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The calculation of the derivatives of the total energy of a metal with respect to the lattice parameters is 
investigated. Since direct differentiation of the perturbation-theory series leads to infmite corrections 
when the Fermi surface is tangent to the Bragg plane, a program for the direct calculation of the 
derivatives is sought. Particular attention is paid to the tangency of the Fermi surface to an edge of the 
Brillouin zone. It is found that differentiation with respect to the parameter y = c / a  that describes the 
oblateness of the lattice is finite, and that the correction for the intersection of the edge is of the order of 
W ' I 2  (W is the electron-lattice interaction constant). The derived equations are used in the analysis of the 
stability of the strongly anisotropic structure of metallic hydrogen. It is shown that upon closer analysis 
the simple hexagonal structure predicted within the framework of ordinary perturbation theory to be 
metastable at zero pressure can be metastable only under pressure. 

PACS numbers: 63.90. + t 

The pseudopotential method i s  now used successfully 
to calculate the cohesion energy of metals; many papers 
are  devoted to the principles of the method, to the sel- 
ection of the pseudopotential, and to the calculation of 
the properties of various metals.'*' A number of ques- 
tions, however, call for additional study, particularly 
the question of the correct assessment of the role of 
the electron-lattice interaction in the formation of the 
anisotropic metallic structure. The point is that the 
electron-lattice interaction constant of a number of 
metals cannot be regarded as  small and it  becomes nec- 
essary to take into account higher orders of perturba- 
tion theory, the thirdS and even the fourth. The sit- 
uation is made more complicated by the fact that when 
this constant increases energy considerations favor the 
formation of highly anisotropic structures7 for which it 
i s  important to take correct account of the intersection 
of the Fermi surface with the faces and edges of the 
Brillouin zone. It is known that perturbation theory 
leads to infinite corrections for the band energy ~ ( k )  if 
the wave vector k is close to a Bragg plane. If, how- 

simple perturbation theory no longer permit calculation 
of the derivatives of the total energy with respect to y. 
The derivative calculated in this manner becomes in- 
finite when the Fermi sphere i s  tangent to a Brillouin- 
zone face o r  edge. Calculation of the energy for one 
Bragg plane without the use of perturbation theory 
leads, of course, to a finite derivative. 

The purpose of the present paper i s  the calculation of 
the total energy and its derivative with respect to the 
parameter y in the case when the Fermi surface is tan- 
gent to an edge of the Brillouin zone. To this end we 
consider in detail the singularity of the produced in the 
state-density curve by the presence of the edge, and 
determine the parameters of the Van Hove singular 
point. It is shown that the derivative with respect to 
the parameter y has a finite correction of the order of 
W5I2 (W is the electron-lattice interaction constant), 
and the question of the stability of the spectrum in the 
case of a tangent edge is determined by the competition 
between the various contributions to the total energy. 

ever, this energy i s  integrated over the states within The obtained procedure i s  used to analyze the stabil- 
the Fermi sphere, the result i s  finite and, a s  shown by ity of a simple hexagonal (SH) structure of metallic 
a this method can be used to hydrogen, in view of the mentioned difficulties encoun- 
the correction to the total energy in the second1*' and tered in the perturbation-theory calculations. The 
third4 orders of perturbation theory. electron-lattice interaction parameter of metallic hy- 

The search for the energywise most favored structure drogen is large because there are  no ionic corcs, and 
at a given volume includes also the variation of the an- at low pressures the strongly oblate anisotropic SH 
isotropy parameter y= c/a,  but the equations of the structure is It is shown that tangency of the 
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Fermi surface to  the edge of the zone does not make the 
lattice stable, that the total energy decreases monoton- 
ically with decreasing density, and the structure be - 
comes more anisotropic. The pressure needed to pre- 
serve the structure is also estimated, 

The atomic unit system e - m = A= 1 is used. 

1. CALCULATION OF THE DERIVATIVES OF THE 
TOTAL ENERGY 

We consider a metal for which the local potential (or 
pseudopotential) of the electron-lattice interaction and 
its Fourier components V, have somehow been calcu- 
lated. Using perturbation theory to calculate the ener- 
gy, we exclude from consideration the contribution of 
the potential components with the highest values of K. 
The contribution of these components to the total energy 
will be calculated separately. For the oblate SH struc- 
ture which we consider, all six such vectors lie in the 
plane k,= 0, so that the calculations reduce to a solu- 
tion of the Schradinger equation for the two-dimension- 
al band energy c(k). The integration for the calculation 
of the total energy is over the total three-dimensional 
zone for the band energy % (k, k,) = c(k) + k:/2. 

