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The spectrum of the states of an electron in the combined field of immobile scattering centers that make 
up a periodic two-dimensional structure is determined in the presence of a constant external force 
(electric field). A dispersion equation that is accurate with respect to all the energy parameters of the 
system and takes into account the Stark effect and the field emission of the electrons is derived. The 
results are of interest for field-emission spectroscopy of submonolayer films on surfaces of solids. 

PACS numbers: 79.70. + q 

1. INTRODUCTION 

The properties of periodic structures having fewer 
spatial dimensions (two-dimensional and one-dimen- 
sional crystals) a re  being intensively investigated a t  
present in connection with searches for methods of 
producing high-temperature superconductivity, ' a s  
well a s  in connection with the solution of various prob- 
lems of physics of submonolayer films on surfaces of 
solids (see, e .  g .  , the review Bol'shov et a1. 2) .  The 
present paper contains a solution of the Schrodinger 
equation that describes the three-dimensional motion 
of an electron in the combined field of immobile in- 
teraction centers that make u p a  regular two-dimen- 
sional lattice, in the presence of a constant external 
field normal to the plane. The solution obtained gen- 
eralizes the results of Demkov and Subramanyad 
to include the case when an external field acts on the 
electron, and the results of Demkov and Drukarev5 
and of Slonim and the present author6 to include the 
case of an infinite number of ordered scattering cen- 
ters. In the long-wave approximation (the model of 
zero-radius potentials7) a dispersion equation is de- 

surfaces. 

The influence of single adsorbed atoms was taken into 
account by Duke and Alferieff, l1 and also by ~ r o d s k i r  
and Urba~h.''-~' The corresponding results a re  ap- 
plicable a t  small degrees of coating, when the inter- 
action of the adsorbed particles can be neglected. At 
higher degrees of coatings, when a two-dimensional 
crystal lattice i s  formed on the s u r f a ~ e , ~  the charac- . 

t e r  of the influence of the adsorbed particles on the 
spectrum of the released electrons will undergo 
qualitative changes. Actually, as follows from the 
exact solution, the probability of detachment of the 
electron from the two-dimensional (or one-dimen- 
sional) crystal has a qualitatively new energy depen- 
dence-it is weak for all values of the quasimomentum 
vector, with the exception of a small vicinity of the 
symmetry point r. At q = O  the electron energy is a s  
a rule minimal, but the rate of disintegration of these 
states turns out to be maximal and in sufficiently weak 
fields i t  can exceed by several orders of magnitude the 
rate of disintegration of single-center systems, which 
was f i rs t  determined by Demkov and D r u k a r e ~ . ~  

rived [see (13) below], whichis accurate with respect The probability of the departure of the electrons from 
to all the energy parameters of the problem. It des- the volume bands, on the contrary, increases rapidly 
cribes the motion of the electron with account taken of with increasing energy (see Refs. 8, 9,  16). The 
all the significant interactions-exchange, and auto- competition of two tunneling channels (from the sur- 
ionization (the tunnel effect responsible for  the finite face of the solid and from the two-dimensional film) 
lifetime of the electron relative to escape to the vacuum). can result in a great variety of energy dependences 

Besides being of general interest, the solution of the 
problem posed in this article i s  stimulated also by the 
practical needs of the rapidly developing field-emis- 
sion spectroscopy of solid surfaces (see in this con- 
nection the reviews%'). Present-day experiments make 
it possible to measure with high accuracy not only the 
integral but also the differential currents of field-emis- 
sion electrons. The energy distribution of the elec- 
trons released by the tunnel mechanism is presently 

of the field-emission electron currents. An analysis 
of all the possible situations is of independent and 
special interest, and we confine ourselves here to a 
solution of the fundamental problem of the dispersion 
law of the band states of the electron in a two-dimen- 
sional crystal lattice in the presence of a constant 
electric field. We shall not assume beforehand that 
the field i s  weak, and obtain a dispersion equation that 
is valid in the general case. 

an important source of information on the character 
of the motion of the electrons near the surface-the 
level density, the dispersion law, the configuration 

