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We present in closed form a model-independent phenomenological description of the static and dynamic 
properties of easy-plane tetragonal antiferromagnets with unquenched orbital angular momentum. The 
results are used to describe the magnetic properties of nickel fluoride. The presence of several g factors (y 
factors) of exchange origin predicted by the theory for antiferromagnets was experimentally observed. For 
NiF, at T = 4.2, the difference between them reaches 50%. It is shown that a one-to-one correspondence 
exists between the dynamic parameters of the two types of phenomenological equations of motion, 
Lagrangian and nonequilibrium-thermodynamic. The complete set of phenomenological parameters 
necessary for the construction of the potential and of the equations of motion is determined; these 
contain a finite number of terms and describe adequately the static and the dynamic properties of nickel 
fluoride at T = 4.2 K. The derived equations of motion and potential are used to calculate the 
magnetization components and AFMR frequencies for an arbitrary orientation of the magnetic field in 
the (001) plane. In the entire magnetic-field interval (H < 65 kOe) for which reliable measurement results 
of the magnetization are known at present, the experimental and calculated plots of the magnetization 
and of the AFMR frequencies agree within the limits of the measurement and calculation accuracy. 

PACS numbers: 75.30.Cr, 76.50. + g, 75.50.Ee, 75.10. - b 

Nickel fluoride is one of the most thoroughly experi- Ddhi4 - ~4, /mnm, T,= 73.2 K At T =4.2 K and H= 0, 
mentally studied antiferromagnets. The interest in the magnetic moments of the sublattices Mi and M2 
NiF, is  due mainly to two cases. On the one hand, to lie in the (001) plane, s o  that M l  L (M=M, + M2, 
solve the fundamental problems of the physics of anti- L=Mi-M2) and ~ 1 ( [ 1 0 0 ]  (or ~ l ) [ 0 1 0 ] ) .  
ferromagnetism it is necessary to construct a theory 
that describes the properties of substances for which 
the contribution of the orbital magnetism to the sub- 
lattice magnetism cannot be neglected. A study of the 
properties of NiFz casts light on various monitor sta- 
tions of the contribution made to the total magnetic mo- 
ment by the orbital component. On the other hand, NiF, 
differs from analogous antiferromagnets in having a 
relatively small anisotropy compared with the exchange 
interaction. Therefore, together with the simplicity of 
the structure, the relative smallness of the effective 
anisotropy fields makes it possible to use NiF2 a s  an 
example for the development of the rigorous phenom- 
enological theory that describes the experiment ade- 
quately. The published attempts to contruct a theory 
suffer either from unjustifiably excessive simplification 
of the model of the magnetic subsystem, o r  from the 
lack of rigor, from the point of view of general princi- 
ples, in the assumptions made concerning the connec- 
tion between the kinetic coefficients and the static ef- 
fective fields. A detailed analysis of the difficulties in 
the presently existing approaches to the description of 

The macroscopic phenomenological description of 
tetragonal antiferromagnets admits, a t  definite orienta- 
tions of the magnetic field H (for example ~II[110])  of 
inequality of the magnetic moments of the sublattices. 
In other words, the magnetic moments of the sublattices 
in such crystals depend not only on the temperature and 
on the magnetic field, but also on the orientations of 
the moments relative to the crystallographic axes.g In 
the dynamics, the dependence of the magnetic moments 
of the sublattices on the orientation, upon deviation 
from the equilibrium position, can be taken into account 
within the framework of the thermodynamics of non- 
equilibrium processes2 and within the framework of 
Lagrangian spin-wave  mechanic^,^^*^^ which i s  rig- 
orously valid a t  T = 0 K. Since a one-to-one connec- 
tion exists a t  T = 0 K between the dynamic phenomeno- 
logical parameters of the two it is  pos- 
sible to describe AFMR at  low temperatures by the 
equations of either type. However, if we s tar t  with the 
Landau-Lifshitz equations, whose direct generalization 
a r e  the nonequilibrium-thermodynamics equations, then 

the properties of antiferromagnets is  contained in Ref. 
1. 

The purpose of the present investigation i s  to develop 
a model-independent phenomenological a p p r o a ~ h ~ - ~  for 
a description, in closed form, of the static and the 

FIG. 1. Magnetic struc- 
dynamic properties of antiferromagnets with un- ture of NiF2. 
quenched orbital angular momentum. For the reasons 
indicated above, NiF, was chosen a s  an example. 

