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On the theory of electrons localized in the field of 
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We formulate a mathematical criterion for the localization of single-particle wave functions in a random 
field. The localization is characterized by the appearance of singular terms in the expressions for the 
correlation functions of various physical quantities as functions as the energy (independent of the 
dimensionality of the problem). We propose for one-dimensional problems a method which, in principle, 
allows one to evaluate directly correlators which contain products of several exact wave functions of 
electrons in a random field, pertaining to different energies and taken at different points. 

PACS numben: 71.70.Ch 

The present paper does not pretend to give new 
physical results, but has as its aim the solution of some 
methodological problems. We discuss in section 1 the 
problem of particle localization in the random field of 
randomly distributed defects and we propose a mathe- 
matical formulation of a criterion for the localization 
of the wave functions of eigenstates. The applicability 
of the results of this section is not limited to  the case 
of one-dimensional problems. The criterion formulated 
there refers equally well to  two- and three-dimensional 
cases. 

The second part of the paper refers solely to a one- 
dimensional conductor. It contains a general method 
which allows us-at least in principle-to write down 
and evaluate an arbitrary correlator of the product of 
any number of exact wave functions with different en- 
ergies of an electron in the random field of static de- 

fects, taken a t  different points in space. 

The necessity to  evaluate such correlators ar ises  in 
a whole set  of problems, such as ,  for instance, the 
determination of the temperature dependence of the 
conductivity. It i s  well known that the localization of 
electrons in the field of defects is complete in the sense 
that a l l  states with arbitrary energies a r e  localized.' 
The static conductivity therefore vanishes a t  zero tem- 
perature. Mott and Twose2 were the f i rs t  to note this 
fact and later on this result was obtained exactly by one 
of the present autho~-s.~ At non-zero temperatures the 
conductivity behaves like that of a semiconductor. The 
finite magnitude of the conductivity i s  caused by jumps 
of the electrons along the localized states due to  in- 
elastic interaction processes between them and the 
thermal phonons o r  between themselves. This effect 
was considered in Ref. 4 for the electron-phonon inter- 
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action mechanism under well-defined, rather strong 
assumptions about the temperature and the frequencies 
of the phonons participating in the inelastic process, 
and the diagram method of Ref. 3 was used. After- 
wards the same result was obtained in Ref. 5 where, in 
turn, a somewhat different method (an S-matrix meth- 
od) was proposed for the corresponding calculations. 

So f a r  it is unclear how the electron-electron and the 
other interactions affect the localization of the elec- 
trons by the static defects. The difficulty is here f i rs t  
and foremost a mathematical one. To study the role of 
the interactions it is  necessary to  be able to evaluate 
t o  any order of perturbation theory the matrix ele- 
ments between the exact wave functions of the states 
of the non-interacting particles. The existing meth- 
odsSS5 a r e  too complicated to  be used a s  a basis to 
carry  out this program. To a certain extent these dif- 
ficulties reflect, of course, the complexity of the 
problem. From our point of view, however, their 
main defect is that the starting point of Refs. 3 and 5 
is the approximation of free electrons in the absence 
of impurities. As we see it, the basic point which is 
characteristic only for  localized electrons-the pres- 
ence in the matrix elements of singular, 6-functionlike 
terms in the energy-is, a s  a result of this, not ex- 
plicitly visible and can appear in the answer only after 
lengthy calculations. Therefore, a simplification of the 
mathematical apparatus remains a s  before very de- 
s irable . 

In the present paper we develop a method which is, 
from our point of view, most suitable for the mathe- 
matical description of a one-dimensional problem. The 
new method stems from Schmidt's methode of calculat- 
ing the number of zeroes of an electron wave function 
which, a s  has already been shown in a number of 
papers,' is able t o  simplify the calculations con- 
siderably. 

1. LOCALIZATION CRITERION IN  THE GENERAL 
CASE 

In this section we make a few simple remarks about 
different possibilities of formulating mathematically 
the localization of wave functions by static defects. 
We remind ourselves that the electrons a r e  assumed 
t o  be non-interacting. This practically reduces the 
problem to  a single-particle one. 

We introduce the simplest retarded density correla- 
tor: 

where the symbol ((. . .)) implies averaging both over 
a thermodynamic ensemble for a given realization of 
the random potential and subsequently over different 
configurations of that potential. Here 

is the usual expression for the density operator in the 
second-quantization representation in terms of the 
wave functions $,(x) of the electron eigenstates with 

energies E,.  (We take the functions in a finite volume 
t o  be real.) An elementary evaluation of Eq. (1) gives 

(1') 
where (. . .), corresponds to the averaging over the 
realizations of the random potential. We assume in 
what follows that the latter is characterized by uni- 
form correlation functions which a r e  invariant under 
the rotation and reflection group in the space of the 
appropriate dimensionality d. This expression can be 
written in the form 

Introducing the function 

Lv(E is the density of states for a single spin a t  an en- 
ergy E ]  we write the Fourier component of (2) with re-  
spect to time in the form 

The spectral density (3) has the following obvious 
properties: 

which for the spatial Fourier components (@,p,+,(q))) 
means : 

Moreover, one shows easily, by using the assumptions 
made about the correlation functions of the random po- 
tential that ((p,p,+,(qB 3 0. 

