
transition is connected with the occurrence of average 
coordinate-dependent spin values (S,) # 0 while the av- 
erage magnetic moment vanishes: (q)= 0 (here and 
henceforth pointed brackets indicate thermodynamics 
averages and a bar averaging over inhomogeneities). 
They proposed as an order parameter, characterizing 
the transition, the quantity 

- 
lim <Sc(0)Si( t ) )  = Q = <St)', 
1 - 0  

which characterizes the extent to which the spins a re  
frozen in. Edwards and Anderson used the so-called 
replica method which makes it possible formally to av- 
erage over random parameters of the system before 
taking the thermodynamic average. Using the same 
method, Harris, Lubensky, and Chen5 showed that the 
mean field theory for a spin glass is  valid only when the 
spatial dimensionality d> 6, and they evaluated critical 
indices in a 6 -€-expansion. Harris and F i ~ h , ~  and also 
Reed7 using a n  analysis of high-temperature ser ies  ex- 
pansions, showed that the phase transition in the Ed- 
wards-Anderson model with nearest-neighbor interac- 
tions vanishes when d <  4, i.e., the lower crjtical (mar- 
ginal) dimensionality of the theory i s  dc =4. Unfortu- 
nately, this method does not enable us to explain the 
physical reason for the disappearance of the phase 
transition; in particular, the magnitude of dc remains 
unknown for a real  spin glass with RKKY exchange. To 

A study of the low-temperature phase in the frame- 
work of the replica method has met with serious diffi- 
culties; it turned out that the equation of state obtained 
by Sherrington and   irk pat rick' which corresponds to 
the mean field approximation i s  ~ n s t a b l e ' ~ * ~ '  [one of the 
correlation functions in their solutiong has a negative 
gap m(T - T,)']; moreover, the instability occurs al- 
ready in f i rs t  order in ( T  - Tc I when fluctuations a r e  
taken into account.'' Bray and moo re"^" observed that 
the Hamiltonian of the replica method has a solution 
different from the one given in Ref. 9, and obtained a 
solution stable to order (T - T,)~*" and in f i rs t  order in 
the fluctuations.'' The most important singularity of 
this solution is the presence of a longitudinal gapless 
mode of fluctations which leads to a divergence of the 
f i rs t  correction to the order parameter when d~ 4." 

It is  apparently extremely difficult to obtain an exact 
proof of the existence of a gapless mode to all  orders 
in IT - Tc I and in the fluctuations in the framework of 
the replica method. Bray and Moore13 used the non-av- 
eraged self-consistent field equations of Thouless, 
Anderson, and Palmer (TAP)" to show that the pres- 
ence of local soft modes in an Ising spin glass i s  
uniquely connected with the existence of the gapless 
correlation function found in Ref. 11. Using a numeri- 
cal solution of the TAP equations they showed in the 
same paper the existence of the soft modes. The exis- 
tence of gapless longitudinal fluctuations in a spin glass 
is  thus firmly established (at least in the self-consis- 
tent field approximation). 

In the present paper we consider the Anderson-Ed- 
wards model with a Gaussian random distribution of the 
exchange integrals. We construct (without using the 
replica method) a diagram technique which describes 
an Ising spin glass in the vicinity of a phase transi- 
tion-section 2 of the paper i s  devoted to an exposition 
of this technique. Section 2 also contains an evaluation 
of the critical indices in the paramagnetic phase. The 
results a r e  the same a s  the ones obtained in Ref. 5 by 
the replica method. 