In the paramagnetic state, NiF, has a tetragonal crys- 
tal structure of the rutile type (Fig. 1)-space group @ ~ i + +  0 1 -  
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it turns out that the relative magnitude of the dynamic 
parameters of the spin-wave Lagrangian mechanics 
depend substantially on the ground state of the antifer- 
romagnet. We shall therefore use  as the basic equa- 
tions of the dynamics of the magnetic subsystem of NiF2 
the thermodynamic equations2 

where m = M - Mo, 1 = L - Lo a r e  the deviations of the 
vectors M and L from their equilibrium values Mo and 
Lo, ~ ~ a ~ + / a m ~ = a h i P / a l ,  AiP is  the increment to the 
Landau thermodynamic potential when the magnetic 
subsystem deviates from the equilibrium position, and 

i s  an antisymmetrical matrix4: 

where 

The phenomenological parameters yi, y2,  YQ and 
rl, r2,. . . , a r e  respectively of exchange and aniso- 
tropy origin. It should be noted that the region of ap- 
plicability of Eqs. (1) i s  limited by the spin-density 
velocity, which should be low enough to be able to satis- 
fy for the AFMR frequencies the relation u 2  << ( y ~ E ) 2 ,  
where y i s  the gyromagnetic ratio for the magnetic ion 
and HE is the interatomic exchange field. When this 
condition is violated it i s  necessary to take into account 
in the equations of motion the second derivative with 
respect to time, or  else the part of the Lagrange func- 
tion which is bilinear in the velocities in the approach 
of ~ z ~ a l o s h i n s k i i  and ICukharenko.l0 It i s  shown in Ref. 
1 that to describe the AFMR in NiF2 on the basis of the 
Lagrangian equations of motion it is  necessary to take 
into account in the phenomenological Lagrangian only 
the terms that lead to the first  derivative with respect 
to time in the equations of motion. Allowance for the 
second derivatives leads not only to a renormalization 
of the dynamic parameters but also the appearance in 
NiFz of AFMR frequencies not observable in experi- 
ment. 

To calculate the AFMR frequencies from the equa- 
tions of motion (1) it i s  necessary to determine the 
equilibrium values of the components of the vectors 
M,, and Lo. The values of Mo and Lo a r e  the solutions of 
s ix  nonlinear equations9: 

The complete rational basis of invariants (CRBI) for 
tetragonal two-sublattice antiferromagnets contains 
thirteen  invariant^^**'^ 

I l=L2 ,  I , -MZ,  I,= ( L M )  I,=L?, I ,=M2,  I.= (LM)L,M.,  
h = L J f u + L J f z ,  I o = ( L M )  LJ, ,  Io=LJ,L,M., Ilo=L.LL;, 

Z i l = ( L M ) M J f v ,  I i i=LzMzMJfv,  I l s = M 2 M t .  (4 
Assuming the thermodynamic potential % to be a func- 
tion of the invariants (4), we can write the system (3) 
in the form 

where 

For example, for the case ~ 1 ( [ 0 1 0 ]  , which has been 
well- investigated experimentally for NiF2, the system 
(5) becomes 

To solve the system (6) we use the fact that M/L << 1 in 
NiFz at H e H ,  and T =4.2 K We therefore seek the 
solution of (6) in se r i es  form 

where M ~ + " / M ~ ' - L ~ " + ~ ) / L ~ ~ - M / L < < ~ .  TosolveEq. 
(6) we expand + in a ser ies  in the components M and L, 
assuming a, to be functions of the basis invariants (4). 
Then, leaving out the intermediate steps, which can 
be found in Ref. 1, we obtain 

where the tilde over the phenomenological parameters 

+i 

means that these parameters a r e  sums of infinite 
ser ies  containing only integer powers of Lo at M=H 
= 0, while the superscripts in the parentheses denote 
the higher powers of M/L, to which the ratios of these 
parameters to L,&:O' = HE a r e  proportional. 

In the calculations of the AFMR frequencies at 
I-Ill[olo] it is  convenient to change over the variables 
x={m,,l,, rn,,rn,, 4 ,  1,). Then, recognizing that at 
~ll[OlO] we have M,={o, M,, 0), L ~ = ( L , ~ ,  0,0}, the 
nonzero elements of the antisymmetrical matrix j a r e  

ria=yl[M,o(l+~~)+~zL=oI, rzr=-r~LL,( l+T~)+Tabi, I ,  

r18--r~[L.o(l+r~)+raM~l, ~ss=ra[Mvo(l+~1z)+~r1LmI. 
(7 

In the calculation of the elements of the matrix of the 
second derivatives (of the stability matrix) a,,= (a2+/ 
axtax,), we regard the thermodynamic potential + as a 
function of thirteen basis invariants (4) 

~ I P  azr, 
aih=Qa,p (-3 (-1 , + @ k X )  0 

(a, p = i ,  2 , .  . . , f3). 

