
nonbalance terms describe processes of diffusion and 
of drift, respectively, in momentum space. In scatter- 
ing by magnetic spots, the perturbations 6fk drift in the 
mean magnetic field and slowly spread out. In scatter- 
ing by a noncentral potential, the situation is the oppo- 
site. The perturbations spread out rapidly, while the 
detailed-nonbalance terms produce a small asymmetric 
distortion of their shape. 

5. We shall discuss briefly the problem of describing, 
on the basis of (4), transport phenomena produced in R 
space by the absence of detailed balancing. We define 
the particle current I in coordinate space as kfkdk. 
Then we have from (4) 

At the initial instant, let there be a currentless pertur- 
bation, 6fk= bf+. Because of the different parity of the 
detailed-balance and nonbalance terms in the current 
h, it follows immediately from (10) that the transition- 
a l  process in the absence of detailed balance will be 
accompanied by transport of particles. But if there is 
a source that maintains the symmetric perturbations, 
6fk = 6f,, (for example, a high-frequency field), then the 
additional terms in the FP equation will produce a con- 
stant flow of particles (electric current). Such a photo- 
galvanic effect (and also the anomalous Hall effect6) 
can be immediately described by means of the modified 
FP equation in terms of the coefficients A, and B,,, .  

The authors a re  grateful to Ya. B. Zel'dovich, on 
whose initiative this work was done. 
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Use of averaging method in problems of high-resolution 
nuclear magnetic resonance in solids 
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The Krylov-~o~ol~ubov-~itropol'ski; averaging method is used to derive an expression for the average 
Hamiltonian that describes the evolution of a spin system under the influence of pulse sequences. It is 
shown that the equation customarily employed for the average Hamiltonian and based on the Magnus 
expansion is nonsecular in the higher orders of perturbation theory, i.e., the contribution of the latter to 
the line shape corresponds to satellites at frequencies that are multiples of the fundamental frequency. 
Some concrete situations are considered where the use of the Magnus expansion leads to incorrect 
physical results. The limits of applicability of the theory of the average Hamiltonian is investigated. 

PACS numbers: 76.20. + q, 76.60. - k 

New methods of NMR in solids, based on the work important to note that by suitably choosing the pulse 
of J.  S. Waugh and co-workers,' have been attracting sequence we can selectively suppress one part of the 
much attention recently. The idea of the new methods spin-spin interactions o r  another, s o  that the method 
is that a periodic sequence of pulses is applied to a can provide an increased amount of information. 
spin system and averages out a definite part of the 
spin-spin interactions, thus leading to an effective The response of a spin system to a pulse sequency i s  
narrowing of the magnetic-resonance lines. It is  usually analyzed mathematically by the average- 
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Hamiltonian method developed in detail in Refs. 1 and 
2. This method is based on the application of the 
Magnus expansionS to the spin-system evolution opera- 
tor .  Heberlen and Waugh' have shown that if mea- 
surements a r e  made a t  instants of time t, (the period 
of the pulse sequence), then the evolution of the spin 
system can be approximately regarded a s  taking place 
under the influence of a time-independent average 
Hamiltonian. This simplifies greatly the solution of 
the problem which now becomes conservative, com- 
pared with the initial formulation. 

Recent experiments , 4  however, yielded results  that 
conflicted with the indicated theory. It was therefore 
stated in Refs. 5 and 6 that the average-Hamiltonian 
field i s  not applicable a t  a l l  a t  t 2 T2 (where T, i s  the 
transverse-relaxation t ime),  and the spin system can- 
not be regarded a s  conservative. Since the Waugh 
theory describes well a large number of experiments, 
we doubt the validity of this statement. 