In section 3 we consider in the self-consistent field 
method framework the low-temperature phase. We 
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show that the standard method of introducing conden- 
sate averages leads to the same difficulties a s  in Refs. 
9-11; we propose a method which gives a correct ex- 
pansion of the Green function in terms of the order pa- 
rameter Q. Together with the condition G"(q= 0) = 0 
for there being no gap this expansion determines the 
equation of state which is the same a s  the one obtained 
by Bray and Moore.13 

In section 4 we study the effect of fluctuations on the 
behavior of the low-temperature phase. The advantage 
of the proposed diagram technique manifests itself in 
that case in the fact that taking fluctuations into account 
does not lead in the leading order in I T - T, I to the ap- 
pearance of a negative gap, even if we use the standard 
method for introducing the condensate. The lower 
critical dimensionality of the theory turns out to equal 
dc= 4, a s  in Bray and Moore's theory.12 

We observe in 6-dimensional space a strong depen- 
dence of the long-wavelength (q2 << Q) fluctuations lead- 
ing to an increase of the effective charge a t  large dis- 
tances ("asymptotic freedom"). Because of that we 
cannot determine exactly the form of the correlation 
functions a t  large distances. It turns out, however, 
that the temperature dependence of the order param- 
eter Q(7) and the specific heat a r e  determined by the 
momenta q2- Q and can thus be obtained from the criti- 
cal indices found in the parametric phase. 

We show in section 5 that there i s  no transverse spin 
stiffness in a Heisenberg spin glass (in the self-consis- 
tent field approximation); a detailed analysis of the 
Heisenberg glass will be given in subsequent papers. 
Section 6 contains a discussion of the results; we show 
that the limitation to the Edwards-Anderson model i s  
unimportant and all  qualitative conclusions a r e  retained 
for a real spin glass with RKKY interaction. 

2. SPIN GLASS I N  THE PARAMAGNETIC REGION 
In this section we describe a diagram technique for a 

spin glass a t  T >  T, ( T ,  is the transition temperature) 
and we evaluate scaling dimensionalities using a 6 - E 

expansion. 

The partition function of the Anderson-Edwards model 
has the form 

where i and j a r e  si tes of the regular lattice on which 
Ising spins a r e  positioned, Ji, # 0 only for nearest 
neighbors. The quantities J,, a re  random quantities 
and their distribution is Gaussian: 

P{<,i}  =D (2nJZ)-'" exp ( -J ,2/2Jz) .  
ji 

To describe the properties of our model we use an 
Ising model diagram technique.= The zero Green func- 
tion i s  in that technique a chain of exchange integrals: 

This chain i s  depicted in Fig. 1. When this i s  neces- 
sary we shall put points on the lines corresponding to 
sites k, which a r e  connected by the exchange integrals. 

y 9 =  = a , , + - + *  a + *  +... 
L j i  k, j i  A, ,+2 J 

FIG. 1. 

In the proposed diagram technique there is  an infinite 
se t  of vertices and the n-th order vertex, into which n 
lines g converge i s  

We shall evaluate the functions 

(where the symbol ((. . . )) indicates irreducible correla- 
tors). The singularity corresponding to a phase transi- 
tion manifests itself just in these. In the paramagnetic 
region (Si)= 0 and by virtue of the definition of the i r re-  
ducible correlators 

Ksh=-2G,,. (3) 

We must write down an expansion of the correlation 
functions for a given realization {J,,I and afterwards 
average them over the distribution (2). For a Gaussian 
distribution the average of any set  of exchange inte- 
grals splits into a product of pair averages which will 
be indicated by a dash line in the diagrams. 

The bare correlator Go i s  shown in Fig. 2-this i s  a 
double chain with successive averaging. Changing to 
the momentum representation we get 

In the approximation z >> 1 the transition temperature i s  
thus Tc= 5 ~ ' ' ~  (2 i s  the number of nearest neighbors). 
The exact correlator ~ ( k )  can be expressed in terms of 
the self-energy part ~ ( k )  which is not cut along a pair 
of lines J:: 

G ( k )  =Z(k) (1 -P(k) '3 (k ) ITZ) - ' .  
(5) 

The diagrammatic series for C when T >  T, is  shown in 
Fig. 3. The terms within the square brackets a re  of 
order of smallness l /2  and can be neglected in the self- 
consistent field approximation. 

We note that we drop everywhere "finger" type dia- 
grams-see Fig. 4, which cancel exactly when we sum. 
Diagrams a, b of Fig. 4 may serve a s  an illustration of 
this statement, and an exact proof of i t  i s  the following 
one: all  fingers a r e  renormalized points on the line 
((S,S,)), i.e., they a r e  an expansion of the correlator 
((S2,))= 1 - (Sn)2. Above the transition point (Sn)= 0 and 
((Sz)) = 1, i. e., the point i s  not renormalized. This 
means also that all  fingers cancel. 