It is now convenient to  compare Eq. (1') for K ( x )  and 
the properties expressed by Eq. (5'). Starting from (1') 
we see that there a re  present in it, in general, con- 
stant terms with &, = & , I .  However, if the states a r e  
delocalized, their wave functions a r e  normalized to the 
volume V and the corresponding contribution to (1') is 
thus of the order -1/V. The situation is different if the 
states a r e  localized. In that case the correlator K(x) 
acquires a constant (i.e., independent of the time dif- 
ference) term: 

which in terms of the spectral density is equivalent to 
a term of the form A(q)G(w) in ((pEpE+,(q)). The wave 
functions a r e  normalized to  the localization length 
(mean f ree  path) and an estimate of the term (6) gives 
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We put it that one of the possible cri teria for locali- 
zation may be formulated a s  follows. We introduce the 
single-particle spectral densities: 

p,(r, r') = 6(E-ev)$,(r)lpv(rt). . 
In the average of the product of n quantities p,,(r, r ' )  

pertaining t o  energies El,. . . , E n  and arbitrary points 
(ri, r;) there must be present 6-functionlike singulari- 
ties corresponding to  some of the energies E i  being 
equal. These energies correspond to  localized 
states." 

Turning to  Eqs. (5') we see  that they, in turn, a lso  
express two possibilities. For  the f i rs t  of them, cor- 
responding to  the presence of localized states a t  an 
energy E, the 6-functionlike term is retained for  
finite q and for q + 0 we can write 

<p&x+. (q) )-A (4 6 (o )  + ~ r  (q, 9 ('7 

and for small q 

<WE+. (9) )= (1--aq2) 6(0) +q2p$ (01, (7') 
where according to (5') 

a= j pi ( o )  do. (7") 

Delocalization would correspond to  a spreading out of 
the 6-functionlike singularities in (5') a t  finite q. The 
simplest variant corresponding to  diffusive behavior 
means that the width Aw of the singularity is  quadratic 
inq:  hbaq2. We have 

It follows already from the possibility of such a 
statement of the problem that the diffusive spreading 
out of the singularity is just one particular case of the 
behavior of ((pEpE+,(q))) for  small q and there can be 
many other possibilities for i ts  dependence on w and q 
which satisfy the normalization condition (5'), among 
which there is also a singular behavior for small  w 
and q. We deduce hence that delocalization does not 
necessarily imply a diffusive spreading out of the 
packet. 

Comparing (7') and (6) @.e., evaluating the Fourier 
component of (6) ,  the term q2] we get 

(d is the dimensionality of the space). In other words, 
11 can be expressed in terms of the mean square vari- 
ance of the dipole moment. 

Similar to the single-particle spectral density of the 
density-density correlator, we can introduce spectral 
densities for the current-current and current-density 
correlators. We can then use the equation of continuity 
to  establish the following relations between these quan- 
tities: 

The response in the current of a many-particle system 
to an external vector potential A,(r) is given by the 
f ormula8 

where the integrand contains the retarded commutator 
of the current density operators. For  the Fourier 
components with repsect to  momenta we get2' 

Using (8), letting q-0  and substituting A, = E / i &  we get 
in the diffusive case for  the conductivity the well known 
expression: 

In the localized case we have according to  (7') 

o(e) =2e'v(E,)e2p1 (e), 

wherezs3 in the one-dimensional case 

pi (e)-lnY (er) . 

Without using Eqs. (10) we can directly write down 
the following expression for the conductivity in terms 
of the wave functions of the system: 

o. . (e ) -6 lp(e)=$~ ( Z G ( ~ - e ~ ) b ( e r e ~ . + e )  
"" ' 

(here ji,, =- ia/ar,).  

2. METHOD FOR EVALUATING AVERAGES OF 
WAVEFUNCTIONS IN THE ONE-DIMENSIONAL 
CASE 

Equations (3), (6), (Q), and (11) contain averages of 
the product of several electron wave functions with dif- 
ferent or the same energies and a t  different points in 
space. It is possible to develop for  the one-dimensional 
case a method for evaluating such averages which looks 
to  us simpler and more general than the diagram meth- 
od of one of the present authors3 or  the S-matrix 
method? The present section is devoted t o  an exposi- 
tion and discussion of that method. 