On the other hand, methods of investigating the 
behavior of a sys tem under the action of a periodic 
perturbation a r e  well known and mathematically cor-  
roborated in mechanics (e . g . , the widely employed 
Krylov-Bogolyubov-Mitropol 'skir averaging method7). 
The averaging method is based on ideas utterly dif- 
ferent from those of the Waugh theory, which i s  based 
on the Magnus expansion. The averaging method i s  
connected with the existence of a certain change of 
variables, whereby i t  becomes possible to eliminate 
the explicit t ime dependence with any degree of ac-  
curacy relative to a smal l  parameter ,  i . e .  . i t  permits  
the solution of the exact problem to be approximated by 
the solution of a corresponding conservative problem 
much simpler  than the initial one. From this point of 
view the averaging method and the Waugh theory should 
lead to s imi lar  results ,  and the comparison of results  
obtained by different methods is of considerable in- 
te res t .  Furthermore,  i t  is possible to investigate 
within the framework of the averaging method the al- 
ready mentioned fundamental question of the l imi ts  of 
applicability of the average-Hamiltonian theory and to 
ascertain the causes of the deviation of Waugh's theory 
from experiment. 

We consider the bahavior of a system under the action 
of a periodic perturbation (a part icular  case of which 
is a pulse sequence). The evolution of the sys tem i s  
determined by the Liouville equation 

where H is the spin-spin interaction operator  and V ( t )  
is the periodic perturbation. 

Following Haberlen and Waugh,' we introduce the 
unitary transformation 

where the operator U sat isf ies the equation 

The equation for  P takes the form 

2= i[o,~(t)], B ( t ) = U ( t ) H U - ' ( t ) .  
dt 

Following Ref. 1 ,  we assume that the perturbation 
has periodicity and cyclicity properties ( i . e . ,  ~ ( t  
+ Nt,) = V(t) and U(Ntc) = I ) ,  s o  that R(t) i s  also a 
periodic function with period t,. If, in analogy with the 
method of Bogolyubov and ~ i t r o ~ o l ' s k i ~ , '  we change 
variables in (2) by introducing the "dimensionless time" 
x =  t/t, then the right-hand side of the equation i s  of 
the o rde r  of tllHll (the double ba r s  mark  quantities in 
frequency units). The pulse sequences a r e  chosen 
in the experiment such a s  to satisfy the condition t, 
IlHll << 1, fo r  only in this case can the evolution of the 
spin sys tem be described by the average-Hamiltonian 
theory. Consequently the right-hand side of Eq. (21, 
written in dimensionless fo rm,  i s  proportional to the 
sma l l  parameter  E =  tcllHll and is  of the same form a s  
the equation in the standard formulation.? In order  not 
to clut ter  up the exposition, we shall not make the 
indicated change of variables,  but will seek  the solu- 
tion of (2) in the form of a s e r i e s  in powers of H (and 
i t  will be seen f rom the final equations that the actual 
expansion parameter  is indeed tllHI1) . 

Thus,  in accord with the averaging method, we seek 
the solution of (2) in the form 

where the operator [ ( t )  sat isf ies the closed equation 

The dependences of the quantities pen) and A(") on 5 in 
Eqs.  (3) and (4) is l inear,  s ince Eq. (2) is linear in P. 

Since R(t) is a periodic function, i t  can be expanded 
in a Fourier  s e r i e s  - 

R ( t )  = z H,e'*ml, 
"--- 

2x I Ic 
= - n, H ,  = - dtEl ( t )  e-'""'. 

t c  tc 8 

Following the averaging method, we also expand p(m) 
in Fourier  ser ies :  

The absence of zeroth harmonics from the expansion 
(6) means that the entire slow dependence on the time 
is contained in [(t). Differentiating (3) with respect  to 
t ime with (4)-(6) taken into account, and substituting 
in (21, we obtain 

The expression for  A(#)  can be transformed into 

It i s  seen  f rom the expressions for  p f )  and AC2' that 
the expansion parameter  i s  indeed the quantity tllHII. 
Thus, in second-order in the perturbation, we can 
write the equation fo r  [(t) in the form 
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where 

has the meaning of a Hamiltonian. If we now replace the 
quantum Poisson brackets by classical ones, then the 
obtained expression coincides with the expression for 
the average Hamiltonian, obtained in the classical case 
by using the averaging method in the canonical for- 
malism. ' 

Obviously, expression (8) i s  valid a t  all times, 
whereas the analogous expression obtained on the 
basis of the Magnus expansion is meaningful only 
fo r  times that a re  multiples of t,. 

