
i.e., we shall  consider Eq. (28), dropping the unirn- 
portant factor a(jl jl). The total expression for  this 
average is 

> 
Here ( b ( q ~ , < ~ t )  - cpZ) and (6(q - cp<(jljl, cpl))) are, re- 
spectively, the probability distribution function and the 
transition probability referring to  the interval (O,2n). 
We have 

2 -  - 
A,,, = yj dcp j dv' (6(9?-9) [f4(cp)8(cp-cpC(ili',cp')) 

0 0 

+fl(cp+n)6(cp+n-cpcO'li',cp')) Ifr(cp')6(cp'-~~<))u 

As was explained above 

where wP(qo) is the probability distribution (29) refer- 
ring to the interval (0, n). If the functions fl and f, are 
both even o r  odd with respect to  the substitution 
rp - cp i n we get again Eq. (31). 

When there are several  energies we can perform the 
indicated transformations independently for  each varia- 
ble qLi.  

"Hence it follows that in the averaged single-particle Green 
functions there is m information about localization or delo- 
calization. 

2 '~r i t ing  i t  down in terms of the spectral density means that 
among all integrations the integration over E must be per- 
formed last. In accordance with 037 of Ref. 8 we must then 
drop the term with e2jjA/m. 

')see the Appendix about the choice of interval. 

IR. E. Borland, Proc. Roy. Soc. (London) A274, 529 (1963). 
2 ~ .  F. Mott and W. D. Twose, Adv. Phys. 10, 107 (1961). 
'v. L. ~erezinskii, Zh. Eksp. Teor. Fiz. 65, 1251 (1973) [Sov. 

Phys. JETP 38, 620 (1974)) , 
4 ~ .  A. Gogolin, V. I. Mel'nikov, and 6. I. Rashba, Zh. Eksp. 

Teor. Fiz. 69, 328 (1975) [Sov. Phys. JETP42, 168 (1975)l. 
5 ~ .  A. Abrikosov and I. A. Ryzhkin, Adv. Phys. 27, 147 (1978). 
6 ~ .  Schmidt, Phys. Rev. 105, 425 (1957). 
L. P. Gor 'kov and 0. N. Dorokhov. Fiz. Nizk. Temp. 4, 332 
(1978) [Sov. J. Low Temp. Phys. 4, 160 (1978)); Solid State 
Comm. 20, 789 (1976). 

'A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzyeloshinskii, 
Metody kvantovor teorii polya v statisticheskoi fizike (Quan- 
kun Field Theoretical Methods in Statistical Physics) Fiz- 
matgiz, 1962 [English translation published by Pergamon 
Press, Oxford]. 

Translated by D. ter Haar 

Kinetic phenomena in semiquantum liquids 
A. F. Andreev and Yu. A. Kosevich 

Institute of Physics Problems, USSR Academy of Sciences 
(Submitted 14 July 1979) 
Zh. Eksp. Teor. Fiz. 77, 2518-2523 (December 1979) 

The temperature dependence of the viscosity and of the thermal conductivity of liquids is obtained in the 
semiquantum region, i.e., below the Debye temperature but above the quantum degeneracy temperature. 
The viscosity is inversely proportional and the thermal conductivity is proportional to the temperature. 

PACS numbers: 67.20. + k, 66.60. + a, 51.10. + y 

From the point of view of the symmetry of particle 
arrangement, liquids do not differ from gases and are 
on the average homogeneous and isotropic systems that 
have no long-range order. In contrast to gases, how- 
ever,  they have a clearly pronounced short-wave 
order, a substantial manifestation of which is the pres- 
ence of the vibrational particle motion characteristic 
of solids. Melting of a solid i s  accompanied by a rela- 
tively small  change of the density and therefore affects 
relatively little the properties of short range order and 
of the vibrational motion. In liquids, however, there 
is a translational particle motion much more pro- 
nounced than in solids. This motion, however, which 
in fact is what destroys the long-range order, has 
nothing in common with the f ree  translational motion 
of particles in gases. It is the result of individual ac ts  
of jumping from one equilibrium position, about the 

particle had executed oscillatory motion, to  a neigh- 
boring vacant equilibrium position. It is of course 
more  accurate to speak of ac ts  of the simultaneous 
rearrangement of the configuration of the equilibrium 
positions of a group of particles. Since any such re -  
arrangement entails the surmounting of a potential 
barr ier ,  the characteristic frequency 1/r (T is the 
lifetime in the given equilibrium position) of the trans- 
lational motion decreases very rapidly (exponentially) 
when the interaction increases. In a strong-inter- 
action system, such as a liquid, this frequency is much 
lower than the characteristic frequency 51 of the vibra- 
tional motion of the particle about the equilibrium po- 
sitions. 

