
INTRABAND ABSORPTION 

We shall now consider the intraband absorption re-  
sults. An analysis of the dispersion of the real el= $ 
- d and imaginary e, = 2nk parts of the complex per - 
mittivity in the wavelength range 17-7p shows that the 
situation is simplest in the martensitic phase. 

In fact, the experimental dependence of (1 -&,)/A2 on 
A2 i s  a straight line whose intercept gives the plasma 
frequency of the conduction electrons 522 = 4.4 x los0 
sed2. The experimental dependence u= gives y 
= 0.37 x loL4 sec-l. 

The absence of frequency dispersion of (1 -&,)/A' 
shows that carriers in the martensitic phase a re  practical 
tically indistinguishable in respect of their relaxation 
frequency, forming a single hybridized conduction band. 
Consequently, in the case of the martensitic phase the 
dispersion of E, and e, can be described by simple 
Drude formulas. 

The Drude- Zener formulas are  completely inappli- 
cable for the description of the dispersion of El and &, 

of the austenitic phase of TiNi. The values of E, and e, 
for the austenitic phase behave typically like the major- 
ity of pure transition metals, exhibiting particularly a 
strong quadratic frequency dependence of the effective 
plasma q,, = (ei +&:)w2/q and relaxation Y = e,w/el 
frequencies. This dependence may be due to two fac- 
tors. One of them is the presence of several groups of 
carriers belonging to different sheets of the Fermi sur- 
face and characterized by very different relaxation fre- 
quencies; the other factor is a large contribution of the 
low-energy (and possibly zero-gap) intraband transi- 
tions. In the case under discussion, both factors are  
important. 
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The optical properties of a semiconductor in which an electron temperature superlattice has been 
produced are investigated. It is shown that under these conditions a crystal having a cubic lattice 
becomes, generally spealung, a biaxial crystal. The phase change on reflection of a normally incident 
wave is calculated for various experimental geometries. The shape of the superlattice is examined in an 
appendix. It is shown that within the limitations of the assumptions made in the calculations, the 
solutions represent "billows" such as are familiar in the B'enard hydrodynamical problem. 

PACS numbers: 64.70.Kb, 61.50.Ks, 78.20.Bh 

1. INTRODUCTION of electromagnetic radiation has been developed in Refs. 
1-6. According to Refs. 2 -6, this superlattice arises 

A theory of the electron-temperature superlattice in the presence of band bending at the irradiated surface 
produced in a monopolar semiconductor when the elec- of the specimen when the intensity I,,, of the radiation at 
tron gas i s  sufficiently heated by intraband absorption that surface exceeds a certain critical value I,,. Then 
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the variations of the electron temperature T a re  ac- 
companied by variations of the electric field strength 
and (to a considerably lesser degree) by variations of 
the free carrier concentration. The spatial period a 
of the stationary superlattice is given by the formula 

in which A: = ( 2 x , ~ , / 3 ) ~ ' ~  is the cooling length, n o  and 
r0 are  the electronic heat conductivity and the energy 
relaxation time calculated for the case in which the 
electron temperature T is equal to the lattice tempera- 
ture To, and k is a dimensionless wave number. Ac- 
cording to Ref. 6, when ca = (I,,, - Ic,)/Ic, << 1 we have 

where the quantity km depends on the form of the elec- 
tron dispersion law and on the energy- and quasimo- 
mentum-scattering mechanisms, and can be easily de- 
termined from formulas (41)-(44) of Ref. 6. In par- 
ticular, for the case that we shall consider in what fol- 
lows, namely that of a simple parabolic dispersion law 
and scattering of energy and quasimomentum from pi- 
ezoelectric acoustic phonons and charged impurities, 
respectively, we obtain" 

