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The possibility of spin polarization of a plasma in a magnetic field is considered. The quasiclassical 
approximation for the motion of an electron in an inhomogeneous magnetic field is compared with the 
drift approximation. The Stern-Gerlach experimental setup is considered for the measurement of the 
magnetic moment of a free electron. The feasibility of polarizing a thermal plasma in a nonstationary 
magnetic field is demonstrated. 

PACS numbem 52.20.Dq 

The possibility of measuring the spin and the magnetic 
moment of a free electron has been widely discussed in 
the literature. The point of view initially advanced was 
that neither the spin nor the magnetic moment can be 
determined by experiments in which the electron has a 
classical behavior, i.e., when the concept of a trajec- 
tory can be introduced (see Refs. 1-3). An experiment- 
a l  setup aimed a t  determining the spin of an electron 
moving classically was subsequently indi~ated.~'" As 
to the magnetic moment, a Stern-Gerlach experimental 
setup was considered, in which the electron passes once 
through a region with homogeneous field, i.e., the 
Larmor radius R is larger than the field-inhomogeneity 
scale 1, R > I. It is easy to verify that a t  R > 1 the uncer- 
tainty principle does not permit the electron-beam split- 
ting needed for the Stern-Gerlach experiment. The op- 
posite limiting case R<< 1 was also considered7 and it 
was shown that in this case the Stern-Gerlach experi- 
ment can be performed in principle; the electron mo- 
tion is classical and the beam can be split into two 
polarized ones. 

The present article considers the possibility of polar- 
izing large particle bunches with dimension d known to 
be larger than the Larmor radius (cf. Ref. 7, where the 
beam diameter D << R). It i s  known that when conditions 
d >>R and I>> R a r e  satisfied a system of charged par- 
ticles exhibits hydrodynamic properties (see, e.g., 
Ref. 8). It is therefore convenient to call this system 

a cluster with d >> R. We report  therefore briefly the 
results  in a form convenient for our purposes. In the 
nonrelativistic limit, the Hamiltonian of the particle is 
written a s  

(see Ref. 9). The solution of the Schrodinger equation is 
se t  in the form 

where [(x, t )  is a spinor; the equation itself is then re- 
written in the form 

Equation (3) i s  expanded in powers of R (assuming 
formally that the term yo - B does not contain W ) .  In the 
zeroth approximation in the local coordinate system k' 
with the Z' axis parallel everywhere to the vector B, 
we have two Hamilton-Jacobi equations: 

Accordingly we have two Hamiltonians and two kinetic 
equations for the distribution functions 

a plasma. On the other hand, the plasma will be regar- 
H ~ = ~ ( P - A $ ) ' - ~ B ,  1 H ~ = ~ ( ~ - A $ ) ~ + ~ B ,  1 ded a s  a system of noninteracting particles drifting in a 

magnetic field (since the condition l>>R agrees with the af,lat+ { H , ,  1,) -0. afllat+ (H* .  f r )  =o: 
(6) 

. . . - . . . . . - . . .  
condition for the applicability of the drift approxima- here p is no longer an operator a s  in (I) ,  but a gener- 
tion), i.e., the collective properties of the plasma will alized momentum, and {. . . , . . . }  a r e  Poisson brackets 
be disregarded. In other words the particles behave 

(see Ref. 10). 
like free ones, and by the same token we a r e  dealing 
with the magnetic moment of a free electron. We can formally assume that there a re  two types of - 

In Sec. 2 below is discussed a concrete Stern-Gerlach 
experimental setup for electrons drifting in the mag- 
netic field of electrons. In Sec. 3 we consider a plasma 
with a thermal spread. The possibiIity of polarizing 
such a plasma is demonstrated, and this circumstance 
may be of interest for astrophysical applications. 

plasma with distribution functions f, and f,. The type to 
which a given electron belongs depends on the direction 
of its spin, parallel o r  antiparallel to the field B. In 
the adiabatic approximation (4), (5) these two types do 
not interact with each other. We shall henceforth refer 
to plasma particles of type 1 or type 2 (and correspond- 
ingly to a plasma of type 1 o r  2). 

1. FUNDAMENTAL CLASSICAL-APPROXIMATION The kinetic equations (6) a re  partial differential equa- 
EQUATIONS tions and their characteristics a r e  called the classical 

The greater part of the calculations in Rubin's paper7 trajectories of the particle. We note that Rubin7 con- 
i s  valid not only for a narrow beam D <<R, but also for sidered particle beams in the geometrical-optics ap- 
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proximation, s o  that the classical trajectory was iden- 
tified with a beam of small diameter D. Since our sub- 
ject is not beams, we shall regard the classical trajec- 
tories as just the characteristics for the solution of 
Eqs. (6). The characteristic dimension over which the 
wave function (2) varies is determined by the distribu- 
tion function JI*JI=lfdv. More specifically, 

g is the rotation from the system k' to the laboratory 
system k, and i) is  the finite-rotation matrix for the 
spin 4 . O  

Repeating the calculations of Ref. 7, we obtain the 
conditions for the applicability of the adiabatic approxi- 
mation (4), (5) 

L =vt, t is the time of the process in question, and A 
=ti/mv is the de Broglie wavelength. 