The described picture is the basis of the theory de- 
veloped by Frenkell for kinetic phenomena in ordinary 
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classical liquids. The characteristic time T between 
the jumps, and with it, e.g., also the viscosity of the 
liquid, a re  governed in the classical case by thermal- 
activation over-the-barrier processes and therefore 
decrease exponentially with increasing temperature. 
In gases, a s  is well known, the viscosity increases, 
on the contrary, with increasing temperature. 

The inequality 1  is  particularly important in the 
low-temperature quantum case, in which the time T is 
governed by the quantum tunneling of the particles and 
is independent of temperature. The presence in the 
liquid of two strongly differing characteristic frequen- 
cies of the motion leads to the appearance of two 
temperatures of quantum origin: 8 -fi;n and T ,  -E/T,  
with 8 >> T,. The f i rs t  is the Debye temperature, which 
can be in fact easily determined for a given liquid by 
means of the usual equation for solids, by using the ex- 
perimental data on the density and the speed of sound. 
The second characteristic temperature determines the 
quantum energy uncertainty connected with the de- 
localization of the particles of the liquid. It is a t  the 
same time the temperature of the quantum degeneracy 
(Fermi or Bose of the liquid. In fact, the quantity 
E/T plays the role of the width of the energy band con- 
nected with the tunneling translational motion of the 
particle. The corresponding effective mass  i s  m*  
-Er/a2,  where a is  the distance between the atoms. 
The Fermi or  Bose degeneracy temperature of a parti- 
cle gas with density l / a s  and mass m* is  of the same 
order of magnitude a s  T,. 

There exist thus two different characteristic tem- 
perature regions (T << T ,  and T ,  << T << 0) in which quan- 
tum effects play a substantial role, and accordingly 
there a re  two types of quantum  liquid^.^'^ The f i rs t  
a r e  ordinary strongly degenerate quantum liquids. The 
corresponding inequality T<< Td is in fact realized, 
a s  is well known, only for helium isotopes and their 
solutions. The number of liquids of the second type is 
larger. Besides the helium isotopes we have here also 
the hydrogen isotopes and their solutions. We shall 
call them (at I. M. Lifshitz's suggestion) semiquantum 
liquids. As shown by one of us,= semiquantum liquids 
a r e  characterized by a universal temperature depen- 
dence of the thermodynamic quantities. The main con- 
tribution to  their thermodynamics is made by a mecha- 
nism similar to  that proposed by Anderson, Halperin, 
and Varma4 and by Phillipss to  explain the low-tem- 
perature properties of glasses. We emphasize also 
that the inequality T,<<@ plays an important role also 
in the fully quantum region T<< T ,  (see Refs. 6 and 3). 

The present paper i s  devoted to  the theory of kinetic 
phenomena in semiquantum liquids. We shall show be- 
low that the viscosity and thermal conductivity have a 
universal temperature dependence in the semiquantum 
region. 

The presence of a relatively low characteristic fre- 
quency 1 / ~  leads t o  a substantial frequency dispersion 
of the viscosity coefficient q(w)  of the liquid. The 
greatest interest attaches to  the experimentally mea- 

surable value of the viscosity q(0) a t  zero temperature. 
This quantity, however, is difficult to calculate di- 
rectly from theory, since a t  frequencies w  much lower 
than 1 / ~  the particle-delocalization processes play the 
decisive role. We calculate below the viscosity q (w)  
at high frequencies ( w ~ > > l ) .  In this region the particle 
delocalization is insignificant and the liquid can be re- 
garded a s  an amorphous solid (glass). It i s  quite im- 
portant that in the semiquantum region the calculation 
regime the calculation result turns out to be capable 
of determining the static viscosity of the liquid ac- 
curate to within a certain numerical factor on the 
order of unity. 