It is  shown in Ref. 7 that if the average Hamiltonian 
is calculated accurate to second order, then i t  i s  
sufficient to retain in the expansion for ~ ( t )  the first- 
order terms. It was noted above that the entire slow 
dependence on the time is contained in [(t) and p(l)(t) 
yields rapid oscillations. 

We discuss now the limits of applicability of the 
employed method. In the averaging method this ques- 
tion is dealt with the f i rs t  fundamental theorem of 
Bogolyubov7 (a generalization of this theorem to in- 
clude infinite-dimensional Hilbert space is given by 
L o s ~ ) .  AS applied to our case, this theorem states 
that, subject to rather general restrictions on H(t), 
the solution ((t) taken in first  approximation is asym- 
ptotically close to the solution of Eq. (2) in the dimen- 
sionless-time interval 0 < x < L/c, where the number 
L can be made arbitrarily large a t  sufficiently small 
E.  In the usual time units, this corresponds to the 
time interval 0 < t < LT,(T, = llH1l-l). The system can 
thus be regarded a s  conservative overtime intervals 
much longer than T,. This statement is  all  the more 
valid for the higher orders.  

We compare now (8) with the expression obtained by 
Waughl for the average Hamiltonian. It is of the form 

Changing to the Fourier representation, we get 

We see that expressions (8) and (9) coincide in first-  
order approximation. Consequently, in problems 
where the first  approximation is sufficient, Waugh's 
theory is valid at times t >> T. At Ho = 0 expressions 
(8) and (9) also agree up to second order, and conse- 
quently yield identical results, so  that Waugh's theory 
describes correctly the results of experiments in 
which the width is determined by Ho o r  H(') (at Ho=O). 
At Ho + 0, however, there appears in (91, in contrast 
to the result obtained by the averaging method, a non- 
secular term in the form 

A similar situation will be encountered also in the 
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higher orders.  We consider below examples from 
which it follows that i t  is precisely the presence of 
nonsecular terms in the higher orders which is the rea- 
son why the Waugh theory does not agree in a number of 
cases with the experimental data (and not that the 
theory is incorrect a t  t 2 T,, as is stated in Refs. 5 
and 6). 

1) We consider a system of spins that interact in 
dipole-dipole fashion and a re  situated in a constant 
magnetic field. It is  well known (see, e .  g. , Ref. 9) 
that if the constant field is much stronger than the 
local field produced a t  the nuclei by the dipole-dipole 
interaction, then to determine the line shape it is 
necessary to take into account only the secular part  of 
the dipole-dipole interaction. This part can be sep- 
arated with the aid of the method described above. In 
this case 

The explicit form of Him) can be found, e .g . ,  in Ref. 9. 
The operator U(t) takes the form 

and consequently the cyclicity condition will be satis- 
f ied a t  t, = 2s/00. The average Hamiltonian calcula- 
ted with the aid of (8) is 

This expression was derived earlier by other methods 
by Jeener e t  al.1° On the other hand if we use (91, 
then an additional nonsecular term appears in second 
order,  namely 

and inclusion of this term in the calculation of the line 
shape gives an incorrect result, corresponding to 
satellites a t  frequencies that a re  multiples of the 
fundamental frequency. 