Consider the Brillouin zone of a two-dimensional 
hexagonal (triangular) lattice, or more accurately one- 
sixth of it (Fig. la). Assuming the states with three- 
dimensional energy lower than the chemical potential p 
to be occupied, we obtain the density n(,u) and the total 
energy per unit volume ~ ( p ) :  

the integration with respect to k, can be carried out 
analytically, so that Eq. (1) reduces readily to two 
double integrals over the two-dimensional Brillouin 
zone. If the parameter of the problem is the density, 
then the first equation in (1) determines the chemical 
potential as a function of density. 

The zone energy i s  a function of the wave vector k, of 
the Fourier component V,= -V of the potential, and of 
the vector a* of the planar reciprocal lattice. The 
number of parameters can be decreased by expressing 
all the vectors in fractions of the distance q=a*/2 to 
the nearest Bragg plane, and all the energies in frac- 
tions of q2, i.e., by changing to a zone with q =  1 and 
Fourier component W =  V/q2 of the potential. All the 
quantities pertaining to the dimensionless zone are 
primed; in particular, 

e (k) =q2e' (klq). (2 ) 

FIG. 1. Two-dimensional Brillouin zone of plane hexagonal 
lattice, showing pieces of the Fermi surface (a) and the cor- 
responding state-density curve (b). 

We can calculate integrals n1(p') and ~ ' ( p ' )  similar 
to (1) by using a chemical potential p'= p/q2 and an ex- 
ternal potential W. The new quantities are  connected 
with (1) by the scale transformation 

We note that in the "reduced" zone q = 1 the energy de- 
pends only on W and p', and we shall henceforth re-  
gard the function E a s  a function of g,  n, and W. 

In addition to the energy itself, to determine the opti- 
mal structure we must calculate the derivatives of the 
energy with respect to the parameters q and W. Where- 
a s  the derivative ( a ~ / a  W),,, canbe calculated by differ- 
entiating the perturbation-theory series, the derivative 
(a~/aq),,,, a s  already noted, i s  not always obtainable 
by this method. However, the fact that in the calcula- 
tion of E(q,n, W) all the Fourier components of the po- 
tential lie in the same plane allows us to find a simple 
formula for the derivative of the energy with respect to 
q at constant n and W. To this end we write E(q,n, W), 
which is the energy per unit volume, as  a function of 
q, n, and W, and then use (3) to calculate to derivative 
at constant density: 

The derivative of the Energy E' with respect to the 
Udensity" n' i s  the chemical potential p' ,  so that 

The density n' in the reduced zone is directly con- 
nected with y = c/a, namely, for univalent hydrogen the 
volume of the occupied states in momentum space 4n3n 
i s  equal to half the volume of the Brillouin zone. For 
the SH structure, simple operations lead to the follow- 
ing equations: 

Defining in the usual manner the Fermi momentum k, 
a s  the radius of a sphere with volume 4n3n, we intro- 
duce the parameter q =  q/kF = a*/2kF, The parameter 
r, is connected with the density 4n~,3/3= n-', These 
parameters are  also interrelated: 

We use these equations to connect the derivatives of the 
total energy with respect to q ,  P, and y at constant den- 
sity n (or kF) and W: 

The intersection of the Fermi surface with the faces 
and edges of the Brillouin zone correspond to the Van 
Hove singularity on the state-density curve. Figure lb 
shows schematically the state density plot V ( E )  as  a 
function of energy, and the numbers designate the Van 
Hove singularities corresponding to the first two energy 
bands &,(k) and c,(k). The point 2 with energy &,(q) 
corresponds to the bottom of the second band, i.e., to a 
singularity of the M ,  type. Point 1 with energy cl(q) 
corresponds to the appearance of a neck or to tangency 
of the Fermi surface to an edge of the zone; this i s  
usually a singularity of type MI. We are interested at 
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present in the behavior of the v(c) plot near the point 3 
(singularity of type M,, corresponding to tangency of 
an edge of the zone-the point p ,  to the Fermi surface). 
Singularities of this type correspond to a square-root 
increment to the state density at an energy higher than 
c,=c,(p). To take this increment into account, we cal- 
culate the energy &, itself and the effective mass near 
the point p .  The point p corresponds to threefold de- 
generacy of the unperturbed energy &,(k). The splitting 
of the degenerate states under the influence of the per- 
turbation can be determined by finding the eigenvalues 
~ ( k )  of the 3 x 3 matrix 