In the considered case ~11[010], the only nonzero ele- 
ments of the symmetrical stability matrix ff a r e  

a, ,=2(Q,+Q3L,oz) ,  a ,z=Qr+La'Qs+2QsLmMY~, 

a 2 , = 2 ~ 3 ~ , , Z + 2 r D , +  2L~MYoQ~*2Qt0LLOI,  a l 3 = 2 ( Q Z + @ s ) ,  
ar~=2~,+Q~,rL~OI+Qz,i2LmMwa+~z.z4Mvo'~ (8) 

a,s=@,+2cD,,,L,o'+(Qr,,+4Ql,2) LxoMvo+2Q*.~Mvez, 
u,l=~Q,+Qi,14L~oz+Q7,1MY0t, a s 8 = 2 ( Q l + @ ~ ) .  
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Solving the equation det lioi - ;6 I = 0 with .i. from (7) 
and 6 from (8), we obtain the following expressions for 
the high- and low-frequency branches wi and w, of the 
AFMR in an easy-plane tetragonal antiferromagnet a t  
HI[[ 0101 : 

Since the quantities yik and al, a r e  rather complicated 
functions of M,, and Lo, which in turn a r e  the solutions 
of the system of equations (6), it may turn out that the 
orders of magnitude of the various terms in relations 
(8)-(10) differ. At this stage of the solution it i s  prac- 
tically always necessary to take correct account of the 
orders of smalless in accordance with the actual prop- 
ert ies of the real  crystal. We point out that a similar 
situation will always ar ise  in a rigorous and consistent 
phenomenological description of substances of any sym- 
metry. Of course, it must be borne in mind that if we 
introduce model-dependent descriptions (thermodynamic 
potential with a small number of terms, the condition 
M' -const corresponding to the Landau-Lifshitz equa- 
tidnj' and the condition =const corresponding to the 
Turov equationsi3), then the relations for the frequen- 
cies, even in the case of an arbitrary orientation of the 
magnetization can simplify substantially. However, 
these simplifications must be well founded and lead to 
limitations on both the temperature intervals and on 
the magnitudes and directions of the magnetic fields a t  
which they can be used. Since no such limitations a r e  
imposed in the present paper, we must determine the 
accuracy with which the phenomenological parameters 
y,,, a,, should be employed in Eqs. (9) and (10). To this 
end we compare, a t  T = 4  K, the AFMR frequencies 
measured in NiF, with the exchange frequency o, (w, 
= yHE), and the measured magnetic moment with the 
sublattice magnetization Lo = 2M0 = 14.400 cgs emu/ 
moleassumedat H = o . ' ~  At T = 4  Kand H=O we have 
vi = 4 ~ m - ' , ' ~  and =31 crn-'.16 Putting = 0.1 cm- ' /k~e  
and HE = 1200 k0eYi4 we get vE = 120 cm-', ui/wE = 3%, 
and 02/wE = 25%. The magnetic moment a t  H = 60 kOe 
is M/L = 4% if measured along the [ 0101 axis (HI( [ 0101 ) 
and M/L = 3% along the [I101 axis ( ~ 1 1 [ 1 1 0 ]  ). From 
the presented estimates it follows that the expansion of 
( W , / W ~ ) ~  should begin with terms proportional to 
(M/L) , while the expansion of (o2/wE), should begin 
with terms proportional to M/L. The maximum degree 
of the expansion is limited by the accuracy of the mea- 
surements of u(H). 

We now describe the method used to obtain from the 
general equations (9) and (10) for the AFMR frequencies 
in NiF, at Hllr 0101 the concrete functions wi(H) and 
wi(H). We shall show how to take into account in the 
derivation of the equations fo r  W;(H) and wi(H) both 
the measured AFMR frequencies and magnetization it- 
self, and the e r ro r s  in their measurements. In ac- 
cordance with the statements made above, we obtain 
the AFMR frequencies by expanding in the single small 
parameter M/L. 