We note that in the diagram technique for a ferromag- 
netic in the renormalization of the transition point there 
a r e  only graphs of the kind of Fig. 4b present s o  that 
the renormalized point is  not ((Sz)). 
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FIG. 3. 

It i s  clear tram Fig. 3 that in our diagram technique 
there a re  triple vertices-this means that the theory 
will be logarithmic in 6-dimensional space and we ap- 
ply the self-consistent field method for d> 6. An a r -  
bitrary graph for C i s  obtained as follows: we select 
a line g,, from one correlator ((SiS,)) and pair it with 
the same line from another core. One can easily for- 
malize this process by taking the variation 

The quantity 6((SiS,)) i s  graphically represented in Fig. 
5. An open circle denotes an average spin and a hashed 
polygon irreducible correlators. 

In the high-temperature phase (SJ= 0, the diagram 
of Fig. 5d goes into Go and, hence, there remain only 
the graphs of Fig. 5a, e which give the diagrams of Fig. 
6. Since for T>T, 

K=<SIISk')--2G 

(the hashed block in Fig. 6) C reduces to the diagram 
of Fig. 6a with a minus sign. 

For T> T, the diagram technique contains one vertex 

(the triply connected vertex occurs in the diagram of 
Fig. 6a). The doubly connected vertex 

r=G-2K-1USiS,ZS,).6;SiS,) 

(see the diagram of Fig. 6b) i s  expressed a t  T>  T, in 
terms of W. r= W; we have used here the identity 

(for T> T,). The diagrams giving the parquet correc- 
tions to the vertex W a r e  shown in Fig. 7. 

In the 6-dimensional space the equations a t  the vertex 
have the following form: 

We have used here the notation 

which is a standard one for the theory of phase transi- 
tions. Performing the 6 - €-expansion we get the criti- 
cal indices which a r e  the same a s  those found in Ref. 5. 

FIG. 5. 

3. LOW-TEMPERATURE PHASE IN THE SELF- 
CONSISTENT FIELD APPROXIMATION 

In the low-temperature phase the magnetic moments 
acquire average values (S,) which depend on the lattice 
si te k. Our main problem consists in evaluating the - 
order parameter Q= (Sk)2 in terms of which we can ex- 
press measurable physical quantities (magnetic sus- 
ceptibility, neutron elastic scattering cross section, 
and so on). In order to use the diagram technique to 
evaluate the order parameter we must determine the 
external field associated with it. It seems natural to 
do this as follows: we apply to the system a weak mag- 
netic field h, depending on the site k with a Gaussian 
correlation law: 

such a field leads to the appearance of randomly di- 
rected magnetic moments with a vanishing average mo-. - 
ment while we have for i t s  mean square Q= (S,)2 

The diagrammatic ser ies  for Q in the self-consistent 
field approximation i s  shown in Fig. 8 (the field h i s  
indicated by a cross, the average spin on a si te by an 
open circle, and the order parameter Q by two circles 
averaged together). 

A similar diagram expression exists for the self-en- 
ergy C (see Fig. 9). Putting H =  e, the field associated 
with the order parameter, we get for Q and C equations 
which a r e  the same as those found in Refs. 9-11. 
Their graphical descriptions a r e  given, respectively, 
in Figs. 10 and 11. The corresponding analytical ex- 
pressions have the form 

and lead to the meaningless result G-'(q = 0) < 0. (We 
remind ourselves that G-'= C - T;/T'.) The instability 
occurs in the second order in 7: G-'(q= O)x -++. As 
was to be expected in the main order of magnitude 
~ - ' ( q  = 0) = 0. 