2. DISPERSION LAW OF AN ELECTRON IN THE 

of the wave functions, etc. The modern theory of the 
FIELD OF A TWO-DIMENSIONAL CRYSTAL LATTICE 

energy distribution of field-emission electrons was 
IN THE PRESENCE OF A CONSTANT EXTERNAL 

developed by Gadzuk, lo* l1 Plummer , '2. l5 Modinos , '%I5 
FORCE 

and a number of others (see the reviews%'* 16). Their We consider the spectrum of the eigenvalues of the 
studies were devoted mainly to the spectra of clean Hamiltonian: 
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Here r is the coordinate of the electron; u, is the 
potential of the interaction with the s-th atomic core,  
which will henceforth be regarded for simplicity a s  
short-range and spherically symmetrical; R, = (as,, 
as,, 01, s , ,=O,  * I ,  . . . . The Oz axis is directed 
along the field intensity vector F, the lattice plane is 
normal to the vector f (R, .f = 0) . We use the atomic 
system of units throughout. 

We confine ourselves to the solution of the problem 
for a simple rectangular lattice, although analogous 
results can be obtained also in a more general case. 

Since autoionization is possible, the eigenvalue 
spectrum of the Hamiltonian (1) i s  certainly continuous, 
but if the rate of disintegration is low enough, then we 
can, a s  usual, confine ourselves to finding solutions 
of a stationary Schrodinger equation with a wave going 
off to infinity ($ - ei@(c)L a s  z - m), corresponding to 
the solution of the homogeneous Lippmann-Schwinger 
equation. In the long-wave approximation (zero- 
radius interaction model7) the system of exact algebraic 
equations describing the motion of the electron in the 
combined field of the immobile scattering centers, in 
the presence of an external constant force, takes the 
form [see Eqs. (3) and (11) of Ref. 61 

[ ~ - ( - ~ E ) ' " - ~ J C G , ~ ( E ,  R., R.) ]r ,=2n G:+'(B, R., R.,)z. . ,  
a ' # '  

(2 
up(r)= const CG:+' (E,  r, R,) z.. 

Here E i s  the energy of the considered state,  reckoned 
from the potential of the electric field on the plane 
z =0, x =  (-2%)lt2, /%I i s  the binding energy of the 
electron in the field of the isolated scattering center, 
G?)(E, R, R' ) is the Green's function of the electron in 
a homogeneous electric field, Gf@ (E, R, R) is  the 
regularized Green's function taken a t  equal values of 
the argument; 

is the Green's function of the free motion. 

With account taken of the translational symmetry 
of the interactions, we seek solutions of the system 
(2) in the quasimomentum representation: 

%.-A ( q )  exp (iqR,) 
(3) 

(q is the two-dimensional quasimomentum vector in 
the plane of the lattice). For  the eigenvalues of the 
Hamiltonain (1) [the complex function of the real 
quasimomentum E(q)] we obtain the following disper- 
sion equation 

x- ( - 2 ~ ) ~ "  = D , ( E ,  q ) .  (4 )  

The function D(E,q) is  determined here by the double 
series over the centers 

The three-dimensional Green's functions G:) ( E ,  R, R') 
can be expressed in terms of derivatives of a bilinear 

combination of two linearly independent solutions of 
the Airy equation. This representation, however, is  
difficult to use when calculating the sum over s in (5). 
We therefore use for GF)(E,R, R') the spectral repre- 
sentation given, for example, in Ref. 21: 

G:+' (E,  R, R') = J dk dE, %.a, ( R )  cp,:, (R')  
E-E,-k2/2+iq ' 

(6) 

He r e  

a re  the wave functions of the f ree  motion in a homo- 
geneous electric field 

<k,  E,lk', E.')=G(k-kf)8(E.-E:), 

V ( x )  is an Airy function of the first  kind,22 Ec i s  the 
energy of the longitudinal motion, and k is the trans- 
verse momentum [k = (k,, k,, o)] . 

We now interchange in (5) the order  of integration 
and summation. Then, using the well known equality 

(see, e .g . ,  Ref. 23, p. 3111, where b is the reciprocal- 
lattice vector and Sto is the area  of the unit cell, we 
obtain for the function D(E, q) the representation 

At p =  0 the curly bracket in (8) contains the difference 
between a sum that diverges a t  large b and an integral 
that diverges a t  large momenta. The integral under 
the summation sign i s  equal, apart from a normaliza- 
tion factor, to the one-dimensional Green's function in 
a homogeneous electric field f a t  a longitudinal energy 
E = E  -(q+b)2/2 .  