We consider f i rs t  the equation for the low-frequency 
branch of the AFMR (a,). As indicated above, from the 
experimental AFMR datai5 we have (wi/wE), - (M/L)~, 

i.e., the expansion of each of the three terms of Eq. 
(9) in powers of the small parameter M/L must contain 
terms of second, third, fourth, etc. order of smallness. 
We first  take into account only the second-order terms. 
Then, inasmuch a s  (M/L), = [ (H,, +H)/H,] ', the right- 
hand side of Eq. (9) for will contain terms that a r e  
quadratic, linear, and of zero order in the field: 

and all of these appear when account i s  taken of terms 
of second order of smallness and a r e  themselves of the 
same order of magnitude: 

If we now take into account the terms of third order of 
smallness in (9), then the coefficients B,, B,, B, will 
contain corrections that depend on the magnetic field 
and a r e  of the order of M/L: 

Allowance for the fourth-order terms leads to cor- 
rections of order (M/L), in B,, Bi,B2: 

where 

Naturally, if we separate in all the indicated correc- 
tions to Bo,Bi, B, the parts that do and do not depend on 
the magnetic field, then Eq. (9) for NiF, will contain 
terms B,H 3- (M/L)~ and B,H 4 -  (M/L),, while the cor- 
rections to B,, B,, and B, will no longer depend on the 
magnetic field. 

The AFMR frequencies of NiF, were measured at 
T = 4 K and in fields up to 140 k0e.I4 At H I \  [ 0101 the 
positions of the absorption lines corresponding to the 
low-frequency branch of the AFMR were observed in 
67 points. At first ,  all the experimental points were 
reduced with a computer by least squares using Eq. 
( l l ) ,  and the following values of the coefficients were 
obtained: 

We see  that the relative e r ro r  in the determination of 
B,, B,, and B, i s  less  than M/L. Consequently, when 
the right- side of (9) for NiF, is  expanded in powers of 
the small parameter it is  essential to take into account 
the terms of third order of smallness. There i s  no 
need to take into account the fourth-order terms in (9), 
since they lead to corrections of the order of (M/L),, 
meaning an exaggeration of the accuracy with which the 
coefficients B,, B,, and B, a r e  determined in (l2).I5 

To determine the contribution made by the third-order 
terms to Eq. (9), we reduced the experimental points 
by least squares both using the equation 

and using Eq. ( l l ) ,  and gradually discarded the points 
in stronger fields. As a result of the successive dis- 
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carding of half the points located in strong fields, cor- 
responding to a decrease of the maximum field from 
140 to 40 kOe, it was found that the coefficient Bo 
changes in the range i 0.396, and the variation of the 
coefficients B, and B, i s  within * 1%. Such a "stability" 
of the vgues  of Bo,B,,B2 indicates that in NiF, a t  T 
=4  K the contributions of the third-order terms in Eq. 
(9) for the low-frequency AFMR branch a r e  equal to 
zero, and the next nonzero contributions can be those 
of fourth order. In fact, if the third-order terms were 
different from zero, this would introduce into B,, Bt,B2 
corrections whose values would depend on the maximum 
field, and if H,, were to increase from 40 (M/L s 3%) 
to 140 (M/L = 8%) kOe these corrections to B,,B,, B, 
would amount to 3 5%. 

We have also reduced the indicated experimental 
points by least squares, using Eq. (13). If all the 67 
experimental points a r e  taken into account we have Do 
= 13480 i 260 GHZ', Dl = 910 k 22 GHz2/k0e, D, = 10.7 
i 0.4 G ~ z ' / k ~ e ' ,  and D, = - 0.0016 t 0.0022 G ~ z ' / k ~ e ~ .  
It i s  seen that within the limits of e r r o r s  the values of 
D, and B, (i = 1,2,0)  a r e  in agreement, and the vari- 
ance of D, is practically equal to D, itself. Let us  
estimate the "theoretically expected" values of D, . 
Since D,H,-(M/L),, Do- D , H - D ~ H ~ -  (M/L),, it follows 
that D,H ,/D,H' - (M/L). Consequently, D, - (D,/H) (M/ 
L)" 10". It is seen that the experimentally determined 
value of D, i s  smaller by approximately one order of 
magnitude than the obtained estimates. This favors the 
conclusion drawn above, that the third-order terms in 
(9) vanish. Attention must be called, however, to the 
fact that this conclusion pertains only to those third- 
order terms which contain (M/L)"(~ = 1,2,3)  a s  factors, 
i.e., depend on the magnetic field. Equation (9) con- 
tains in addition third-order terms that do not have 
(M/L)" (n= 1,2,3) a s  factors, i.e., do not depend on H. 
Third-order terms of this type a r e  contained only in B,. 
For this reason the contribution made to B, by the in- 
dicated third-order terms cannot be determined by the 
procedures cited above for the reduction of the experi- 
mental points, which a r e  based on the determination of 
the contribution of different powers of H to the w(H) 
dependence. 