The estimates (8) can be obtained by using directly 
the exact equation (3). In fact R, which is  the smallest 
"classical" dimension in the problem, should be larger 
than A-this is the condition under which the concept of 
a trajectory is applicable. We now divide all  the terms 
into three groups proportional to tie, Fil, and I??. The 
adiabatic approximation corresponds to terms -P. The 
smallest of these terms 

is in fact due to the intrinsic angular momentum of the 
electron. It should be larger than all the terms -ti1. 
The latter can be estimated a t  Av(/2 o r  tiv.$/d. This 
leads to the second condition of (8), 2>>R (we recall 
that R = v/w,); the other ensuing condition, d >> R, was 
assumed by us from the very beginning. Finally, the 
term -ti2 is estimated a t  ti25/2md2, and i t  must be less 
than the terms -ti1. This leads to the third condition of 
(8): d2/A>> 1, since we assume henceforth that d 2 2. 

We proceed now to a discussion of the inequalities (9). 
The first  inequality is  the well known condition that the 
quantum corrections have not yet managed to accumu- 
late enough to distort the distribution function calcula- 
ted from the classical trajectories with characteristic 
cluster dimension of the order of d. As to the second 
inequality (9), it can be obtained exactly from the same 
considerations that a r e  used in drift theory (see Ref. 
11, 83) using the small parameter R/l  [see (8)]. There- 
fore exactly the same limitation exists in drift theory 
on the particle path length L. 

We now make a remark concerning the validity of the 
use of the drift approximation. The drift velocity and 
the drift invariance a re  calculated accurate to the 
parameter ~ / 2 ,  and the quantities of order (R/2)2 a r e  
discarded. We examine now the accuracy, with respect 
to the parameter R/2, to which the classical approxima- 

tion (4), (5) corresponds. As shown in Ref. 7, in f irst-  
order approximation we obtain a correction for the wave 
function (7): 

and the estimates of the upper row of the spinor Ex:'), 
i.e., ti$), and the lower row of the spinor tix$'), i.e., 
Ex'&), lead exactly to the inequalities (9) (see (19) in 
def. 7). As to Fiv?\) and dxy), they a r e  estimated a t  

hv::) E J V ~ ( )  RI1, 11~!'' =XI:' RI1 

[see (15) of Ref. 71. 

Next, in all the quasiclassical expressions (density, 
velocity) the wave function enters quadratically in the 
form of expressions of the type 

In addition, the drift approximation is obtained by 
averaging the distribution function over the short time 
2n/w,. This means that when J I  from (7) is substituted 
in these expressions (which a r e  quadratic in JI), no 
cross  terms 5:5, and t15$ a r e  produced. In fact, the 
averaged expressions 

(the angle brackets mean averaging over the small  time 
2n/w,) vanish; s,/E and s2/ti differ by a t  least the term 

0 

where x(t,) is the trajectory and 

We a re  left only with the expressions for and [$t2; 
these contain the above-mentioned corrections t i v o  
and &I1), a s  can be easily seen, raised to the second 
power (since 5:(0)5i1) = 0, 5$(0)5i1) = 0). The corrections 
themselves a r e  -R/I, and their squares -(R/2)'. 

Thus, the terms discarded in the quasiclassical ap- 
proximation a r e  of the order of ( ~ / 1 ) ~  [in addition to 
other small  parameters in accordance with inequalities 
(8)]. Consequently, the transition from the quasiclas- 
sical equations (4), (5), and (6) to the drift approxima- 
tion is perfectly legitimate. 

2. SPIN POLARIZATION OF A PLASMA WITH A 
SMALL VELOCITY SPREAD 

We use the letter p for the polarization of the plasma 
and define i t  a s  

p = ( n , - n z ) l ( n l + n r ) ,  I p l < l ;  (10) 

here n , ,  is the density of plasma of type 1 and 2 [see 
(7)]. We note f i rs t  that the plasma has a natural polar- 
ization. In fact, at thermodynamic equilibrium the 
measure of the spin polarization is given by 

p W T - e - W T  A", 
P' e'LB/T+e-V/T 2' (11) 

We now define a parameter that will play an important 
role subsequently 

1096 Sov. Phys. JETP 50(6), Dec. 1979 



a=pB/T=Ao./2T-UR. (12) 

It is assumed here that the magnetic moment of the 
electron, a s  follows from the Dirac equation, is defined 
a s  p = eti/2mc. In addition, T = mv2/2, where u is the 
total velocity of the particle; in the presence of a ve- 
locity spread, v will be taken to mean the characteris- 
tic value of the velocity (the mathematic expectation 
value of v). It is this velocity which is substituted in 
the definition of the de Broglie wavelength A =ti/mv, and 
also of the Larmor radius R = v/w,. 