2) We consider now the damping of the transverse 
magnetization (i .e. ,  the x component) under the in- 
fluence of a pulse sequence 

which was investigated by Ivanov, Provotorov, and 
Fel'dman. In multipulse NMR experiments one 
usually investigates the Fourier transform of the x 
component of the magnetization. The line shape should 
be determined in this case by the average Hamiltonian 
(8). In fact, the central component of the line is deter- 
mined by the Fourier transform of that part of the 
transverse magnetization which depends slowly on the 
time, while the fast oscillations a re  determined by 
the line satellites. In other words, to determine the 
line shape it suffices to retain in the expansion (3) the 
first  term ( ( t ) .  But ( ( t )  satisfies Eq. (7) with time- 
independent Harniltonian B. Thus, according to the 
general theorem,ll the line width is indeed deter- 
mined by the average Hamiltonian (8). 
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We now ascertain the results  obtained f o r  the pulse 
sequence (12) from the Waugh theory and f rom the 
averaging methods. Both methods can be used a t  cp 
=rr/m (where m i s  an integer), s o  a s  to satisfy the 
cyclicity and periodicity condition. Using the results  
of Ivanov et a1. , 5  we write the Hamiltonian of the 
dipole-dipole interaction in the form 

4 ( { i ( m n + l ) n t )  
Hd(t)  = --Hdx+ Cn Hd2 exp -. 

2 
I--* 

m-r 

where 

( - l )"m sin(n/m) 
C. = 

n(mn+l)  

After the action of the 90; pulse, the initial s tate 
takes the form 

The average Hamiltonian calculated with the aid of 
expression (8) i s  

1 a = - - H ~ ~ + ? A , [ H ~ - "  ,Ha"], 
2 

where 

m3 sinz(n/m) 2 1 
A m - .  -. 

2x (mn+ 1)' 

Since [R, I,] = 0, the initial s tate does not change with 
t ime.  On the other hand if we use expression (9) to 
calculate the average Hamiltonian, then we obtain in 
second order  an  additional nonsecular t e rm in the 
form 

where 

It i s  easily seen  that B, = 0 a t  m = 2, i. e .  , the result  
agrees with (13). At m # 2 ,  however, we have B, 
#O and the Waugh Hamiltonian takes in second o rde r  
the form H' = B  +Hns, and since 11H[1 >>IIHn,II, the situa- 
tion here i s  analogous to exchange n a r r ~ w i n g . ~  It i s  
easy to estimate the order  of the damping due to Hns. 
It is of the form 

This expression does not agree  with the available ex- 
perimental data4 (a relation of the type 1/T,, a T ~ / T , ~  
is observed in experiment). We emphasize once more  
that this contradiction i s  due to the nonsecular charac- 
t e r  of the Magnus expansion. 

The experimentally observed damping3 can be taken 
into account within the framework of the method des- 
cribed above in the following manner. Since [ E ,  I,] 
=0,  i t  follows f rom the general premises  of nonequili- 
brium the rmodynami~s '~  that af ter  a t ime of the order  
of T ,  there will be established in the system a quasi- 
equilibrium state,  which is characterized in this case  
by two quasi-integrals of motion, I, and $4. The sub- 

sequent relaxation of the  system proceeds with a t ime 
much longer than T , .  To determine the behavior of 
the system during this stage we can no longer confine 
ourselves to expression (8) fo r  the average Hamil- 
tonian, but must  take into account the influence of the 
non-averaged par t  of the dipole-dipole interaction. 
This program was actually effected by another method 
in Refs. 5 and 6. 

3) As the third example, we consider the effect of 
radiative magnetic-resonance line shift in the case  when 
the R F  field acting on the sys tem oscillates in a plane 
perpendicular t o  the constant field (the Bloch-Siegert 
shift).  This case can also be analyzed on the basis  
of the average-Hamiltonian theory. The system 
under consideration i s  described by the Hamiltonian 

The smal l  parameter  in our problem is  the ratio of 
the amplitude of the laternating field to that of the 
constant field, & = w , / w , .  We change to a coordinate 
f rame that rotates with frequency w, .  In this system, 
the Hamiltonian takes the form 

It i s  seen from this expression that in our  case 

The average Hamiltonian calculated with the aid of 
(8) is 

We see  therefore that the shifted frequency, to which 
the line center  corresponds, is 

This is a well known result  (see the review of Novikov 
and skrotskir13 and the references  therein). But if we 
use (9), the shifted frequency i s  

s o  that in this example the Waugh theory yields a most 
incorrect  result .  