Thus, on the basis of the analysis of the experimental 
data we should retain in the right-hand side of Eq. (9) 
only terms of second order of smallness in M/L for the 
low-frequency branch of the AFMR in NiF,, in ac- 
cordance with the existing experimental results, while 
the third-order terms, which a r e  contained a s  the co- 
efficients of (M/L)" (n= 1,2,3),  should be se t  equal to 
zero. Analysist of all  three terms in the right-hand 
side shows that the equation for the low-frequency 
AFMR branch in NiF2 at H11[010], accurate to terms 
of second order of smallness, i s  

(1)2 (1) 0 )  (1) (0)Z (2) 
"?=a2 [d,? ~ I S  - 2 ~ ~ ~  4 zs a12 + ~ Z J  az2 1, (14) 

where 

We proceed next to an examination of Eq. (10) for the 
high-frequency branch of the AFMR in NiF2 at Hll[010]. 
As indicated above, it follows from the measurements 
of Ref. 16 that (W,/W,)~- ( M / L ) .  Therefore the equation 
for w: should contain terms of first  and of higher 
orders of smallness. The maximum order of small- 
ness of the terms in the expansion of w: i s  limited by 
the accuracy of the measurements. It follows from the 
results obtained by ~ i c h a r d s ' ~  that v, = co + clH, i.e., 
v:=c;+ ~ C ~ C , H + C : H ~ ,  where c,=31.14~0.01 cm", 
and c t  =0.0045* 0.0015 crn-'/kOe. In fields - 50 kOe, 
the strongest used for the measurements in Ref. 16, 

vZ2=co2[ ( I f  0.006) +0.014(If 0.3) +5.10-'(I* 0.6) I .  

It i s  seen that in accord with the presently attainable 
accuracyt6 it i s  useful to retain in (lo), besides the 
first-order terms, only the terms of second order of 
smallness, which a r e  nonlinear in the field (in M). The 
second-order terms quadratic in the magnetic field (in 
M) should be set  equal to zero. Terms of third and 
higher order of smallness need not be taken into ac- 
count, since they a r e  smaller than the measurement 
errors.  Leaving out the analysis of Eq. (lo), which i s  
given in Ref. 1, we obtain for w: an equation in which, 
in accord with the experimental results,16 account is 
taken only of terms of first  and second order of small- 
ness: 

(1) (0)  (0)2 (1) (0)  (0)) (2) ( 0 )  (O)2  
o2=aSs a,, ybE +aw ass 7,s +as8 all 7.8 

(1) (1) (0) (0) (1) (0 )  +a~~)arlD)(y,llz)(L) + a:?a:i) (y::))z-2ag6 a,, yrs y5s +aas a,, (y5s')'", 

where 

It i s  seen from (15) that the formula for the high-fre- 
quency AFMR branch for NiF, a t  HII[ 0101 , written out 
accurate to terms of second order of smallness, con- 
tains s ix  dyanmic phenomenological parameters, of 
which four (+A0), Ti0), ?:!', 7;;') a r e  of anisotropy origin 
and two (Y2, T3) a r e  of exchange origin. 

In the determination of the orders of a,, and y,, in 
(9) and (10) it was assumed that the anisotropic dynamic 
phenomenological parameters <, ?,, ?,, ?,, ?,,, ?,, - 1, i.e., 
they a r e  of zero order of smallness. If, for example, 
we consider separately one equation of (14) for the low- 
frequency AFMR branch, then allowance for Ti0' and 
7;'' does not lead to an increase of the number of dy- 
namic parameters, inasmuch a s  after a simple re- 
normalization 