The physical reason for this consists, apparently, in 
the fact that the mean square H of the magnetic field i s  
in actual fact not a true variable associated with the o r -  
der parameter in the low-temperature phase. To check 
this we imagine a small fluctuation of the spins around 

- - .- 
a b C 

FIG. 4. 
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FIG. 7. 

their average values: 6S,I< (S,); it i s  clear that the 
change in the free energy for such a fluctuation depends 
on the correlation between (S,) and 6S, while our ran- 
dom field h,  is  not a t  all  correlated with the quantities 
(S,). In other words, the following happens: the free 
energy and the parameter Q a r e  complicated functionals 
of the distribution of the average moments (S,) so that 
the change in the free energy depends not only on the 
magnitude of the change 6Q but also on the direction in 
space of the moment configurations (S ,) through which 
this change was reached. When we apply a random 
field h ,  to the system which i s  uncorrelated with the 
averages (S,) we impose on the system a not completely 
correct direction of the change in the spins in configu- 
ration space; the deviation of this direction from the 
correct one is small when the order parameter Q is  
much less than the equilibrium value Q(T) for a given 
temperature, but becomes appreciable when Q= Q(T). 
It i s  thus completely natural that the formalism for 
introducing the condensate discussed here leads to an 
equation of state which is valid only a s  fa r  a s  the main 
terms in the expansion in the order parameter a r e  con- 
cerned. We note also that in the replica method g= H 
is the exact field associated with the field variable Q,,. 
In principle it must thus be possible to give a correct 
evaluation with such a field which was demonstrated to 
lowest orders by Bray and Moore.11*12 

In actual fact one can assume that, as was mentioned 
in the Introduction, the absence of a gap in the correla- 
tion function G i s  proven. It seems to us that one 
should take just the condition G " ( ~ =  0) = 0 a s  the basic 
one for the description of a spin glass. On the other 
hand, Eqs. (8) and (9) must be considered to be expan- 
sions of Q and 2 in ser ies  in T:g/T2, where g in actual 
fact is  not the same a s  Q because of the inexact choice 
of the associated field. To find the correct dependence 
C(Q) we must thus eliminate the parameter 4 from 
Eqs. (8) and (9) after which we get 

Z=i-2Qf3QZ-8Q3+. . . . (10) 

The terms in (10) which a r e  written down a r e  the same 
a s  those obtained by Bray and ~ o o r e ' ~  from other con- 
siderations. Together with the condition G-'(q = 0) = 0 
Eq. (10) determines the equation of state Q(T): 

Q='lzl TI +3/~~z+'/la 121 3+ . . . (11) 

[in Ref. 13 the same equation i s  written in terms of the 
variable t = T / ~ , - l ,  T=t(2+t) ] .  

At low temperatures we get 

FIG. 8.  

FIG. 9. 

'- J h  ( i )  dx 4 T  
X= Jch-'(--x erp -- -- ( 2 ~ ? ) - ' ~  f . . . , 

T 2 (2n)"' 3 T .  
- -7 

s o  that the condition ~ " ( q  = 0) = 0 gives 1 - Q = 3 ~ ' / 2 ~ :  
which is practically the same as the results of Refs. 
13 and 14. 

In concluding this section we show that there exists in 
the low-temperature phase still one gapless correlation 
function which is connected with the function G and de- 
fined a s  follows: 

This correlator corresponds to small spin fluctuations 
matched to their average values 

6Si=(SJ6qi7 

where 6pi is  a smooth function of the coordinates. To 
evaluate the function D it i s  convenient to use the iden- 
tity 

- ~ D , ~ = < S O ( ( S ~ S ~ ~ ) ,  

which i s  graphically represented in Fig. 12. It i s  clear 
from the figure that 

(the vertex l? is  defined in section 2). 

Using (13) and the correlator identity 

we get 

For small momenta (qZ << Q ) D ( ~ )  - +G(q); the correlator 
K has a finite gap: -K"(q= 0 )=  ~ r ( 0 ) .  We note that the 
functions G and -$K correspond to the functions G, and 
G ,  of Refs. 11 to 13. 