One can in the one-dimensional case juxtapose the 
eigenvalue of the energy E ,  to the  number of zeroes of 
i ts  wave function Jl ,  ( x )  that satisfies the SchrMinger 
equation: 

This fact was used by Schmidte a s  the basis for the 
evaluation of the single-particle density of states of a 
linear chain with a random distribution. The con- 
siderations given below a r e  a further development of 
this approach. Schmidt's methode leading to the equa- 
tions for a Markov process is valid for a potential 
U ( x )  corresponding to  a random set  of short-range 
potentials and can be formulated both for a random 
Gaussian potential U ( x )  (so-called white noise) and also 
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for a lattice in whose points defect atoms a re  ran- 
domly dispersed and have a potential range less than 
the size of the selected cell. In the Born apprcniima- 
tion both procedures a re  absolutely equivalent, but 
below we prefer t o  emphasize the lattice formulation, 
bearing in mind possible generalizations. In conclusion 
we give a derivation also for  a white-noise kind of 
potential. 

We thus consider a lattice of points with cell size a, 
while in each site there is a probability P that there is a 
defect situated with a potential with a range which for 
the sake of simplicity we assume to be negligibly small 
compared t o  a. When P << 1 this arrangement corres- 
ponds, in particular, to a low impurity concentration 
c = p / a .  The phase c p ,  of the wave function is given by 
the relation 

ctg cpX=rp1/krp, k= (2mE) " 

and satisfies the equation 
cp~'=k- ( U ( x ) l k )  sinaqE. (13) 

In the figure we have depicted the lattice potential 
where in agreement with the assumptions about the 
character of the potential in the whole cell (j), except 
a t  the lattice sites, the motion is free: 

d 
91 ( 2 )  =Aj ( z )  +Bj(x) =Rj sin rpj ( x )  ; - cpi ( 2 )  =k .  

d z  

The connection between the amplitudes of the traveling 
waves {A,B,} and {A,+,B,+,) is  determined by the scat- 
tering by the potential located at the si te j + l .  For the 
sake of argument, we shall match together all quanti- 
ties Aj,Bj, c p ,  taken immediately to the right of the site 
j, a s  shown by the arrow in the figure." 

One checks easily that for such a choice of the quan- 
tities in the points j and j +1 the connection between the 
coefficients Aj  and B j  is given by the matrix 

e-l(h-aJ , i s in ye-" 1 
(8:;' 1 =& ( -i sin ye'*, e - i ~ h - 6 k  

(15) 

in which y and 6 a r e  characterized by the problem of 
the scattering by the defect atom (for the sake of sim- 
plicity the potential is taken to  be symmetrical under 
x-- x) where 6 is the advance in phase of the previous 
wave and sin2y the reflection coefficient. 

We have 
(H,'/cosx 7 )  [ 1 + sin' 7-2 sin 7 sin(2qj+2ak-6) 1, 

R,1= ( ~ ~ ~ , / c o s ~  y)  [ I  + sinZ y+Z sin sin(2qj+l+8) ] 
(16) 

FIG. 1. Random potential U(x)  as potential of defects which 
are randomly positioned in lattice sites (lattice period a). The 
arrows indicate the positions where all quantities in the cell j 
and j + 1 are matched. 

and 

Equations (17) enable us to  construct the phase c p ,  a s  a 
monotonically increasing or  decreasing function: de- 
pending on whether we s tar t  the process from the left- 
hand o r  the right-hand end point. We shall mark the 
corresponding quantities with an index > or  <. 

We still need equations for  the derivatives P >  = a p > /  
ak  and $ <  =acpc/ak .  From (17) we get, for example, 

aw+* c0s2 7 
T = ( 8 ) I + sin' 7-2 sin y sin (2%+2ka-6) ' 8, 

In correspondence with the definition of the phases the 
quantity 5' is always positive. 

We write 

and introduce a s  a definition 
. s, 

(The integral has here a symbolic meaning, but in what 
follows we shall often change t o  a continual descrip- 
tion.) Using (16) and (18) one checks easily that 

as (20) satisfies Eq. (18) and the boundary condition 
(acp>/ak),= -, =O. In turn, we have similarly 

In order not to  encumber the paper with general 
formulae we choose first ,  t o  begin t o  demonsrate the 
idea of the method, the average of the electron Green 
function: 

(here on = (2n + l  )rT; we denote the energy reckoned 
from the level of the chemical potential by E ,). We 
write (22) in the form 

and, we choose, for instance, x <x' in the mean valueof the 
spectral density. 