Eq. (14) will contain only three dynamic parameters 
(Ti, 74, ?;(')) and will take the same form a s  when .7,= tg 
= 0. However, when the low-frequency (w ,) and high- 
frequency (w,) AFMR branches a r e  described in closed 
form, Eq. (14) for wl contains T2(1 + Tho)), while Eq. (15) 
for w2 contains Y2(1 + so)). Therefore a single renor- 
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malization for the two branches is impossible, and 
consequently the ratio of the y factors determined from 
Eqs. (14) and (15) for the two AFMR branches should 
equal T, ( l  + ?$O')/T2(l + ?:O'). The magnitude (order of 
smallness) of ?, or 'i9 can be determined within the 
framework of the phenomenological approach only ex- 
perimentally. If it turns out that the y factors deter- 
mined from the measurements of both branches differ 
by less than M/L = 3-4%, then we can say that and 
F,, are at least of first order of smallness (?iO, 3;"). 
In this case 7;" will enter in the third-order terms of 
Eq. (14) for the low-frequency AFMR branch, while 
7:" will enter in the second-order terms of Eq. (15) for 
the high-frequency branch. If we assume that ?3, 'i,,?,, 
?,, 8, are  not of zeroth but of first order of smallness, 
then 

where 

and all the a,, in (16) and (17) coincide with the cr,, 
from (14) and (15). 

It follows therefore that if we assume, despite the 
absence of direct experimental proof at present, that 
the phenomenological parameters of anisotropic origin 
(g7,*, 't3, f6, f7, f9, fll) a r e  of first rather than zeroth 
order of smallness, and that &,,,, is of second rather 
than first order, then the equations for the low-fre- 
quency and high-frequency AF'MR branches in NiF, at 
~11[010] can be finally written in the form: 

where 

Since we a re  developing a self-consistent theoretical 
description based, on the one hand, on actually mea- 
sured quantities and, on the other, on the accuracies 
with which they a r e  determined, we must emphasize 
that these two aspects play different roles. In fact, the 
lowest-order terms in the expressions for the frequen- 
cies, magnetizations, etc., a re  determined by the 
values of the frequencies, magnetizations, etc. them- 
selves, while the highest power of the expansion is de- 
termined by the present-day experimental accuracy. 
Once experiments performed with higher accuracy a re  
reported, it will be necessary to add terms of higher 
powers of M / L  in the expressions for the frequencies 
and magnetizations, to fit the improved experimental 

accuracy. The numerical values of the phenomenologi- 
cal parameters, obtained from more accurate experi- 
ments by new equations that differ from the old ones 
only in containing terms of higher degree in M / L ,  will 
not be more precise than the less accurate experiment; 
the accuracy of the parameters will increase with the 
experimental accuracy (see Ref. 1). 

If we write down the motion matrix in the exchange 
approximation, i.e., if we set all the 7, in (2) equal to 
zero, then we obtain from (18) and (19) at H, = H,, = 0 
the equations previously used to determine the numeri- 
cal values of the phenomenological parameters of Ref. 
7, where it was reported that a value (9, - ~ , ) / ~ ,  
= - 15% was experimentally observed in NiF2 at T=4 
K We note however (see also below) that the real 
deviation of Ay/y is even larger: hy/y = - 45 ;t 5%. The 
difference between the values of is due to the fact 
that when only exchange equations of motion a re  used 
the anisotropy enters only via the equilibrium thermo- 
dynamic potential. The considerable difference between 
Ay determined without and with allowance for the dy- 
namic anisotropy proves experimentally the need for 
taking into account the dynamic anisotropy in the ma- 
trix ; when it comes to describing the linear dynamics 
in substances with unquenched orbital angular momen- 
tum. 

To describe the behavior of the magnetization and of 
the AFMR frequencies in the case of arbitrary orienta- 
tion of H in the (001) plane, it is convenient to change 
over the Euler system of coordinates2: 

M.=S cos E[-sin x (cos 7 cos 0 cos cp-sin cp sin 7 )  +cos x sin 0 cos c p ] .  
M,=S cos $[-s in ~ ( c o s  cos 0 sin cp-sin 7 cos p )  +cos x sin 0 sin cp], 

M,=S cos E [ s i n ~  sin 0 cos y+cos x cos 01, (20) 
L,=S sin E sin 0 cos cp, L,=S sin sin 0 sin cp, 

L,=S sin E cos 0, H={H cos cpl, H sin cp,, 0 ) ,  

where 8 and cp a r e  the polar angles of the vector 
L, x =arc  cos2(L* M ) / s ~  sin25, and y is the angle that 
the projection of M on a plane perpendicular to L makes 
with the line where this plane intersects the plane that 
passes through L and z. The equilibrium values of 
So, x,, cpo a r e  determined from the condition that be a 
minimum. At 5, << 1 and X, << 1 the values of to, x,, and 
cp, a r e  determined from the equations 

go(H) =n/2+[-HDL cos 2cpu+Hsin(cpo--cp~) ] /HE, 
xo(H) = n/2+ ( x U I ~ )  [Hall sin 2cpO+H cos(po-qd 11 

i [ -H, ,  cos Zq~~+Hsin(cpo-cp~) 1, 
[-H,, cos 2cp0+H sin (TO-9,)  1 [ - ~ H D I  sin 2cpo-Hcos (90-%)'I (21) 

+[-2H,, cos 2cp,+H sin (cpo-cpl) I [HD,  sin 2cpo+Hcos (TO-91) ]XU/L 
+ 1 / , 2 H ~ ~ H s  sin h o = O .  