Considering the secular equation near the point p and 
retaining only the terms quadratic in Ak = k - p, we re- 
duce it to the form 

The parameter A is connected with the energy: 

Equation (10) has three roots at A k = 0, the lower 
band corresponds to A,= -2, and the two upper ones to 
A,  = A, = 0. Expanding (10) in a series at small A k, we 
obtain the energy <(k) of the first band near the point p 
in the reduced band: 

where &:= $ -2W is the energy at the critical point, and 
the effective mass m* = 9 W/4. 

Equation (12) contains the energy corrections linear in 
W at A k << W, and the contribution of the remaining 
planes is quadratic in W. This point corresponds to a 
singularity of type M, (the band energy has a minimum 
in the direction of the z axis and a maximum in the per- 
pendicular direction), and at energy higher than &, i t  
corresponds to a nonanalytic increment to the state 
density per unit volume: 

The factor 2 stems from the f a d  that the first Brillouin 
zone has singularity of the considered type simultan- 
eously at two nonequivalent points of the reciprocal lat- 
tice. 

At sufficiently high values of the parameter W, the 
points 2 and 3, which correspond to singularities on the 
state-density curve, can change places: The Fermi 
surface is tangent to the point p ,  and the filling of the 
second band has not yet started. Expression (13) for 
the increment i s  also valid. The increment (13) to the 
state density makes it  possible, in addition, to calcu- 
late, given the chemical potential p, the increments 
~ n ( p )  to the density and A E ( ~ )  to the energy per unit 
volume 

In these equations p' -EL<< W and the terms o(w''~) 
have been discarded. Within the same accuracy, the 

-0.3 \ 
I I I 

0.8 1.0 7 
---- 

FIG. 2. Dependence of the derivative aE/aq on the parameter 
q ,  (q = 1, W =  0.1): 1-numerical integration; 2-simple per- 
turbation theory, third order; 3-second-order perturbation 
theory after Harrison; 4-the same, but correction for the 
tangency of the corner of the zone. 

increment to the thermodynamic potential 52 = E - pn at 
a fixed chemical potential p vanishes. This increment 
A 52(p) is equal also to the increment to  the total energy 
AE, but at a fixed density n, and therefore the im- 
proved perturbation theory contains no increment of 
order w5I2 in the energy at a given density, even i f  the 
Fermi surface intersects an edge of the Brillouin zone. 
But this increment remains nevertheless in the calcula- 
tion of the derivative of the energy with respect to the 
parameter y or q, by virtue of Eq. (5). 

Figure 2 shows the dependence of the derivative 
( a ~ / a q ) ~  a s  a function of the parameter q. Curve 1 was 
obtained by numerical integration: the eigenvalues (9) 
are  determined numerically, and the contribution of the 
remaining planes to the energy is determined by usual 
perturbation theory in third order in W. Double nu- 
merical integration yields E(p) and n ( ~ ) ,  and hence 77 
as  a function of p, The derivative is calculated from 
Eq. (5). Curve 2 is the result of the usual perturbation 
theory in third order in W: the derivative becomes in- 
finite at q= 1 (tangency of the zone face to the Fermi 
sphere) and at q=  0.8660 (tangency of the edge of the 
Brillouin zone of the SH lattice). Curve 3a was calcu- 
lated in second order perturbation theorp, and the in- 
tersection with the face is accounted for by Harrison's 
method.' Curve 4 is the same, but with account taking 
of the intersection with the edge of the zone in accord 
with (14). Both curves 3 and 4 are  plotted in accord 
with the following scheme: the chemical potential p is 
given and the density n(p) calculated, Eq. (6) yields the 
value of y, after which, calculating the energy by Eq. 
(5) in ordinary perturbation theory, we obtain the de- 
rivative. 