We note finally that the averaging method described 
above i s  valid not only f o r  periodic perturbations (as 
is the Waugh theory), but also for  an  arb i t ra ry  t ime 
dependence. All that mat te rs  he re  i s  the existence of 
an  average value7 

1 "  
H,= lim - j iY( t )  dt, 

le'" t c  

s o  that the results  obtained above a r e  valid also fo r  
stochastic processes  if the corresponding correla-  
tion t imes  a r e  shor t  enough. 
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Microstructure of a resistive layer on an aluminum surface 
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The microstructure of the resistive layer formed on the surface of superconducting aluminum after 
switching off an external magnetic field Ho > H, is investigated by using point junctions of size do<(o (50 
is the superconducting coherence length in aluminum. The macroscopic properties of the layer are close 
to the well-known properties of a two-dimensional mixed (TDM) state in type-I superconductors 
[Landau and Sharvin, JETP Lett. 10, 121 (1969)l. It is found that, under various conditions, three types 
of structure exist in the layer, viz., stationary laminar, stationary island, and nonstationary island. The 
laminar structure is close to the model of the TDM state proposed by Gor'kov and Dorokhov [Sov. 
Phys. JETP 40, 956 (197511. It is found that the structures move along the surface and that the dynamics 
of the structures is qualitatively the same as in the intermediate state [Gubankov and Margolin, JETP 
Lett. 29, 673 (1979)l. On the basis of an analysis of the waveforms of the signals from the point junctions 
it is concluded that regions exist in which the order parameter varies from zero up to the 
superconducting value. The measured layer thickness d -gW The surface impedance differs from that 
corresponding to the pure superconducting state. 

PACS numbers: 74.70.Gj, 73.25. + i 

Among the resistive states of type-I superconductors, 
particular interest attaches to the two-dimensional 
mixed (TDM) state observed by I. Landau and Sharvin.' 
This state is produced on the inner surface of a hollow 
cylinder under the influence of a strong current flowing 
through it, when the ordinary intermediate-state struc- 
ture is no longer present in the sample. An electric 
field is present in the TDM layer, and the current flow- 
ing through it produces a magnetic-field discontinuity 
AH << 2Hc across the layer. Such a layer was subse- 
quently produced in the interior and on the outer surface 
of a hollow cylinder.' The presence of the TDM state 
causes paramagnetic effects in solid3 and hollow4 cur- 
rent-carrying cylinders. 

The study of the microscopic structure of the TDM 
state is of great  interest because the various employed 
theoretical m ~ d e l s ~ - ~  predict different microscopic a r -  
rangements. A possible criterion of the proximity of a 
layer to the TDM state may be the relation between its 
characteristic dimensions and the superconducting co- 
herence length t,. Consequently the most convenient 

fo r  structural investigations of the TDM state a re  
superconductors with large 5, particularly aluminum 
(to= 1.36~10-~ cm, Ref. 9). 

We have previously notedlo that a layer with proper- 
t ies  close to those of the TDM state can be produced on 
the surface of a type-I superconductor when the extern- 
a l  magnetic field H,> Hc is turned off. In fact, the field 
outside the sample drops rapidly to zero, whereas in 
the interior of the sample, owing to the eddy currents, 
it remains equal to H, for  a sufficiently long time. It 
follows f rom the continuity of the tangential component 
that the magnetic field is equal to zero also on the sam- 
ple surface parallel to H,. The region near the sur- 
face, where H <H,, should become superconducting, 
The produced layer cannot trap in  the sample the mag- 
netic flux, which at that time is larger  than critical. 
The change d the magnetic flux passing through the 
sample leads to the appearance of a solenoidal electric 
field in the layer. Thus, a rather thin resistive layer 
should exist on the surface of the sample. 
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