The correlation function K has tke meaning of a sus- 
ceptibility in relation to the field h i=  H: 

4. FLUCTUATIONS I N  THE LOW-TEMPERATURE 
PHASE 

In this section we consider fluctuations in the low- 
temperature phase of a spin glass. We shall then have 
in mind the immediate vicinity of the phase transition 

FIG. 10. 
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FIG. 11. a b 

FIG. 13. 
( 17 1 << 1) and therefore we shall perform the calcula- 
tions in the main order in Q and 7. In that approxima- 
tion Q= a and Eqs. (8) and (9) a r e  

s o  that the equation of state can be written in the form 

and leads to the correct result. 

We shall now show that the equation of state retains 
i ts  form (17) also when fluctuations a r e  taken into ac- 
count. We show in Fig. 13 the characteristic diagrams 
which represent the corrections to the equation of state 
(16). One sees easily that each of these diagrams dif- 
f e r s  from the corresponding diagram for C only by a 
factor (ZJ~ /T~)Q.  The equation of state thus has the 
form Q = Q(ZJ~/T')C which i s  equivalent to (17). In our 
formalism the correlation function G (and, hence, also 
D) is thus automatically gapless. It is  clear from Fig. 
13a that the f i rs t  correction to the equation of state 
contains a diagram which diverges logarithmically 
when d= 4 (all such diagrams will be found below) s o  
that there is  no phase transition for d ,c d, = 4. 

It is convenient to use the equation ~- ' (q  = 0) = 0 for 
the derivation of the equation of state Q(T). TO do this 
we take i ts  total differential along the trajectory Q 
= Q(7): 

There a re  Ward identities for the partial derivatives of 
G" 

We get thus 

dQld I r 1 =F (0) 12r (01, 

where Y(O), r (0)  a re  renormalized vertices for zero 
momentum evaluated for Q = Q(T), i.e., with the gapless 
functions G and D. 

The renormalizations of the vertices a re ,  as usual, 
in the region of momenta 17 / << q2 << 1 the same a s  those 
found in the high-temperature phase; however, in the 
small momentum region q2 << 17 1 there occur very un- 
usual situations. In contrast to the usual Goldstone 
modes in degenerate systems the vertices of the inter- 
action of gapless modes in a spin glass do not contain 
momenta s o  that already in a 6-dimensional space 
there i s  a strong interaction of long-wavelength fluc- 

tuations. The parquet diagrams for small momenta for 
Z a r e  shown in Fig. 14. The diagrams a r e  constructed 
from the elements shown in Fig. 5. The graph of Fig. 
5e gives the diagram of Fig. 14a; the diagrams of Fig. 
14b, c, d a r e  obtained from the elements of Fig. 5b, c, 
and the diagram of Fig. 14e from the element of 5d. 
The vertices W enter into the diagram of Fig. 14a. A 
new vertex X, which we now define, participates in the 
other graphs. 

We consider the identity for the correlator 

Its diagrammatic expression is shown in Fig. 15. It is 
clear from the figure that the second term of the iden- 
tity contains the vertex X which we need; together with 
the earlier determined vertices W and I? we get (20) in 

' 

the form 

KGZr=-2G3W-2G3X. (21) 

In the region << 17 I we have KG" << 1 s o  that we get 
from (21) X =  -W. After this we use (18) to get the par- 
quet equations (d= 6): 

The equation for the vertex W has the form 

dW/dE=i4WT3. . 
(25) 

The corresponding graphs a re  shown in Fig. 16. It is 
clear from (22) to (25) that the effective charge g 
= W2Z3 increases when we go over to a large scale (so- 
called "asymptotic freedom"): 

go g=- 
1 

, go= W (z) Z3 (z) - ln-' - . 
1-24goE Irl 

We can therefore not determine the behavior of the cor- 
relation functions for the smallest momenta 

However, this does not prevent us from determining 
the temperature-dependence of the order parameter 
Q(T) and the specific heat C(T) a s  we shall show that 
they a r e  determined by momenta of dimensions q2- 17 1. 

The fact i s  that Eqs. (22), (23) for the vertices r and 

k k 

FIG. 12. FIG. 14. 