In particular, at  HI1 [ 1101 it is easy to obtain from (20) 
and (21) (see Ref. 1) an expression for the magnetiza- 
tion component M,, parallel to 11: 

HAz=2HA,Ha-4aHDllV4H,,'. 

The experimental plot of MI, (H) at H I ~ [  1101 in fields 
up to 65 kOe, shown in Fig. 9 and taken from the paper 
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FIG. 2 .  Dependence of 6 ,  x,,/x,, IfD,,, 2HAaHB, H, : -yz on Ay/y. 

of Borovik-Romanov et di4 was reduced by us by least 
squares using the equation 

where 

Comparing (11) and (12) with (18), (22) and (23), we 
obtain five nonlinear equations fo r  s ix  unknown phe- 
nomenological parameters (x,, ,Hall , HA,, Y2, Ti, T2). In 
place of the sixth equation we use the measuredi5 de- 
pendence of the frequency of the low-frequency AFMR 
branch at ~1( [110]  on the magnetic field. To obtain 
analytic expressions for the AFMR frequencies at  
all[ 1101 , we change in the equations of motion (1) to the 
coordinate system (20). Then, for an arbitrary direc- 
tion of H in the (001) plane, leaving out the intermediate 
steps given in Ref. 1, we get 

0 20 60 
H, kOe 

FIG. 3 .  Dependence of the square of the frequency of the low- 
frequency branch of AFMR in NiFz at T = 4 . 2  K for the cases 
H 11 [0101 curve 1 and All [I101 ( 2 ) .  The experimental points 
were taken from Ref. 15 and the curves are plots of Eqs. ( l a ) ,  
(2% and (24).  

FIG. 4 .  Dependence of the AFMR resonant field on the angle 
Qo between H and the (0101 axis (HL [ O O l ] )  in NiFz at T= 4.2 K 
and at fixed values of the square of the frequency 1)  
-22 .2 ,  2)  - 3 2 ,  3 )  -43 .3 ,  4 )  - 5 6 . 7 ,  5 )  -72.2, 6 )  -89 .5 ,  7 )  - 99.1.  The experimental points were taken from 1 5 ,  and the 
curves are plots of (21) and (24) .  

where 

A=S, cos E,[-4HD, cos 2q0+H sin (q,-q,)   H HAL cos 4v0, 
B-So cos Eo (x,/x,*) HE, C=So cos' %, (L/xI~) H E ,  

D=-So cos %,[-2HDl, cos 2q,+Hsin (cp,-q,) 1. 

The procedure for determining the numerical values of 
the phenomenological parameters of the theory from the 
experimental data, which is  described in detail in Ref. 
1, consists of finding, a t  fixed values of - 1 < A  y / y  < 1, 
values of H,,, , x,, ,HA,, Ti, j3, ?,, that satisfy expressions 
( l l ) ,  (12), (18), (22), and (23), and at  the same time 
minimize the functional 

which characterizes the deviation of the theoretical 
function (24) (HI! [ 1101 ) from the experimental one.15 
Figure 2 shows plots of 6, x , , / ~ ,  H,,, , F2, H, against 
hy/v. It is seen that at a y / y =  - 0.45 the mean squared 
deviation 6 has a clearly pronounced minimum, 
=0.199, H,,, =58.2 kOe, 2HA4H,=1010 k0e2, H, =14.1 
kOe, and fi = 2.98 G H Z / ~ O ~ .  The numerical values of 
the phenomenological parameters make it possible to 
plot, for any orientation of the magnetic field in the 
(001) plane, the AFMR frequencies (Figs. 3 and 4), the 
magnetizations (Figs. 5 and 6), 5 ,  and X, (Fig. 7), and 
rp, (Fig. 8). The experimental and calculated curves 
agree within the limits of the accuracy of the measure- 
ments and of the calculations. 