The regular method of constructing the Green's func- 
tion of any one-dimensional Schrodinger equation i s  
well known (see, e .g . ,  Ref. 24, p. 136). We have 
accordingly 

Here U ( x )  is  the second linearly independent solution 
of the Airy equation. 22 

The obtained representation makes it possible to 
separate immediataly the imaginary part of the func- 
tion D(E,q) (we have in mind the imaginary part of 
the complex function a t  real values of the argument): 

At f < 0 ; 1 ; ; ~ / ~  the ser ies  in powers of b in (10) converges 
very rapidly and we can confine ourselves to the f i rs t  
term with b=O. 
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We now obtain an expansion of the real part  of the 
dispersion function D(E,q) in even powers of the field 
intensity. To this end we use the Feynman integral 
representation 

-i -dt  
G:" (E,  z, z r )  = - 

(2ni)012 JF 

GY)(E, z ,  z' ) is  the one-dimensional Green's function 
of the electron in the field f .  We deform in (11) the 
integration contour in such a way that it goes off to 
infinity along the imaginary negative semiaxis. We 
now expand the exponential exp(-if2p/24) in a ser ies  
and integrate term by term.  As a result we obtain 
the nepresentation 

a weak field can be obtained from an equation that takes 
into account the polarizability of the considered states 
but ignores the decay: 

Allowance, in the dispersion equation, for the imag- 
inary part of the function D(E,q) leads to damping of 
the considered states. At f < [ E I the imaginary part 
i s  exponentially small ,  corresponding to the quasi- 
classical conditions of electron tunneling through a 
field barr ier .  In the highest -order approximation 
in the small parameter f ( ~ [ - ~ / ~  we have for  the 
imaginary part  of the complex dispersion law E(q) 

1 
~e D ( E . ~ )  =-2% {7 $ (1) ' (2)3n+811 

r (3n+'/,) ImE(q)  -2"IEo(q) I" exp(-'l,f-'(21Eo.(q) I +q2)%) 
Q0(2n) R-o r (n+ 1 )  x ( P . [ I + ~  exp(-2"IEo(q) I\,+QR.) I)  - ' ( 2 1 ~ . ( q )  I+qa)-'h. (17) 

X X  ( 2 l ~ l +  (q+b)z)  -sn-'h-(ul)-2 E-,$+iq ). .+o 

b (1 2) 
Here E,(q) a r e  real  solutions of the Subramanyan 

At E51, < 1 the series (12) also converges rapidly and, equation (15). 

accurate to terms we confine ourselves in it Comparison of the obtained expressions with the 
to terms with b = 0. Demkov-Drukarev solution for one isolated center5 

The dispersion equation that determines the complex 
function acquires ultimately the form 

(The divergences in the term that does not contain the 
field intensity cancel each other, after which the term 
can be easily transformed to the known form. See the 
analogous situation described in Ch. VI, Sec. 3 of the 
monograph of Demkov and ~ s t r o v s k i i .  7, 

The terms separated in the dispersion function have 
a clear physical meaning-they take into account res- 
pectively the exchange interaction, the polarization 
of the electron cloud, and the possibility of tunnel auto- 
ionization. When all the interactions a re  "turned off, " 
Eq. (13) determines one infinitely degenerate energy 
level of an isolated atom 

~ ( q )  =-'I1xa. (14) 

exchange interaction: the term 

lifting the degeneracy, forms band states that a re  col- 
lectivized over the centers and a re  classified by the 
quasimomentum vector q. The dispersion law for 
these states is determined by the Subramanyan equa- 
tion+ 

shows that a t  ( E, 1 51, << 1 the strong exchange interac- 
tion between the ordered identical centers greatly 
increases the polarizability of the electron cloud (by 
approximately times, where X2 = (2 1 E, 1 )-I), 
and alters qualitatively the energy dependence of the 
disintegration rate. In fact, the energy of the band 
states a t  the symmetry points I?, X and W has extrema 
(see, e .g. , Ref. 25, p. 74) corresponding to quasi- 
momentum values q = 0, q = T/Q;/~ and q = n(2/QO)' 12. 
At [ E (  51, << 1 the inequality q2 > (21 ~ ( q )  1) is  satisfied in 
a large part of the f i rs t  Brillouin zone, i . e . ,  the decay 
is strongly suppressed for  practically all the band 
states,  including those adjacent to the boundary of the 
continuous spectrum. ') Only in a small vicinity of 
the minimal energy ~ ( r ) ( b q - f ' / ~ ( l  + E i  @))-I) does the 
decay have a higher (compared with the case of iso- 
lated center) probability: 