Here g =  yIc,, y is the absorption coefficient for the 
heating light expressed in units of A, (and is therefore 
dimensionless), and F, is the absolute energy difference 
between the edge of the conduction band (or the valence 
band in the case of holes) and the Fermi level, ex- 
pressed in units of To (as in Ref. 6, we consider a non- 
degenerate charge-carrier gas). Values of the func- 
tions and & are  given in Table I for values of g from 
0.1 to 0.2. We see that when g - 1 in the vicinity of 
the threshold we have a (2 n x 10a)&-2~;'. For A, = lo4 
c m - ' a n d ~ ~ = O . l ,  t h i s g i v e s a = 2 ~ ~ 1 0 - ' .  Inac-  
cordance with Ref. 6, when g<< 1 we obtainz' k,,, =2/3g, 
i.e. a = 3ng~;'&-~. Here the quantity a may be of the 
order of a micron, but, as  was shown in Ref. 6 by the 
methods of the nonlinear theory, it is very difficult to 
satisfy the condition for stability of the superlattice 
with small values of g. Values of a that are  not too 
large can evidently be obtained only at a fairly high 
supercriticality. 

The amplitude of the spatial oscillations of the elec- 

TABLE I. 
- -- 

FIG. 1. 

tron temperature when c2 << 1 can also be determined 
with the aid of the nonlinear theory. We write (see 
Fig. 1) 

where k = {k,, ky) and r = {x, y}. Then for the scattering 
mechanisms mentioned above we obtain the following 
equation from formulas (lo), (17), (231, (24), and (47)- 
(49) of Ref. 6: 

e lzco)  =z">gz7/7 ( V ~ - V ~ .  j(i +XI )  ". (4 
The quantity v,, which is defined by formula (35) of Ref. 
6, characterizes the rate of energy exchange between 
electrons in the crystal and in the surrounding medium 
as  well as  the change in this energy exchange rate on 
heating the electron gas. The superlattice i s  stable 
(at least in the small) so all the preceding formulas are  
valid as  soon a s  v, exceeds the critical value vZc given 
by 

vz ,=m(g) /yZ (Fo+3  In l/z)' 

[values of the function m(g) are  given in Table I]. 

The ratio of the components k, and k, is not deter- 
mined by condition (I), since the condition involves on- 
ly the modulus k = (% + It follows from the non- 
linear theory (see the Appendix) that one of the follow- 
ing possibilities is realized in the system under con- 
sideration: k, = 0 and k, = *k, or  k, = 0 and k,, = *k. In 
view of the physical equivalence of the x and y axes, 
i t  is sufficient to consider only one of these possibili- 
ties, say the first one. 

2. OPTICAL EFFECTS 

It i s  natural to suppose that electromagnetic waves of 
appropriate wavelength A, (of the order of a)  will be 
diffracted by the superlattice that we are  considering 
~rovided the components of the dielectric tensor depend 
on T or  on ~ 2 . ~ '  The situation here i s  the same as  for 
the diffraction of light by ultrasonic waves, and we can 
immediately use the well known formulas (see, e.g., 
Ref. 7) merely by setting the frequency of the ultra- 
sound equal to zero (but keeping the wave vector of the 
sound wave different from zero). We note, however, 
that according to what was said in Section 1, such an 
attempt in the infrared region can evidently be suc- 
cessful only at a fairly high supercriticality. 

A feature of the system we are considering that dis- 
tinguishes it  from ordinary static lattices is that the 
electron temperature superlattice i s  made up of the 
same charge carriers a s  are  accelerated in the field of 
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the electromagnetic wave. Diffraction i s  therefore not 
the only optical effect to be expected here. 

As in Ref. 5, it i s  convenient to express the current 
density j produced by the electromagnetic wave of fre- 
quency w and fieldstrength E (not to be confused with the 
the heating wave ! ) in the form 

Here the Greek subscripts a re  vector indices, u, and 
u, are components of the convection velocity, and v, i s  
the thermal velocity (or the Fermi velocity in the case 
of a degenerate gas) of the charge carriers. It re -  
mains only to note that in the present case (but not in 
that of Ref. 5) o and a,,, are complex functions of the 
frequency. For the case of a classically high frequency, 
when WT, >> 1 (but still Aw < TI, where T, is the average 
momentum relaxation time, we easily find, with the aid 
of the kinetic equation, that 

Here the superscript st  denotes the static value of the 
corresponding quantity. The components of the tensor 
&\,, are treated as  phenomenological parameters. 
For the cubic crystals we are  considering, this tensor 
has three independent components, which, in the prin- 
cipal axis system (we assume that the principal axes 
coincide with the x, y, and z axes of Fig. I),  are 

~nr=+=. . . =a,, &=. . . =ar, a,ry=. . . =as. 