The eigenwave functions $,(x) in (22) a r e  normalized 
t o  unity: 

If the case is quasi-classical, kl>> 1, one can write 
that condition as 
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Taking an arbitrary point j, we can rewrite (24') in 
terms of the quantity a! from (19): 

1 
Rb2 j aa(zljo)dx=l, 

-L 
(25) 

and the normalization constant R:, is then according 
to  (21) and (21') equal to  

The presence of a 6-function in (23) expresses the 
fact that the energy 5 is the eigenvalue for  a given con- 
figuration of defects. The same fact can be represented 
by the condition that the solutions for  the phase, satis-  
fying the boundary condition pi,, =cp,, from the left 
cp: and from the right cp;, differ by an integer times a 
in any arbitrarily chosen point j, where we match the 
solution. Taking therefore the phase in the ranges' 
(- a/2, s/2) we can write: 

As a result Eq. (23), takes at the points x = j, x' = j' 
[inside the cell, (23) is determined by the free-motion 
Eq. (14)], when we use (26), the form 

(flu) ( 6 ( ~ > - q ~ ~ )  sin cpjai(jjjo) sin ( ~ j ~ a ~ ( j ' I j ~ )  )u. 

We write it in the form of an integral: 

+*It dq 2 j -<6 (cpk>-cp) 6 (cp-The) sin pja, ( j l  jo) sin qj,at (j' lie) )". 
-r /z  

u .  

Let, for instance, j, =j. We can then rewrite this 
average also differently: 

x6(cp-qe(il j', q'))at(jll j)sin $6 (cp'-qj-<) )u. (28) 

In other words, since this is a Markov process, we 
can perform the averaging in (28) over all  defect con- 
figurations separately aver the sections - - =- L< j 
< j' < L = +-. Accordingly we introduce the following 
quantities: 

the stationary phase distribution function, found going 
from the left. The analogous quantity obtained by going 
from the right is 

The function for the transition from the point j' to the 
point j (from right to  left) has the form 

where the notation cpC(jlj', cp') indicates the result of 
solving the equation for the phase (from the right to  the 
left) a t  the point j under the condition that the phase a t  
the point j' equalled cp'. Thus 

where one can use Schmidt's methods to obtain easily 
the equations f o r  any of the probability functions which 
occur here, connecting through the transformations 
(161, (17) the neighboring points j and j + l .  We thus 
have, according t o  Schmidt,' for the stationary proba- 
bility distribution function dcp) the equation 

which expresses the fact that the si te j +1 is unoccupied 
with a probability 1 -P and occupied by a defect with a 
probability P. Schmidt's Eq. (32) is the b a s k  one for 
deriving all  further formulae. 

We also note that for the symmetrical defect chosen 
by us Eq. (17) admits the substitution cp'-- cp'. Since 
(17) defines a function cp' which increases monotonical- 
ly from left to right, and (17') a function cp' which de- 
creases monotonically from right t o  left, the stationary 
phase probability distribution functions satisfy the con- 
dition 

The generalization of the representation (31) to the case 
of correlators of products of a large number of ~ , ( x ,  x' )  
and the proof that the result of the averaging is inde- 
pendent of the choice of the point j, where we match the 
solutions a re  given by us in the Appendix. 

So fa r  in our considerations we had no need to  resort  
to  any simplifying assumptions regarding the potential, 
bar  the assumption that it has a short range. However, 
we make here the following remark. Backward scat- 
tering of the electrons is important for the localiza- 
tion. At the same time the molecules in the experi- 
mentally studied organic conductors a r e  rather large. 
The random potential then turns out to be relatively 
smooth which diminishes the amplitude for the back- 
ward scattering of an electron. (It is, of course, pos- 
sible that for a number of substances a model in which 
the impurities split the chain into almost isolated sec- 
tions i s  more suitable, but this case requires special 
considerations.) Starting here,  theref ore, and every- 
where in what follows we use the Born approximation 
Y<<1. 

The localization length 

will be assumed to  be large compared t o  "atomic" dis- 
tances (while a k  - 1)  and also large compared to the 
average distance between defects 

Using the fact that Y i s  small we simplify Eqs. (16), 
(17): 
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cpj+,=cp,+ka-6-7 cos (2cpj+2ka-6), 

cp,=~j+~-ka+6+y cos (2vj+,+6) .  

We have dropped in (36), (37) terms of the form 
)Z sinmcp. From a formal point of view they a r e  ac- 
cording to  (34) of the necessary (second) order of 
magnitude in Y but in all  equations below they would 
occur with a fast-oscillating factor sinmcp which drops 
out unless we make special assumptions about the 
magnitude of ka (to be more precise, require that k 
and 2m/a a r e  commensurable). Indeed, in the vicinity 
of an arbitrarily positioned Fermi  level a l l  probabili- 
ties depend solely on differences in the energies and in 
the phases corresponding to them and do not contain 
in the main approximation a dependence on the phases 
cp , themselves. 