As already noted, the expression for the correction 
(14) i s  no longer valid if p' -&: is of the order of W. In 
the limiting case of large p (small q), just a s  in the 
other limiting case of small p, ordinary perturbation 
theory holds. In this case the filling of the upper en- 
ergy bands compensates for the splitting; for example 
the sum of three eigenvalues of the matrix (9) is equal 
to its trace, i.e., to the sum in the absence of pertur- 
bations. 

Since the investigation of the stability of the structure 
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calls for explicit (or implicit) calculation of the deriva- 
tives, the use of the simple perturbation theory can 
lead to the appearance of fictitious metastable states. 
For example, at sufficiently high densities (small r, 
and W) the main contribution to the structure-dependent 
part of the energy is made by the energy of the ion lat- 
tice. For an SH structure this energy has a minimum 
at y= 0.928 (q= 1.090), its derivative is therefore 
negative at lower values of y. 

If the correction due to the band energy is calculated 
by perturbation theory, it becomes infinite near q= 1 
(y= 0.716) and consequently goes through zero on the 
right and on the left of this point, i.e., a fictitious 
minimum of the total energy with respect to q appears. 
The exact theory' yields in the same case, at fixed p, 
a finite increment of the order of W* lnW to the density; 
consequently, by virtue of (5) the increment to the deri- 
vative is of the same order. Whether the parameter W 
sufficies to stabilize the structure can be determined in 
this case only by numerically comparing the derivative 
of the energy of the ion lattice, which contributes to 
formation of the isotropic structure, with the derivative 
of the contribution of the band energy, which tends to 
distort the structure. 

A similar situation, but at sufficiently low density, 
takes place near q= 0.8660 (y= 0.465). Assume that 
the interaction favors the formation of an anisotropic 
structure with q < 0.8660, i.e., the correctly calculated 
derivative of this energy i s  positive at q=  0.8660. The 
fictitious infinite negative increment (curve 2 of Fig. 2) 
again yields a fictitious minimum of the total energy 
near this point. Consequently, the investigation of the 
question of the stabilization of the structure when the 
Fermi surface i s  tangent to the face or edge of the zone 
cannot be carried out within the framework of simple 
perturbation theory. 

2. ANALYSIS OF THE STABILITY OF METALLIC 
HYDROGEN 

The results are applicable to the analysis of the ani- 
sotropic simple hexagonal structure of metallic hydro- 
gen. We are interested in the possibility of stabilizing 
this structure when the Fermi surface is tangent to an 
edge of the Brillouin zone, i.e., the behavior of the en- 
ergy when y i s  close to 0.465. This value of y corre- 
sponds to tangency of the edge of the zone to the Fermi 
surface. We write down with the aid of the simple the- 
ory the structure-dependent part of the energy in the 
form of a series in r,. For the energy per atom we 
have 

We confine ourselves to third-order perturbation theory 
or to terms linear in r,. The Madelung constant ol,(y) 
and the coefficients a, and a, depend only on the aniso- 
tropy parameter. The energy Eo(r,) of the free elec- 
tron gas does not depend on y, and an expansion in pow- 
e r s  of r, accurate to terms of order of r, inclusive i s  
given in Ref. 9. 

Figure 3 shows the perturbation-theory diagrams. 
The coefficient %(y) is the contribution of diagram a, 

FIG. 3. Perturbation- 
theory diagrams for the 
structure-dependent 
contributions. 

and as(?) i s  the contribution of diagrams b, c, and d,  
An analytic expression is known for diagrams a, b, and 
c;  the contribution of diagrams d i s  calculated and tab- 
ulated in Ref. 10. For each fixed r, we obtain the 
structure with the minimum energy by varying the pa- 
rameter y. Diagrams a and b correspond to summation 
of the band energy, so that to  calculate the derivative 
with respect to y the contribution of the nearest sites of 
the reciprocal lattice from the coefficients a, and a, and 
add to (16) the band energy due only to these nearest - 
sites. The procedure of calculating the contribution of 
the nearest sites to the energy was described above. 
To increase the accuracy we calculate this energy by 
numerical integration over states with energy lower 
than y using Eq. (1) directly: the band energy was cal- 
culated in third-order perturbation theory and the ei- 
genvalues of the matrix (9) were sought near the degen- 
eracy points. The energy calculated in this manner in- 
cludes also the kinetic energy of the free gas, which 
must be excluded from Eo(rs). 