The quantities u, were calculated ea~-l ie$*~;  they are 
proportional to 5,(0) and depend on x and y (through the 
scalar product k . r), as  well as  on z (beyond the space 
charge layer at the illuminated surface as  e-k*). We 
see that under these conditions the cubic crystal is, 
generally speaking, transformed into a biaxial crystal, 
the components of the dielectric tensor depending on the 
intensity of the heating light and on the coordinates, and 
the two tensors Reo,, and Imo,, having the same prin- 
cipal axes at each point. We write 

Assuming in accordance with what was said above that 
k, # 0 and k,, = 0 and taking the principal axes of the 
crystal as  the x, y, and z coordinate axes, we find 

It should be noted, however, that, as  is evident from 
(6), in this case the absorption anisotropy is more sig- 
nificant than the refraction anisotropy; experiments 
with the reflection of light would therefore seem the 
more interesting. 

We shall examine the case of normal incidence. The 
possible geometric conditions of the experiment are 
given in Table 11. 

Here there are  two limiting cases, depending on the 
ratios of the period of the superlattice to the wavelength 
and absorption coefficient of the second (nonheating) 

wave, A, and y, . 

TABLE 11. 

1). A, <c a and y, >> kX, (but yL < Y ; ~ ,  where Y, is the 
screening length that determines the thickness of the 
space charge layer at the illuminated surface). In this 
case the wave is almost entirely absorbed in a region 
within which the electron temperature remains prac- 
tically constant, and one can associate different (lo- 
cally constant) values of the components o,, with dif - 
ferent regions of the surface having linear dimensions 
of the order of (kA,)-l. In other words, here we are 
dealing with reflection from a 'spotty" surface, the r e -  
flection taking place within each of the "spots", gener- 
ally speaking, a s  from a biaxial crystal. 

Y axis 

Reflecting surface y=O 

axis (1) 
axis (2) 

We denote the phase changes on reflection of a plane 
polarized wave by cp, and cp,, the subscripts 1 and 2 
corresponding to the possible geometric situations in- 
dicated in Table 11. Using formulas (1)-(3), (6), and 
(7), we obtain the following equation after somewhat 
lengthy but elementary calculations: 

Here w, is the plasma frequency of the charge carriers 
in the material being considered, c, and ce,, are  the di- 
electric constants of the lattice and the surrounding 
medium (for simplicity we neglect the dispersion in 
both media), the subscript a takes the values a, b, and 
c in accordance with Table 11, and 

b 

Along the x axis 

z=O 

Along they axis (1) 
Along the z axis (2) 

c ( g )  =$,(g) / (F0+3 In 11s) Po+$&) I .  (9) 
The values of the functions q3 and q4 are given in Table 
I, and the coefficients B,  are given by the expressions 

B.=4khoh~e-'~b' 

X [ (a , -az)z  cos' (2khox) +4asZ sin' (2kA4)  I", (10) 
Bh=4khAL I a,-a, I e-z"', (11) 

BC=4kAAr. la,-a, I sinZ ( k h ~ ) .  (12) 

C 

Along the z axis 

2-0 

Along they axis (1) 
Along the x axis (2) 

Here k is the wave number defined, a s  before, by Eq. 
(I), and the coordinates x and z are expressed in or - 
dinary units. We note that the quantities B, do not 
vanish when a, -a, =2a,, i.e. when the tensor a,,,, is 
the same as  for an isotropic medium. This should not 
be surprising: in this case the optical anisotropy is not 
due to the properties of that tensor, but is due to the 
presence of two special directions, fixed by the vector 
k and by the wave vector of the heating wave. 

Thus, in x cases a) and c) we should obtain a reflec- 
tion pattern on moving the incident beam along the crys- 
tal surface that repeats itself periodically along the x 
axis with the period n/kA, (in ordinary units). More- 
over, on moving the beam along the y axis (in case c)  
the reflection pattern should not change. We note that 
these conclusions, like formulas (10)-(12) themselves, 
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are associated not only with assumption I),  but also 
with the above noted conclusion of the nonlinear theory 
concerning the ratio of the components k, and k,. Thus, 
experiments conducted under conditions 1) might give 
direct information on the structure of the electron tem- 
perature superlattice. 