As an example we write down the equation which is 
satisfied by the stationary distribution function of sev- 
e r a l  phases, &,o,~, rp ,,, . . . , cp Ei). We derive this 
equation by analogy with (32) and using Eq. (37). As in 
(32) the Jacobian-a product of factors 

dcpddcp,+t=i-27 sin (2qj+,+6) 

occurs on the right-hand side. Retaining everywhere 
only terms of order y a  (the terms which are linear in 
y contain fast-oscillating factors depending on one of 
the phases) and rewriting w(rp,, . . . , cp 6.i)=d(81, . . . , Oil ,  
where Oi = c p E i  - cp ,, we get a s  a result of elementary 
calculations 

+x &[ ( I  + cos 2(0,-0.) - urr 20.- cos 20.) w1--0, 
rwk (38) 

where, in turn, vi = (ki - ko)l and I is defined through 
(34). 

We did not manage to  find the general solution of (38). 
The limit vi >> 1 denotes the statistical independence and 
corresponds to a vanishing of the dependence on the 
angle Oi of the function w(8,, . . . , Oi). Equation (38) has 
asymptotic solutions for all  vi >> 1. 

Let us discuss in detail the case of two phases: 
w(cp,, cp,) = w(8). For  the sake of argument let v > 0. In 
that case 

The f i rs t  integral of Eq. (39) is 

(the probability distribution function of the two phases 
is normalized t o  unity). Equation (39) has a singu- 
larity a t  8 =O. 

The general form of the solution is: 

For  the final definition of it we must require the finite- 
ness (integrability) of 4 0 )  for 0 =0  and impose the 

periodicity condition 4 0  +n) = 40) .  other words, 
when 8< Ow(B)= w(#+n).] One checks easily that such 
a solution is 

The asymptotic properties of the solution for v << 1 
follow at  once from (40). In particular, one checks 
easily that for  small 8-v we can expand (40) as fol- 
lows 

The main term (l/v)w(8/v) is then non-vanishing only 
when 8>0: 

and thus when 0 < 0  the first-order term is important: 

with an asymptotic behavior when 1 el/v>> 1 

In applications one must often evaluate rather com- 
plicated correlators of wave functions which occur in 
different matrix elements. When writing down and 
solving the appropriate equations it turns out to  be 
more convenient to look not for  transition probabilities 
of the kind wj,l(cp, cp') in Eq. (31) (see A.6) themselves, 
but to use a somewhat different method which we now 
explain, evaluating again by the proposed method the 
frequency dependence of the conductivity due to static 
defects.' 

Substituting the expressions for the wave functions 
(14) into (11) and retaining under the integral sign of 
the correlator only slowly varying factors a t  the points 
x and x' we get 

( n r V l 2 )  jdi' ( ~ 6 ( i - b ) 6 ( e V . - e v - a )  
"". 

Xain e ( z )  ~ . ( z ) ~ . , ( z ) a i n  B(r.)R,(r.)Rc* ( z ' )  ) 1 

where 5' = 5 + w ,  8(x) =cp - cp E(x). As the average 
depends only on I x - x'l let x <  x' and take the matching 
point in x'. We rewrite the conductivity in the form 

r nfr 

a (a) =4n'ea j d ~  d0g(R, 0 )  w ( -0 )  sin 0 
0 -a/. 

(44) 

(the extra n is due to  the integral over cp). The function 
g ( ~ ,  e) is thus 

g(R,  0 )  -<sin 0(z )aE(z lz ' )a f+~~x Iz ' )6 (0 -~ ' ( z ' ) )  
x6b-cpt'(xl)) >or (45) 

and we can write down an equation for it without intro- 
ducing a transit ion probability, but connecting instead 
of that directly its values in the points x j  and xj+, 
similarly to  (32): 
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Expanding this relation we find the equation (v=lw/ 
u=w7) 

L - = . - ~ -  ag a g ~  ( I  - cos 20)- gzg + 2 sin 20 - a g  - ( I  - cos 20 )g .  (46) a~ ae aez ae 
We take its Laplace transform 

- 
g&(e)  = J ~ R ~ ( R ,  0 )  e-=. 

0 

We have 
-Isin Bw(0) +A l g ~ ( 6 )  =-vgr'(0) 

+ (1-cos 20) grN(0) i-2 sin 20gr'te) - (I-cos 26)  g, (8). (46') 

We have used the boundary condition g(R =0, 8) 
5 w(8)sinB which is obvious from (45). We have not 
solved Eq. (46') in its general form. However, for 
small v small angles a r e  important: 

The solution of (46") can be expressed in t e rms  of 
Bessel functions. 

To evaluate the conductivity (44) one requires only 
gx,,(e). We see that the main contribution t o  (44) 
comes from the region v<< I 81 << 1. To find the solution 
we proceed as follows. On the one hand, in the small  
angle region we easily solve Eq. (46") (X = 0): 

(We have taken solutions finite a t  8=0; a! and x a r e  in- 
tegration constants.) 