The derivatives with respect to y of all the contribu- 
tions to the total energy a re  calculated by simple per- 
turbation theory. An exception is the partial derivative 
(aE/ay),, which was calculated from Eq. (5). We note 
that Eq. (5) corresponds formally to summation of an 
infinite sequence. of diagram and depends simultaneous- 
ly on r, and y. 

Table I lists, for different y, the values of r, that 
causes vanishing of the derivative with respect to y 
and corresponds to the minimum of the total energy as  
a function of y. The table lists also the total energy 
reckoned from the energy -0.5 at. un. of the free atom, 
and the pressure P (in megabars) needed to keep the 
structure together. It is seen that the parameter y de- 
creases monotonically with increasing r,. The singular 
value y = 0.465 at which simple perturbation theory has 
predicted a metastable structure is now absent, and 
pressure must be applied to retain this phase. 

Table I gives also the values of the parameter W for 
equilibrium structures. We note that near y= 0.465 
the parameter W is large enough, so that the Van Hove: 
singular point change places on Fig. lb. This means 

TABLE I. 
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TABLE JI. 

FIG. 4. Anisotropy parameter y = c/a as a function of r ,  in 
metallic hydroen: 1-unrestricted Hartree -Fock method: 
2-perturbation theory and the Geldart-Taylor equation; 
3-perturbation theory and the Hubbard-Geldart-Vosco equa- 
tion; 4-perturbation theory and the Toigo-Woodruff equation. 

that the Fermi surface differs strongly from a sphere: 
the occupied states lie entirely in the first Brillouin 
zone. This picture corresponds more to the treatment 
of a crystal lattice, in the low-density limit, as a sys- 
tem of interacting linear chains of atoms. " This 
treatment predicts also the absence of a metastable 
structure at zero pressure. 

The uncertainty in the calculation of the correlation 
energy by the different formulas makes it  impossible to 
compare the perturbation-theory results, which are ac- 
curate in the limit of small r,, with the results of a 
variational calculation," which i s  accurate in the limit 
of large r, but is also subject to some energy uncer- 
tainty because of the use of trial functions in the form 
of combinations of Gaussian orbitals. We note, how- 
ever, that the dependence of y on r, is calculated in 
perturbation theory without allowance for the correla- 
tion energy. Figure 4 shows this dependence: curve 
1 i s  the result of the variational calculation:' curve 2 
was calculated by the modified perturbation theory as  
described in the present article; curve 3 is also a re -  
sult of perturbation theory, but the contribution of dia- 
grams d of Fig. 3 was calculated, to permit compari- 
son with other calculations, in the Hubbard-Geldart- 
Vosco approximation." We note that for strongly dis- 
torted structures this approximation greatly underesti- 
mates the contribution of diagrams d of Fig. 3.'' Curve 
4 i s  the same but with the Toigo-Woodruff approxima- 
tion. l3 

There is also another possibility of taking into account 
the electron-electron interaction, the so-called local- 
field approximati~n.l~*'~ Figure 5 shows the corre- 
sponding diagrams; the shaded vertex corresponds to 
replacement of the pure Coulomb potential of the elec- 
tron-ion interaction by some effective local potential. 
The Fourier components of this potential differ from 
those of the Coulomb potential by the factor T(K) = 
= l/q,,,(~), and it i s  assumed that this factor depends 
only on the momentum transfer K. The diagrams of 
Fig. 5 differ from those of Fig. 3 only in terms of 

FIG. 5. Perturbation- 
theory diagrams in the 
local-field approxima- 
tion. 

fourth-order perturbation theory, i.e., by contributions 
of order rt to the energy. Although each shaded ver- 
tex corresponds to taking an infinite ladder into account, 
there are  still a number of fourth-order perturbation- 
theory diagrams whose contribution is likewise not 
taken into account in this scheme. 

The difference between the results of these two cal- 
culation schemes characterizes the contribution of the 
discarded higher orders of perturbation theory. Table 
11 gives the results of calculations using the diagrams 
of Fig. 5; the Geldart-Taylor approximation is used 
for the effective-screening function T(K). Recognizing 
that the difference between T(K) and unity is small, is 
maximal at the nearest site of the reciprocal lattice, 
and decreases rapidly with increasing K, the factor 
T(K) i s  assumed to differ from unity only at these 
nearest sites in the calculation of the contribution of 
diagram b of Fig. 5. 