2). X, >> a, y, < kAo (and y, < r,'). In this case the 
Maxwell equations for the propagation of the nonheating 
wave in the medium can be averaged over a volume 
whose linear dimensions are  considerably larger than 
a and smaller than A,. This amounts to averaging the 
components of the tensor o,, in the corresponding way. 
The medium then assumes the symmetry of a uniaxial 
crystal in which the x principal optical axis is parallel 
to the y axis and the components of the effective tensor 
o, are independent of the coordinates. The conse- 
quences are obvious from crystal optics (see, e.g., Ref. 
8). Here we must expect weak absorption anisotropy in 
the propagation of a wave parallel or  perpendicular to 
the heating light and, a s  in case a), we must also ex- 
pect the phase change on reflection of a nonheating wave 
to depend on the polarization of the nonheating wave and 
on the intensity of the heating light. Meanwhile Eq. (8) 
remains valid, but in place of formulas (10)-(12) we 
obtain 

B.=O, Bt=B,= 1 a,-a, 1. (13) 

APPENDIX 

The shape of the electron temperature superlattice 

The nonlinear theory of the electron temperature 
superlattice developed in Ref. 6 does not enable one to 
determine the ratio of the cgmponents k, and k,, i.e. 
the shape of the superlattice; one finds only the quantity 
k2 = 122, + g. The reason is that in a cubic crystal there 
is degeneracy in the directions of the x and y axes, and 
this degeneracy is not lifted by the nonlinear correc- 
tions calculated in Ref. 6. To determine the shape of 
the superlattice one could resort to  higher approxima- 
tions, much as is done in the problem of the Benard 
lattice in hydrodynamics (see, e.g., Refs. 9 and 10). 
This, however, involves rather cumbersome calcula- 
tions. The method proposed by N. N. ~ogolyubov," 
which consists (in the present case) of lifting the degen- 
eracy by introducing small anisotropic terms into the 
equations and subsequently letting them tend to zero (in 
the solution), is evidently more convenient here. These 
added terms can be regarded a s  independent of 6. When 
the anisotropy of the kinetic coefficients in the ( x ,  y )  
plane is taken into account, the condition for the exis- 
tence of a superlattice determines not only the quantity 
k, but also the components k, and k,, separately. The 
result we are interested in for the cubic crystal should 
remain valid when the above mentioned anisotropy is 
removed, and indeed, regardless of the order in which 
the anisotropic terms added to the different kinetic co- 
efficients are made to tend to zero." 

We introduce the mobility, heat conductivity, and 
thermoelectromotive force tensors, writing (the sub- 
scripts assume the values x, y, and z )  

ps=p0Go+6pu, xu=xo6ij+6xij, 
~ . ~ < ~ = a ~ 6 , ~ + 6 a < ~ .  (All 

Here and in what follows the superscript 0 denotes a 
quantity characterizing the cubic crystal, while 6 ,LL,~, 
6xi1, and 6ai, are, generally speaking, small added 
terms (all of the same order). The nature of the prob- 
lem is such that we are  interested only in the aniso- 
tropy in the (x,  y )  plane. We shall accordingly assume 
that only the components bps,, 6xij, and 6a,, for which 
i + z  and j + z  are different from zero." We use the 
same system of units as  in the main text and, a s  in 
Refs. 1-6, we denote the potential of the electric field 
in the specimen (both the internal field and the field 
produced by external sources) by cp. We write 

where V @  = V cp + aOv[, and 6p, 6<, and V 6 0  are  small 
quantities of the same order as  6 ui,, 6xi1, and 6 a,, . 
We consider only a nondegenerate electron gas and, as  
in Refs. 1-6, we assume that Then we can 
write the expression for the velocity, the equation of 
continuity, and the energy transport equation as follows: 

div u=O; 

i [ g "  Qo]-d iv(6$VxV+xVVSe)  

Here i denotes the operator that occurs in the theory 
for the case of isotropic kinetic coefficients1-': 

54-3 
E [ g o ,  @"I-div(xoVEo)  + - (uo, V g O )  + (un, V v n )  +fa%-'(En). 