For large angles we can neglect the t e rm with v. As 
a result (46') becomes 

and can be integrated: 
lv  

0 

gsin 0-  - ( ( a - 0 )  b sin 6+2 j1n  sin 0'dO'+c,~+o 
4n' 

0 

One must match the expansion of this expression in the 
region 8<< 1 and a - 8<< a with the asymptotic solution 
(47) in the region 1 >> 1 BI >> v using the fact that g(8)  
=- g(n  + 8) when 6<  0. This procedure enables us to  
determine the constants c,, c,, a!, and x. We write 
down the main terms of the function g(0) in the region 
v<< I el <<I: 

Using them in (44) we findS 

o(o) = ( l v z /n )  ln' v .  

The answer is the same a s  the equations in Refs. 3,5 
if we substitute for the localization length (34) 1 =21- 
(see Ref. 7) where 1- is the kinetic mean free path for 
backward scattering. 

Finally, Eq. (6) allows us t o  point out those changes 
caused by a case important for localized states, when 

there a r e  more than two wave functions with the same 
energy in the averaged quantity: 

F(z-x' )  =(E 6(E-8.) gEz(x)$r?x') )". 
v (48) 

Let the point of joining be x' and let x' > x. In agree- 
ment with (26) and (27) we have for (48) 

F (x-2') = ( l / u )  ( 6  (q' (x') 
-cpc(x') ) a z ( x l  xr) [ c > ( x f )  -ce(z')  I-'>,,. (48') 

We can proceed here in two ways. Firstly, we can 
introduce a probability distribution function for the 
phases and their derivatives simultaneously. For  in- 
stance, the stationary function corresponding t o  the in- 
terval (--, x )  is 

wr(cp, 5 )  =<6(cp-cp~'(~) ) 6 ( 6 ~ ' ( ~ ) - 5 )  )- 
(4 9) 

We can obtain an  equation for it independently, but we 
can a lso  use Eq. (38) together with the definition 

tr = lim (cp:+,,,-cp~) / k .  
6-0 

For  (49) we have 

It is, however, convenient to use in (48') the represen- 
tation 

There occur then under the integral sign in (48') two 
factors each of which can be averaged independently 

One obtains the equation for the function w,(cp, s )  
w(s) by taking the Laplace transform of (50) 

-1sw ( s )  +2s2(aZw (s) /6s2) =o, (53) 

and the equation determining 2 @, s, cp )  =g (R, s) is de- 
rived, like (46), by using (18) in the Born apprcmima- 
t ion 

gj+,==(t+a) {1+'/2yZ+2y sin (2q,+2ka-6)).  (54) 

After simple calculations we find 

The boundary condition for (55) is g @  =0, s) = 4 s ) .  
The solutions of both (53) and (55) can be expressed in 
t e rms  of Bessel functions, but we shall not obtain these 
formulae here (see Refs. 3,4). 

In concluding this section we give a brief derivation 
of the main equations for the case when the potential 
U ( x )  represents Gaussian white noise with 6-function 
pair correlations. 

For the energy range E =Eo +&, where & = v(k - k,) 
<<E, it is convenient to introduce $ =  $ +  +$-: 

$* ( x )  =a,  exp (*ik&), 

where we can neglect the &-dependence of u. The ap- 
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proximate Schrijdinger equation has the form 

v(du,lch) = * i e a , ~ i [ a , + a ~  exp (F2ik0z)  ] U ( z ) .  

We introduce the amplitude a(%) and the phase cp(x), for  
instance, by the relation 

a, ( 5 )  =a(+)  exp (*icp(z)).  

One then gets easily equations for the new quantities: 

v (&I&) =-U ( z )  sin (2koz+2q) a, (56 
v (&I&) =e- [l+cos (2koz+2q) ] U  ( 2 ) .  (57) 

Assuming a(%) and y(x) t o  be slowly changing functions 
it is convenient to write: 

da a  u - = - -  [ U+ ( 2 )  e"*-U- ( z )  e-"'.I , 
dz  2i 

& 1  I v - =e-Uo ( z )  - - U+ ( 2 )  eaV- - U- ( 2 )  e-"*, 
dz 2  2  

where we have introduced the notation 

U o ( z )  = U ( z ) ,  U ,  ( 2 )  - U ( z )  exp (*2ikoz). (58) 

As before, we denote the solutions of the equations 
for the phase with the boundary condition cp(xo) =cpo for 
x > xo and x < xo by cp :(XI x,, cp,) and cp: (xl xo, cp,), respec- 
tively. We introduce again the factor 

which describes the change in the amplitude when we go 
from x' to  x. We have exactly: 

a,(zlz")a,(z"lz')= a.(zIz1) ,  
vd 1 

-a. ( z l z ' )  = - -[ U+ ( z )  eNV'" - U- ( z )  e-"v("]a. ( z l z ' )  , 
dz 2i 

To derive (26) we vary Eq. (57): 

v  (d6qld.z) =8e+2U(z)  sin (2koz+%) 6q.  