We note that the two-pole diagram of Fig. 5 should 
have only one shaded vertex. Since numerical integra- 
tion yields only the combined contribution of diagrams 
a and b, it is necessary to add diagrams c. The con- 
tribution of the latter i s  calculated by simple perturba- 
tion theory. 

We see that the results of the calculations by both 
schemes are  close both quantitatively and qualitatively. 
The difference lies in the fact that with increasing 
anisotropy less  dense structure are realized for the 
diagrams in Fig. 5, and a somewhat lower pressure i s  
needed to hold together the metallic hydrogen. 

The last column of Table I1 gives the coefficient T(K) 
for the K corresponding to the nearest sites of the re-  
ciprocal lattice. The deviation of T(K) from unity 
characterizes the effective screening of the external 
field and serves as  a measure of the electron-electron 
interaction. We see that this difference is small and 
is comparable with the electron-ion interaction con- 
stant W. Consequently, using third-order perturbation 
in W, there is no advantage in calculating the contribu- 
tion of the fourth and higher orders of perturbation the- 
ory in the electron-electron interaction. 

Figure 6 shows a plot of the pressure in metallic hy - 
drogen against the atomic volume Vo = 4 nr 3, / 3 .  Curves 
1 and 2 were calculated in the Toigo-Woodruff approx- 
imation, using the diagrams of Figs. 3 and 5, respec- 
tively. The pressure in the Geldart-Taylor approxi- 
mation i s  given in the tables. We see that with increas- 
ing volume Vo the pressure decreases but remains pos- 
itive. Starting with r, on the order of 1.6, the scatter 
of the pressures calculated from different formulas be- 
comes comparable with the pressure itself. This 
means that, at least at r ,  < 1.6 there is no metastable 
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FIG. 6. Pressure a s  a function of the atomic volume V,,: 
1-using the diagrams of Fig. 3; 2-using the diagrams of 
Fig. 5; 3-result of Ref. 6. 

phase of metallic hydrogen at zero pressure. To ad- 
vance into the region of larger r, it is necessary to 
take into account higher orders of perturbation theory 
and in the limit of large Y, the perturbation theory se r -  
ies of the free electron gas stop converging altogether. 
To approach metallic hydrogen from the low-density 
side i t  is necessary to use other method, such as  the 
unrestricted Hartree-Fock method'' or an approxima- 
tion similar to the Hubbard model." 

It is also of interest to  trace the connection between 
the results of the present paper and the existing cal- 
culations for metallic hydrogen in the magabar region. 
Curve 3 of Fig. 6 was taken from the paper of Kagan 
et al.8 where simple perturbation theory i s  used, and 
account was taken of the contribution of the diagrams 
of Fig. 5 and the contribution of the zero-point vibra- 
tions of the ion lattice. We see that with increasing V, 
curve 3 goes over smoothly into curves 1 and 2. 

The situation is more complicated in the calculation 
of the dependence of the anisotropy parameter y on Y,. 
As already noted, an infinite derivative of the total en- 
ergy with respect to the parameter y appears in pertur- 
bation theory also when the Fermi surface i s  tangent to 
a face of the Brillouin zone. In the case of a primitive 
hexagonal lattice this infinite derivative corresponds to 
qC= 1 (ye = 0.716). A result of this fictitious infinity is 
that even in the limiting case of small r, when the 
structure is determined by the minimum of only the ion 
energy (this minimum corresponds in the SH structure 
to y=  0.928) a fictitious metastable state with y close 
to 0.716 appears within the framework of perturbation 
theory. Consequently, a search for a minimum of the 
energy with respect to y with fixed Y, i s  legitimate if 
I v - y, 1 B W. It is therefore necessary to review the 

results of the calculations of the anisotropy parameter 
in metallic hydrogen in the megabar region, and not in 
the SH structure alone. 

In the present paper the infinity was eliminated in the 
diagrams corresponding to the interaction of the elec- 
trons with the field produced by the nearest reciprocal- 
lattice sites. This infinity remains, however, if  ac - 
count is taken of diagrams 3c and 3d in the calculation 
in the calculation of the effective vertex, a s  well as  in 
the calculation of a three-pole diagram in which one or 
two vertices correspond to a nearest site. This is why 
the region y > 0.6 is not considered in the present paper. 

The author thanks S.V. ~ordanskii for constant inter- 
es t  in the work and for valuable remarks. 
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