1226 Sov. Phys. JETP 50(6), Dec. 1979 M. V. ~ebel'rnan and A. M. Tsvelik 1226 



FIG. 15. 

y a r e  the same, i.e., 

dlu?/dln  r = ~ ,  3-(g)/r(e) = ? ( ~ = o ) / r ( ~ = o ) .  (26) 

Although Eqs. (22) to (25) a r e  derived in the main par- 
quet approximation, Eq. (26) is  more general and re- 
mains the same in a l l  orders. The fact i s  that in the 
region q2 << I T  1 differentiating C with respect to Q and 
T leads to the same parquet diagrams, since only the 
denominators of the Green functions G a r e  differen- 
tiated in which Q and 7 occur additively. In other 
words, although the partial derivatives aG-'/aT, aG-'/ 
BQ are  renormalized for q2 s 1 T 1, the total derivative 
along the trajectory ( d ~ " / d ~ ) ~ , ~ ~ , ,  does not contain 
integrals which a r e  singular for small momenta. Thus, 

Q = ~ / ~ ( T ( ? ( T ) / ~ ( Z ) - [ T ( ' ,  (27) 

where f(7) and r ( ~ )  a re  the renormalized vertices a t  
the momentum q2- 17 1, determined by scaling in the 
region 17 1 << q2 << 1; the critical index i s  8 = 1 + 4 c [see 
Ref. 5 and our Eq. (6)]. 

It is convenient for the determination of the specific 
heat to use the expression for the internal energy E: 

+ 2 ( S , )  (S,)  ccsisj,, +(ts,)Z ts,>Z- QZ)+ Q l .  

This equation i s  obtained by evaluating the variation 

The last term in (28) gives the self-consistent field re -  
sult, the second, third, and fourth correspond to fluc- 
tuation corrections. 

The singular part of the derivative of the specific heat 
d ~ / d ~ =  d Z ~ / d r 2  contains parquet diagrams obtained by 
differentiating the Green functions in (28). As was ex- 
plained above, the total temperature derivative does 
not contain diagrams which a r e  singular a t  small mo- 
menta so  that the singularity of d c / d ~  is also deter- 
mined by scaling: 

(dC/d~),,,,-r-", a'=-2~.  (29) 

It was noted by Pytte and ~udnick 'qha t  d c / d ~  contains 
a constant (non-singular) part s o  that the very weak 
singularity of (29) i s  practically unobservable. 

5. ABSENCE OF TRANSVERSE ST1 FFNESS I N  A 
HEISENBERG SPIN GLASS 

The diagram technique for a spin glass with multi- 
component spins i s  constructed analogously to the one 
discussed above for the Ising model. We consider 
briefly the properties of the correlation function D of 
small fluctuations in the ordered phase: 

The diagram equation for D;/ has the form shown in 
Fig. 17. We restrict  ourselves here to the mean field 
approximation for the correlation functions. In that ap- 
proximation 

s o  that the analytical expression of Fig. 17 is 

We note that G ( ~ ) -  l/q2, a s  in the Ising model. 

The fourth rank tensor DF; has three linear invari- 
ants: D;:, Dz;, ~ 2 .  The correlator corresponding to 
the transverse fluctuations is obtained by antisymme- 
trizing D% with respect to the indices pertaining to a 
single point: 

The irreducible correlator K;; i s  symmetric in the in- 
dices pertaining to a single point s o  that in contrast to 
(32) the second term in (31) cancels out and we find 

where m i s  the number of spin components and 
$m(m - 1) the number of transverse modes. We have 
thus proved the absence of transverse spin stiffness in 
a spin glass. Taking the fluctuations completely into 
account can apparently not change this result. 

6. DISCUSSION OF THE RESULTS 

We have constructed a diagram technique for a spin 
glass in the vicinity of the transition in terms of the 
physical correlation functions without using the replica 
method. Together with the standard method of intro- 
ducing the order parameter it allows us  to take consis- 
tently into account fluctuations in the low-temperature 
phase in the main order in ( T - To I .  