Comparing this with the equation for a, (xlx') we find 
for the two forms of the variation ( 6 ~  and QO) :  

(a/ak)g.(z lzo,cpo)=j  a.'(zllz)dz, 
* 

( a l a ( ~ ~ ) ( ~ .  (5  IZO, (po l  =al-' ( z  Izo) .  

In order to  obtain the analog of Eqs. (32) we must 
write down the Fokker-Planck equations for the inter- 
val 

l ~ A z > k o - '  

assuming that the correlation radius for the average 
(U(x)U(x8)) is small  compared to the mean free path I. 
In the approximation kol >> 1 the following moments of 
(58) a re  nonvanishing: 

111 = (AzuZ) -' jj < U + ( z + f r )  U- ( z + f )  > df d f '  
A Z > L 8 > t > O  

- 
1/l0 =(Azva)-' jj ( U o ( z + y )  U o ( z + g ) )  dEE= v v z j  < U ( g )  U ( 0 ) )  dg. 

Ar>EV>E>O 0 

If we assume that U(x) = U(-x) (in the sense that both 
have the same probability distribution) then 1/1 is real  
and 1 = L*. 

To derive the Fokker- Planck equations we must ac- 
curately write down expressions for the increases up 
t o  terms of second order in U(x). For  the increase in 
the phase ~ c p ( 0  =cp(Ax+ 0 -  v( t ) (~cp  =A0v +A,V +%q)  
we have 

A@-- (k-ko) Az, 

Using (59) we get 

In the general case we must add t o  these formulae 

Aa. Aa.. 1 1  (T) = - y-(? ++) ~a ~ ( ~ . - q v ) a . a . , .  

Aa4 
= - - + - sin Z(cp,-rp..)a.. (7) t )  

We take an average function F(. . . , cp, ,(x), . . . ) and 
define 

i.e., we introduce a phase probability distribution 
function w(. . . , cp,,, . . . ; x). Considering the change of 
that average w e r  the interval Ax we get by means of 
the formulae given a b w e  

and substituting Eq. (60) into the definitions of the 
averages and integrating by parts we find immediately 
an equation for the distribution function w(. . . , cp,,, 
. . . ; x): 

To obtain equations for more general transition func- 
tions, in particular, ones which contain factors 
a,(ylx) we can use the same method, substituting in- 
stead of a n  arbitrary function F( .  . . , cp, ,(%), . . . ) into 
(60) 

where E is a new arbitrary function. 
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APPENDIX separate component s, can thus have the values 0, 1, 

Let there be an average of a product of several 
ptI(xi,x,) which appears when we average a product 
of several Green functions: 

where the coordinates of the wave functions may be 
placed in order of increasing values: x, < x, 
<. . . <x,,. We assume that all 5, a r e  different. This 
product then has the form 

We have chosen the joining point x,"j, arbitrarily s o  
that 

In (A.2) a!(xiljo) can be written as 

in agreement with the sequence (A.3), if xi < j, and 

if xi > j,. 

We introduce the stationary probability distributions 
W> and LO<: 

and the generalized transition functions going from i 
to  i +1: 

and similarly for the functions 

which determine the set  of quantities a! and phases in 
the point xi <xi+, if the set  of phases is given in the 
point Xi+l .  The ~ ; , ( x i + ~ I + f ,  xi) and ~ ; , ( x i I  d+l, xi+>) 
which occur in these definitions are ,  respectively, the 
solutions of Eqs. (17) and (17') in the points xi+,(xi) 
under the condition that in the point xi(xi+,) the phase 
equals cp:(cpf+l) for an energy 5,. In the vector 
a ={s,, . . . , sh each component s, indicates p e  power 
of the factor a ! E , ( ~ i t l l ~ i )  in the product I'l ffE~(xiIxi+,). 
The vector s i s  determined by the coordinate distribu- 
tion in (A.3) and by the writing down of the factors 
( ~ ~ ~ ( x ~ I . 1 ' ~ )  in the ordered form (A.4) o r  (A.4'). The 

and 2. The rules for the construction of the average 
a re  simple. It is clear that the intervals (--,x,) 
and (x,,,a) a r e  associated, respectively, with the 
stationary probability distributions w'(cp,, . . . , cp,) and 
wC(cp,, . . . , cp,). Each interval (xi, xi +,) in (A.3) is as- 
sociated with a transition function of the form (A.6), 
W>(S) , if x, j, and w<('), if x, a j,. Finally, each of the 
$-functions in (A.l) gives not only cu ,,(xiljo), but, ac- 
cording to  (14), a lso  a factor sincp,,(xi). The expres- 
sion obtained must be integrated over all  phases oc- 
curring in it in the points x, and j,. The meaning and 
advantage of such a representation of (A.l) lies in the 
fact that it is divided into a product of factors, each of 
which can, in agreement with the assumption about 
the Markovian nature of the random process, be aver- 
aged independently in the intervals (A.3). The functions 
(A.5) and (A.6) satisfy, of course, equations with par- 
tial derivatives. 