Namely, it will be shown below that a t  frequencies w  
satisfying the conditions 1/r<< w<< T/E the viscosity 
does not depend on frequency. We denote this value of 
the viscosity by q... In the general case, when Aw<< T  
but generally speaking W T S  1 ,  the frequency dependence 
of the viscosity takes the form 

q(o) =q-q(or), (1 ) 

where cp is a certain dimensionless function of the 
order of unity. We make here the natural assumption 
that there a r e  no other characteristic frequencies much 
smaller than l / ~  in the liquid. The static value of the 
viscosity is 

i.e., it differs from q, by a factor on the order of unity. 

Td determine the viscosity, we calculate the energy 
dissipation in the presence of a uniform shear defor- 
mation e =au,/ay in the system (u, is a component of the 
displacement vector of the medium, x and y a r e  
Cartesian coordinates), which varies with time at a 
frequency w .  Since the condition T <<0 is  satisfied in 
the semiquantum liquid, the thermal phonons a r e  hardly 
excited and their contributions t o  a l l  phenomena can be 
neglected. On the other hand, the conditions T  >> E/T 
and w  >> 1  / T  allow us to  regard the liquid particles a s  
localized near equilibrium positions that a re  randomly 
disposed in space. The main contribution to the vis- 
cosity, just a s  to the thermodynamics, is made here by 
excitations corresponding to  particle transitions to  
nearby vacant equilibrium positions, with small in- 
crease in energy. 

We consider now some particle that has two close 
equilibrium the f i rs t  being the ground state and the 
second an excited state with excitation energy E. The 
change 6H,, of the off-diagonal matrix element of the 
Hamiltonian, due t o  the presence of the deformation, 
is equal t o  Ve, where the coefficient V is of the order 
of the overlap integral of the wave functions of the con- 
sidered states. The energy dissipated per unit time on 
account of the transitions of the particle between the 
states is7 

no fro 
e=-th-IVl'le12G(e-Am). 

2 2T 

Let vd& be the probability that a certain given liquid 
particle has a neighboring vacant equilibrium position 
with an excitation energy u in the interval between E 
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and c +dc. At & <<8 the quantity v is an energy-inde- 
pendent constant that determines (see Ref. 3) the co- 
efficient in the linear law of the heat capacity of semi- 
quantum liquids. With the aid of (2) we obtain the en- 
ergy dissipated per unit volume: 

here n is the number of liquid particles per unit vol- 
ume, and the averaging is over the pairs of close lev- 
els of the various particles. On the other hand, in ac- 
cord with the general definition of the viscosity coef- 
ficient, the same energy dissipation is equal to 
9qw21eI2. From this we get 

Going to  the limit Rw << T and taking (1) into account, 
we get ultimately 

nii 
qo-q- =-nv <lV12). 

2T 

Thus, in place of the exponential law of classical liq- 
uids, the decrease of the viscosity with increasing 
temperature is much slower in semiquantum liquids. 

Figure 1 shows experimental dataseg on the dependence 
of the viscosity of hydrogen and helium on the ratio 
(3/T a t  constant density. The Debye temperature was 
calculated from the formula 8 =Rc(6r~nY'~ using the low- 
temperature experimental speed of sound c. The re- 
sults a re  8=107,  46.6, and 31.9 K respectively for hy- 
drogen of density 0.0869 g/cm3 and helium with densi- 
ties 0.200 and 0.176 g/cmS. The agreement with the 
inverse proportionality of the viscosity and temperature 
is fair, with the exception of the helium with the lower 
density, where the regions in which low-temperature 
deviations from the 1/T law a r e  observed a r e  due t o  
quantum degeneracy, and the high-temperature devia- 
tions a re  quite close to  one another. 

7.10:glcrn . sec 

FIG. 1. Temperature dependence of the viscosity of liquid hy- 
drogen and helium at  constant density: 0-hydrogen, density 
0.769 g/cm3, .-He4, density 0.200 g/cm3, A - H ~ ~ ,  density 
0.176 g/cm3. 