3 
(A6) 

We can also rewrite the boundary conditions in a sim- 
ilar way, but we do not need their explicit form here. 
We need only recall that the solution, regarded as a 
function of x and y ,  must satisfy periodicity conditions 
at the faces of the specimen. 

We can determine the static solution under the above 
assumptions concerning the nature of the anisotropy: 

We also write 
g=g.+&,(x, y, z ) ,  q = g . + q l ( ~ ,  y, z ) , V @ - V @ t ( x ,  Y, 21, (A71 

in which f,, (p,, and 9, are  quantities of the order of E. 

It is convenient to express these quantities in the form 

Here the dash on the summation sign means that the 
sum is to be taken for a fixed value of k =  (ka, +g)'"; 
further, 

The quantities 6f,, 6x1, and 6ka are  small of the same 
order as  ~,LL,,, while the functions f: and X: and the 
number ki a re  determined by solving the unperturbed 
(isotropic) problem. Substituting Eqs. (A71 and (A81 
into Eqs. (A4) and (A5), making use of Eqs. (A3)-(A6), 
and retaining only terms of the first order in El, x,, cp,, 
y, and in the anisotropy, we obtain the following equa- 
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tions, in which the Greek subscripts assume the values 
xandy:  

L[6ft, 8xiI=- ( 6 ~ ~ ~ k ~ ~ , O + ~ ~ ( ~ . ~ ) 6 k ' )  f,'. (A9) 
and 

The operator f occurring here i s  obtained from (A6) by 
replacing the derivatives with respect to x and y by the 
factors ik,  and iky .  

The condition that Eqs. (A91 and (A10) be solvable 
simultaneously has the form 

(A l,6~bT+Ai26~oT+A116poT) kpOklO=- (AIl+Az2) 6kz, (Al l )  
where 

1 1 1 

A,,= J ( f , ~ a z ,  A,,= JXO(S.O) (fl~)~dz. j f,ox,ea~, 
0 0 

1 1 

A?:= j (~iO)~dz, A?*= J (x?)'[p.O(E.O) I-'dz. 
0 0 

These integrals (which depend on g) can be regarded 
a s  known since the functions f: and x ( :  are fully deter- 
mined in the nonlinear theory.' For our purposes it i s  
sufficient to know that the quantities A,,, . . . ,Az, are 
different from zero and bounded in absolute value. 

As i s  evident from Eq. (All), there are just two 
(equivalent) situations in which the ratio of the compo- 
nents k, and ky i s  not affected by the order in which the 
limits are taken in passing to the isotropic problem: 

k==*k, k,=O; k,=*k, k,=O 

[6p i s  determined in an obvious way by Eq. (All)]. 
The corresponding solutions are simply the Ubillows* 
familiar from the B6nard problem in hydrodynamics? 

"Formula (2) is approximate: in its derivation terms that a r e  
small when g- 1 ,  either numerically (with accuracy to 10%) 
or  because of the smallness of the parameters indicated in 
Ref. 6, were dropped. 

"The symbol ko was used for k, in Ref. 6. 
3'~trictly speaking, the wave whose propagation we a r e  now 

interested in could atso heat the electron gas and thereby par- 
ticipate in  the formation of the superlattice. For simplicity, 
however, we shall assume that the wave we a r e  now consid- 
ering is so  weak that its effect on the heatiqg of the electron 
gas may be neglected. There is  another problem that is  also 
of interest here-the essentially nonlinear problem of the ef- 
fect of the superlattice on the propagation of the "heating" 
wave that produces it. 

" ~ o s t  of the calculations in the Appendix were carried through 
with the collaboration of A. M. Temchin, for which I wish to 
thank him. 

"'I'his method would probably turn out also to be useful in the 
analogous hydrodynamical problem. 

6' we set  aside by the same token the problem of the origin of 
the temperature superlattice in anisotropic crystals. Actu- 
ally, this problem is by no means devoid of interest. Thus, 
we can convince ourselves that a static electron-temperature 
distribution can arise only if the condition %,= or,,= 0 is  sat- 
isfied. Otherwise the anisotropy of the crystal alone could 
give r ise  to a temperature superlattice. 
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