In actual problems one does normally not use the 
expressions for the transition probabilities a s  it is 
easier to write down recurrence relations relating the 
point j, t o  one of the coordinates occurring in (A.1). 

For  a proof that nothing depends on the choice of the 
point j, we note that a s  long a s  the point j, lies in one 
of the intervals (A.3), (A.4), the independence of the 
results with respect to i ts  position is determined ex- 
clusively by the properties of the probability distribu- 
tion: 

If the point j, changes an interval of (A.3) we must use 
for a proof of the independence the relations 

The verification of the latter statement consists in 
the observation that 6-functions such as 6(q' - cp'(xr ( x , cp)) 
express the fact that cp = cp<(xlxl, cp') and therefore 

Differentiating (17) and using the boundary condition 
we find easily 

which proves (A.7). 

We show in conclusion that the results a re  indepen- 
dent of the choice of the intervals (0, n) or (O,2n). The 
possibility to change from one interval to the other is 
connected with the fact that when kF1 >> 1 all  stochastic 
equations a r e  invariant with respect to the transfor- 
mation cp - cp , i  * a for each variable cp independently. 
We show how one can use that fact through the example 
of averaging a two-point expression of the kind 
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i.e., we shall  consider Eq. (28), dropping the unirn- 
portant factor a(jl jl). The total expression for  this 
average is 

> 
Here ( b ( q ~ , < ~ t )  - cpZ) and (6(q - cp<(jljl, cpl))) are, re- 
spectively, the probability distribution function and the 
transition probability referring to  the interval (O,2n). 
We have 

2 -  - 
A,,, = yj dcp j dv' (6(9?-9) [f4(cp)8(cp-cpC(ili',cp')) 

0 0 

+fl(cp+n)6(cp+n-cpcO'li',cp')) Ifr(cp')6(cp'-~~<))u 

As was explained above 

where wP(qo) is the probability distribution (29) refer- 
ring to the interval (0, n). If the functions fl and f, are 
both even o r  odd with respect to  the substitution 
rp - cp i n we get again Eq. (31). 

When there are several  energies we can perform the 
indicated transformations independently for  each varia- 
ble qLi.  

"Hence it follows that in the averaged single-particle Green 
functions there is m information about localization or delo- 
calization. 

2 '~r i t ing  i t  down in terms of the spectral density means that 
among all integrations the integration over E must be per- 
formed last. In accordance with 037 of Ref. 8 we must then 
drop the term with e2jjA/m. 

')see the Appendix about the choice of interval. 
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The temperature dependence of the viscosity and of the thermal conductivity of liquids is obtained in the 
semiquantum region, i.e., below the Debye temperature but above the quantum degeneracy temperature. 
The viscosity is inversely proportional and the thermal conductivity is proportional to the temperature. 

PACS numbers: 67.20. + k, 66.60. + a, 51.10. + y 

From the point of view of the symmetry of particle 
arrangement, liquids do not differ from gases and are 
on the average homogeneous and isotropic systems that 
have no long-range order. In contrast to gases, how- 
ever,  they have a clearly pronounced short-wave 
order, a substantial manifestation of which is the pres- 
ence of the vibrational particle motion characteristic 
of solids. Melting of a solid i s  accompanied by a rela- 
tively small  change of the density and therefore affects 
relatively little the properties of short range order and 
of the vibrational motion. In liquids, however, there 
is a translational particle motion much more pro- 
nounced than in solids. This motion, however, which 
in fact is what destroys the long-range order, has 
nothing in common with the f ree  translational motion 
of particles in gases. It is the result of individual ac ts  
of jumping from one equilibrium position, about the 

particle had executed oscillatory motion, to  a neigh- 
boring vacant equilibrium position. It is of course 
more  accurate to speak of ac ts  of the simultaneous 
rearrangement of the configuration of the equilibrium 
positions of a group of particles. Since any such re -  
arrangement entails the surmounting of a potential 
barr ier ,  the characteristic frequency 1/r (T is the 
lifetime in the given equilibrium position) of the trans- 
lational motion decreases very rapidly (exponentially) 
when the interaction increases. In a strong-inter- 
action system, such as a liquid, this frequency is much 
lower than the characteristic frequency 51 of the vibra- 
tional motion of the particle about the equilibrium po- 
sitions. 

The described picture is the basis of the theory de- 
veloped by Frenkell for kinetic phenomena in ordinary 
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