We note also that the 1/T law for  the viscosity of 
liquids in the semiquantum region a r e  in accord with 
the well known4 linear frequency dependence of the ab- 
sorption of high-frequency sound in glasses. At high- 
frequencies Rw >> T the quantity 1/T in the expression 
for the viscosity is replaced, a s  seen from (4) by l/w. 
The sound absorption is proportional t o  qw2, i.e., it is 
directly proportional to  the frequency. 

2. THERMAL CONDUCTIVITY 

The situation with the thermal-conductivity coeffic- 
ient U(W) regarded a s  a function of the frequency w 
turns out to be analogous to  the case of the viscosity. 
Calculations in the region l / r<< w << T/A lead to  a 
frequency-independent value x ,  which is connected 
with the static thermal-conductivity coeff icient u, by 
an equation similar to (1). In contrast to the vis- 
cosity, however, in this case an important role is 
played by migration of the excitations in space, i.e., 
the transitions of the particles from excited states to 
others that a r e  also excited. The main contribution 
t o  the thermal conductivity is therefore made by parti- 
cles that have not two but three neighboring equilibrium 
positions with close energies. Let P(E,, c,)dcld~, be the 
probability that a given liquid particle has beside the 
ground-state position also two close excited positions 
with excitation energies E, and c,. At small c, and C, 

we can regard p as a constant of the order of v2. 

To calculate the thermal conductivity coefficient 
we consider the formal problem of energy dissipation 
when the particle is acted upon by a perturbation with 
a Hamiltonian in the form -fq, where q is the operator 
of the energy flwr between the excited states with ener- 
gies C, and c,, andf is a generalized force that varies 
q can be determined in the following manner. We write 
down the Hamiltonian of the system with two states 1 
and 2 in the form 

where %+,, and $,, a r e  the creation and annihilation 
operators of (for the sake of argument, Fermi) parti- 
cles in the excited positions 1 and 2, and J is the over- 
lap integral of the wave functions of the considered 
state. The total Hamiltonian can be represented a s  the 
sum H = H, + H, of the operators 

which assume the role of the energy operators a t  the 
points 1 and 2, respectively. The energy flux q is de- 
fined a s  

The matrix elements of the operator q a re  thus 

The energy dissipation a t  Aw << T i s  defined by an 
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equation similar to  (2): 

nho' e= - 
2T 

I f  Izlql;l~ wr6(e;-el-ha), 

where 

W ~ = ~ - ~ I ~ /  (1+e-'31T+e-e.lr) 

is the probability of finding the considered particle with 
two close excited equilibrium positions in the excited 
state 1 with the lower energy El. 

The meaning d the generalized force f is clear from 
the known thermodynamic equation for the energy dis- 
sipation q6T/T when an energy q is transferred be- 
tween bodies whose temperatures differ by 6T, and 
from the general formula7 for the dissipation -fq 
under the action of a perturbation of the considered 
type. We have 

where a is the space vector that joins the equilibrium 
positions 1 and 2, and VT is the macroscopic tem- 
perature gradient and varies with time a t  a frequency 

From (6) we get 

from which we find, by averaging with allowance for the 
inequality fiw<< T, the energy dissipation per unit vol- 
ume of the liquid: 

In accord with the definition of the thermal-conductivity 
coefficient, the dissipation is equal to  (x/2T)I vTI2. As 
a result we get 

The thermal conductivity coefficient of a semiquantum 
liquid is thus proportional to  the temperature. 

FIG. 2. Temperature dependence of the thermal conductivity 
of liquid hydrogen and helium at  constant density: O-hydro- 
gen, density 0.0769 g/cm3, e - ~ e ~ ,  density 0.200 g/cm3, A- 
~ e ~ ,  density 0.176 g/cm3. 

Figure 2 shows the experimental dataas9 on the tem- 
perature dependence of the thermal conductivity of 
hydrogen and helium at constant density. The linearity 
of the thermal conductivity is thus quite well con- 
firmed. 

We a re  grateful to I. M. Lifshitz for a helpful dis- 
cussion. 
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