We have detected a strong interaction of long-wave- 
length fluctuations leading to an increase in the effec- 
tive charge in the large size region. The graphs which 
lead to the increase of the charge are ,  a s  follows from 
Fig. 16, due to the inhomogeneity of the low-tempera- 
ture phase: 

The correlation function G remains gapless by virtue 

FIG. 16. 
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of the equation of state. The instability observed when 
one uses the replica r n e t h ~ d ' ~ * ' ~  originates, apparently, 
from the fact that the quantity Q is forced to play the 
role of a fluctuating variable which contradicts its 
physical meaning. The procedure of annihilating the 
"tadpoles" applied by Bray and Moore1' leads to a re-  
sult which i s  obtained automatically in our case. How - 
ever, another kind of instability which ar ises  in terms 
of higher order in I T  - T, 1'0*11 exists also in our for- 
malism. As explained above (section 3) it i s  connected 
with the inexact definition of the field associated with 
the order parameter Q. We have suggested a method 
of obtaining a correct expansion of the self-energy C in 
powers of Q. Together with the condition G"(q =0) = O  
for the absence of a gap this enables us to determine 
the function Q ( 7 )  to any order in I T - T, I . 

It seems to us that the existence of a longitudinal 
gapless mode i s  a basic and most characteristic prop- 
erty of a spin glass. It would be extremely interesting 
to explain whether this mode be connected with some 
continuous symmetry group, as is usually the case. 
As mentioned in the Introduction, Bray and Moore13 
managed to show the connection between the soft local 
modes and the condition ~ - ' ( q =  0)= 0. The existence of 
soft modes i s  connected with the "frustration" effect, 
i.e., with the fact that the ground state of the system 
i s  not well defined.17 It seems therefore to us that 
longitudinal gapless fluctuations must exist in all  sys- 
tems with "frustration." We note that the conclusion 
reached in Ref. 13 can be repeated verbatim in the case 
where a uniform magnetic field i s  applied to  the sys- 
tem. It is rather obvious that in a weak uniform field 
the local soft modes a r e  conserved and hence that the 
function G remains gapless also in that case. The 
magnetic field is  an external influence which lifts the 
degeneracy, if i t  is directed to match the average 
spins: 

hfi=(St>l,,  (34) 

where &q i s  a smooth function of the coordinates. Such 
a field displaces the density of eigenvalues p ( ~ )  found 
in Ref. 13: 

i.e., i t  destroys the soft modes. In our formalism 

Integrating (35) we get 

The behavior (36) of the free energy F was obtained by 
other means in Ref. 14. 

We considered in this paper the Edwards-Anderson 
model with nearest-neighbor interactions. In a realis- 
tic spin glass the interaction has the form J ( r )  
mr" c o s 2 P ~  and the exchange integral distribution is, 
of course, not Gaussian. However, the fact that the 
distribution i s  not Gaussian leads only to a renormal- 
ization of the bare vertices which is well known to be 

unimportant for the properties of the phase transition. 
The existence of a small average value of the exchange 
integrals (which does not lead to the occurrence of an 
average magnetic moment) also does not change any - 
thing in our results. The important properties-a 
small average value of the exchange and uncorrelated 
exchange integrals for  different spin pairs-are present 
both in a real spin glass and in the model considered. 
The rather slow decrease of the RKKY interaction i s  
also unimportant a s  the correlation functions depend on 
the main term in the expansion of the quantity y(0)  
- 7 ( q )  in terms of the momentum q which i s  the same 
a s  for the short range interaction: 

The main qualitative conclusions-the existence of a 
longitudinal gapless mode, the absence of transverse 
stiffness in a Heisenberg spin glass, and the absence 
of a phase transition in a three-dimensional system- 
a r e  retained therefore for real  spin glasses with an 
RKKY interaction. The "kink" in the magnetic suscep- 
tibility which is observed in spin glasses to depend on 
the time of observation is, apparently, connected with 
the very slow relaxation of metastable states. Of most 
interest would be to find an explanation of the logarith- 
mic dependence' of the "transition" temperature on the 
time of observation. 

In conclusion we express our gratitude for many dis- 
cussions to S. L. Ginzburg, L E. ~z~a losh insk i ' f ,  V. L. 
pokrovski:, yE. F. Shender, and especially to  D. E. 
~hmel 'nitskii ,  in discussions with whom the idea for the 
present paper arose. 
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