Comparing the theoretical (1 9) and the experimentali6 
dependences of the high-frequency AFMR branches for 
HII[010], we obtain H,, = 28k 9 kOe and HA2 =40& 2 

0 k - V  4; 611 I , 
1: kOe 

FIG. 5 .  Plots of the magnetizations parallel (curve 1) and 
perpendicular (2 )  to the magnetic fieldHll [I101 agalnst H in 
NiFz at T= 4.2 K .  The experimental points were taken from 
Ref. 14 and the curves are plots of Eqs. (20) and (21) .  
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FIG. 6. Plots of the magnetization parallel (MI,) to the magne- 
t ic  field HI [OOlIagainst the angle *o between H and [010] in  
NiF2 at  T= 4.2 K and a t  fixed values of the magnetic field (in 
kOe): 1 )  -0, 2) -10, 3) -20, 4) -30, 5) -40, 6) -50, 7) - 60. The experimental points were taken from Ref. 14, a t  
the curves a r e  plots of (20) and (21). 

Thus, using an actual antiferromagnet a s  an example, 
we have shown that the maximum number of phenom- 
enological parameters in a model-independent theory is 
determined by the symmetry and is limited in principle 
by the experimental accuracy. comparing the theo- 
retical equations obtained in the present paper with the 
four experimental functions M= M(HII[ 1101 ), w, 
=w,(II11[1001), w,=w,(HII[1101), w,=w,(IIIl[1001) we 
determined the numerical values of seven   he no me no- 
logical parameters: T,, ?,, ?2, &8, S3, &>. Together 
with the previously known parameters *, *,, the pa- 
rameters &,, S3, &4,  a5, G7, &*, GI,,, ?,, ?,, r2 constitute a 
complete set of phenomenological parameters that make 
it possible to construct the potential and the equations 
of motion. The constructed potential and equations of 
motion contain finite numbers of terms and describe 
adequately the static and the dynamic properties of 
NiF, at T1=4.2 K. With the aid of the constructed equa- 
tions of motion and the potential, we calculated the 
values of the magnetization components and the AFMR 
frequencies for an arbitrary orientation of the magnetic 
field in the (001) plane. In the entire interval of mag- 
netic fields ( H s 6 5  kOe) for which reliable magnetiza- 
tion measurements a r e  available at present, the ex- 
perimental and calculated plots of the magnetization and 
of the AFMR frequencies agree within the limits of the 
accuracy of the measurement and the calculations. 

FIG. 7. Plots of the angles E o  (curve 1) and xo (curve 2), cal- 
culated from Eqs . (21). against the magnetic field HI [1101 in 
NiF, at T=4.2 K. 

Yo 8' 

15. 

ffl' W' 

5' 15' 

n .i" In' IS' 

FIG. 8. Plots, calculated from (21). of the angle t o  against 
the angle Xo between H and the [010] axis in NiF2 at T= 4.2 K 
and at  fixed values of the magnetic field (kOe): 1 )  - 10, 2) 
-20, 3) -30, 4) -40, 5) -50, 6) -60, 7) -65. 

It is of interest to compare the'descriptions of the 
low-frequency AFMR branch in NiF2 at T = 4.2 K ob- 
tained by the non- equilibrium- thermodynamics and 
Lagrangian approaches. To this end, we rewrite Eq. 
(18) in the form w:=SZ:+SZ:, where 

The expression for a, coincides with the dependence of 
the frequency on the magnetic field, obtained in Ref. 11 
by the Lagrangian approach under the assumption pimp2 
(see Ref. 1) at 7,  = l/p,~t. In the Lagrangian approach 
at an arbitrary value of the magnetic field we have 51, 
=0, which leads to the existence of a connection be- 
tween the static (x,, , HE, H D l ,  HDII ) and dynamic 
(H,  , Ti, 7,) phenomenological parameters at T = 0 K. 
In fact, equating separately to zero the coefficients of 
H in the zeroth and first powers in Eq. (25) for St1, we 
obtain 

from which it follows that 

Using the presently obtained numerical values of the 
phenomenological parameters, we can directly calcu- 
late SZ, and 4 at T =4.2 K. Figure 9 shows the depen- 
dence of the ratio @/% on the magnetic field (H 
a 65 kOe). 

The authors thank Academician A. M. Prokhorov for 

FIG. 9. Ratio of the squared frequencies Qi and Q:, calcu- 
lated from (25), against the magnetic field q1[010] a t  T=4.2 K. 
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