It is  easy to understand the origin of the large fac- 
tors in (19) for r(q). The f i rs t  of them takes into 
account the coherence of the interactions over the 
scales of the damping length of the wave function of the 
single-center state. The second large factor, ( E 1 'l2f, 
takes into account the quasi-one-dimensional charac- 
t e r  of the autoionization of the states of the flat lattice. 
The kinematic suppression of the field emission of the 
electrons from the surface of a two-dimensional crys- 
tal takes place also a t  ( E ( 51, - 1. By way of illustra- 
tion we have calculated the imaginary part  of the func- 

X- (-2E)'"= C R . - '  exp(- (-2E) 'hR,+iqR,). (15) tion E(q) for several characteristic values of the 
.+o parameters %z and d3/f. The results of the calculations' 

Turning on the electric field distorts the corresponding by means of formulas (15)-(17) a r e  shown in Figs. 1 
wave functins, and the corrections to the spectrum in and 2. 
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FIG. 1. Energy dependence of the autoionization probability at  
different values of the parameter v=x3/f: curve 1-for v = l ,  
curve 2-for v=2, curve 3-for v=5. The abscissas repre- 
sent the change of the energies of the band states along the 
symmetry axes q = (q, , 0,O). In the calculation it  was assumed 
that xu =2, E(g) =-Eo(l +6(cosqp +cosq,a)),6 ~ 4 e - ~ ~ / x a ,  
co=id; Z =  L E O - ~ o ( r ) l / l ~ o ( ~ ) I , E o = R e E ( c l ) .  

The  resu l t s  show that  in  weak e l e c t r i c  f i e lds  t h e  
energy s p e c t r a  of the  e lec t rons  re leased  f r o m  s t a t e s  
of two-dimensional (adsorbed) c rys ta l  f i lms  should 
take the f o r m  of a nar row peak at min imal ,  and not 
maximal  as usual,  energ ies .  2,  Th is  indicates  a l s o  
that ,  in  pr inciple ,  effective depletion of t h e  low-lying 
band s t a t e s  is possible  by  special ly  select ing the am-  
plitude and durat ion of the ex te rna l  e lectr ic-f ie ld 
pulses .  

3. CONCLUSION 

We dwell in  conclusion on  s o m e  genera l  questions of 
the theory of interact ion of quasis tat ionary s t a t e s  i n  
the p resence  of t ranslat ional  symmetry .  The question 
of the c h a r a c t e r  of e lec t ron  motion in weakly decaying 
s ta tes  that  are collectivized over  the c e n t e r s  i s ,  in  
our  opinion, of g r e a t  in te res t  f o r  solid s t a t e  physics ,  
and has  apparent ly not been d i scussed  s o  f a r  in  the 
l i t e ra ture .  Examples of s ingle-center  quasis tat ionary 
s t a t e s  a r e  well known in atomic physics ,  and together 
with the "field" resonances considered in the p resen t  
paper  they include numerous c a s e s  of potential (centri- 
fugal o r  shape) and Feshbach resonances (see,  e . g . ,  
the review by  Schulz2'). The  possibility of formation,  
i n  periodic s t ruc tures ,  of weakly decaying autoioniza- 
tion bands of s ingle-center  shape resonances w a s  demon- 
s t ra ted  e l sewhere .  27 Of fundamental in te res t  is the 
question of the c h a r a c t e r  of the  interact ion in a peri-  
odic s t r u c t u r e  of resonance s t a t e s  of the  Feshbach type. 
An analysis  of the corresponding two-center modelz8 
shows that  if no account is taken of the  exciton effect 
(i. e . ,  without allowance f o r  t h e  possibility of d i r e c t  
exchange of interact ion between the c o r e s )  the  need 
f o r  a double ineals t ic  t ransi t ion great ly hinders  the 
t ransi t ion of the e lec t ron  f r o m  one cen te r  to  another .  
In periodic  s t r u c t u r e s ,  such  resonances  can  yield only 
weakly collectivized and in th i s  s e n s e  rapidly decaying 
states. 

The situation should be different if the exciton effect 
is taken into account. A multichannel model of ze ro-  

FIG. 2. Dependence of the autoionization probability on the 
quasimomentum q= (q,, 0,O) at  various values of the parame- 
ter xu. Curve 1-for xu =1.5; curve 2-for xu '2.5. The 
ratio m/m* is  respectively 0.67 and 0.40. 

rad ius  potentials,  which includes t h e  possibility of 
d i r e c t  interaction of the c o r e s ,  was  proposed in Ref. 
29. An analysis  of the  band s t a t e s  within the f r a m e -  
work  of th i s  exactly solvable model shows that  i n  
periodic  s t r u c t u r e s  having a channel through which 
the  e lec t ron  is f r e e  to  go off t o  infinity (semi-bounded 
c r y s t a l s ,  two-dimensional and one-dimensional s t ruc-  
t u r e s ) ,  the  d i spers ion  law of the  electron-exciton 
complexes undergoes qualitative changes i n  com- 
par i son  with those known present ly f o r  unbounded 
three-dimensional  c r y s t a l s  ." In par t i cu la r ,  the i m -  
aginary p a r t  of the complex d i spers ion  law, which 
descr ibes  the probability of detachment  of a n  e lec -  
t ron  f r o m  the s t r u c t u r e  when the electron adsorbs  
the  exciton energy,  t u r n s  out to  be  a non-analytic func- 
tion of the quasimomentum even within the l imi t s  of the 
f i r s t  Brillouin zone. A s i m i l a r  resu l t  takes place a l so  
f o r  the c a s e  of potential resonances.' '  The  predicted 
anomalies  of the r a t e  of dis integrat ion of the electron 
autoionization s t a t e s  in  periodic  s t r u c t u r e s  might b e  
observable in a g r e a t  var iety of e lectronic  t ransi t ions 
such  as the  photoeffect, field emiss ion ,  as well as in 
e las t i c  reflection of monochromatic  e lec t rons  f r o m  
the sur face  of a solid coated by a monolayerf i lmof ad- 
sorbed  par t i c les .  

' ' ~ t  sufficiently low values of the parameter xu ,  the upper 
edges of the energy band can be located above the vacuum 
energy level (E =O). 
when the condition m/meff < 1 is satisfied (merf is the effec- 
tive mass of the electron near the bottom of the E ( r )  band. - .  
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Fokker-Planck equation in the absence of detailed balance 
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It is shown that the usual Fokker-Planck (FP) equation is not suitable for describing kinetic effects that 
are caused by breakdown of detailed balance. For the case of elastic scattering, a modified FP equation is 
obtained, containing third-order derivatives with respect to the momentum. Its properties are 
investigated. The problem of describing the photogalvanic effect and the anomalous Hall effect on the 
basis of the FP equation is considered. 

PACS numbers: 05.60. + w 

1. It is customary to suppose that one of the basic 
principles of kinetics is the principle of detailed balanc- 
ing (PDB).'P~ In the simplest case of elastic scattering 
of particles by immovable centers, the PDB states that 

Wkk~=Wt,r, (1 ) 

where We. is the differential probability of a transition 
from a state with momentum k t  to a state k .  It is well 
known that the PDB does not reflect any fundamental 
symmetry relation in either a quantum o r  a classical 
description of s ~ a t t e r i n g . ~ ' ~  The fundamental symmetry 
relations for W,., reflecting the invariance of the equa- 
tions of motion to space and time reflections (P and T 
transformations), have the forms5 

Wrt.=W-r,-r*, Wtrs=~-rr , -r .  (2 ) 

If one of these relations is violated, the PDB is invalid. 
In particular, P invariance is absent if the scattering 
potential is deprived of a center of symmetry (Fig. 11, 
and T invariance is violated in the presence of a mag- 
netic field (Fig. 2). 

Until recently, no kinetic phenomena connected in 

principle with absence of detailed balance were known; 
but in recent years, the situation has changed. At 
present a number of such phenomena a re  known. These 
a re  the anomalous Hall e f f e ~ t , ~  the kinetics of gases 
with rotational degrees of freedom,' and the photogal- 
vanic effect in media without a center of symmetry.' 
Investigation of these effects has been carried out es- 
sentially on the basis of the Boltzmann equation 

The peculiarities of kinetics in the absence of de- 
tailed balance a re  due to the fact that the balance of 
arrivals and departures i s  accomplished not according 
to the scheme k = k t ,  but by means of the cycles k-k' 
-kt'-...-k." 

2. In many physical  situation^,^*'^^" the basic equa- 
tion of kinetics is the Fokker-Planck (FP) equation 

The current j, is connected locally with the distribution 
function. We pose the following question: how can ab- 
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