We confine ourselves to a purely classical situation, 
when the parameter a is quite small. In this case the 
natural polarization, according to (1 I ) ,  is negligibly 
small, To obtain a noticeable polarization higher than 
a it is necessary to consider a state far from thermo- 
dynamic equilibrium. 

We place the plasma in the field of an adiabatic t rap  
with an axially symmetrical field (see, e.g., Ref. 12). 
The dynamics of the particles is described by the equa- 
tion of the characteristics for the kinetic equations (6): 

We can formally assume that the particles move in an 
inhomogeneous magnetic field in the presence of an 
electric potential &we/2e, which is positive for plasma 
of type 1 and negative for plasma of type 2. It is known 
that application of an electric field produces an electric 
drift of the particles across the magnetic field. In our 
case of an adiabatic trap, this electric drift is super- 
imposed on the azimuthal drift due to the inhomogeneity 
of the magnetic field. Since the electric field, as  
follows from (13), is given by the expression *Avwe/2e, 
the electric drift velocity takes the form 

where the plus sign corresponds to the drift velocity 
(v,), and the minus sign to the velocity (v,). It follows 
therefore that two plasma bunches of type 1 and type 2 
move apart with a velocity =ti/ml. As a result, the 
plasma vecomes polarized. However, the fastest and 
most effective separation of bunches of different types 
occurs along the force lines. We proceed not to des- 
cribe this process. 

We write down in the required approximation an ex- 
pression for the velocity component vll parallel to B 
(see Ref. 13): 

here vZ,=t? - 4 ,  p1 =m$/2B is the transverse adiabatic 
invariant (classical magnetic moment), and h =B/B. 
The motion along the force line is described therefore 
in the following manner: 

mdll=-aUi, r lax~,  Us. z=- (*p-pL)B,  

mv,,V2+U,, 2=E, mvziZrpB-E, 
(16) 

where 8/8xl, is the derivative along the direction of h. 
Assume that electrons with almost equal vll and v2, a r e  
injected into the central part of the t rap  (the permis- 
sible spreads of vll and v2, will be indicated below). In 
the present section we consider both t rapNd and un- 

trapped particles. We f i rs t  turn to the trapped par- 
ticles. 

The electrons of two sor ts  move in somewhat differ- 
ent potentials, U, and U,, where U, - U2 =tiwe. There- 
fore the periods t ,  and t,, of the oscillations of the 
electrons of the different sor ts  in the t rap  (i.e., the 
time of passage from mirror  to mirror  and back) a re  
different. The exact value of t, - t2 is determined by 
the concrete model of the t rap  field. For estimates it 
suffices to use the system (16) with account taken of the 
fact that C1/CI, is the only small  parameter that deter- 
mines the difference t ,  - t,. In other words, t, - t 2  
= t l ~  /P ,  - 

The exact calculation given in Sec. 3 for a definite 
model confirms this model [see Eq. (28)]. We assume 
for  the sake of argument that the initial instant we have 
vi J u2,, and then the small parameter p/p, is  none 
other than (Y in accordance with (12), but recalculated 
for the center of the trap. We use the subscript zero 
for all the values (fields, velocities, etc.) a t  the center 
of the trap. Consequently we can write t, - t2z t,a,, 
and therefore the two clusters of sor t  1 and sor t  2 
move apart  with velocity 

Comparing (17) with (14) we see  that the plasma be- 
comes polarized along the force lines faster by a factor 
Z/R than across the lines. The measure of the polariza- 
tion, defined by (lo), can be estimated a t  

where the estimate (18) holds when p < 1; after suf- 
ficiently long times t>d/6vll the clusters move apart 
completely, and p = 1 (complete polarization). 

We estimate now the minimum possible polarization, 
using the limitations (9) and the fact that in the given 
case L= vllt (since it is assumed that vll = u, = v): 

p<dlR, p<aolVdR. (19) 

The first  inequality in (19) is  not a restriction, since 
d / ~  > 1, whereas p s 1 by definition. On the other hand, 
the second restriction admits in principle of a polariza- 
tion measure p >  a (i.e., greatly exceeding the thermo- 
dynamic-equilibrium value) and even p = 1. The point is 
that 1 >>d and 1>>R, and consequently the parameter 
1 2 / d ~  in (19) is much larger than unity. 

By way of example we consider an adiabatic trap with 
d = lOR, stipulate total polarization, p = 1, and re- 
quire, to satisfy (19), that ~ y , l ~ / d R ~ = l O .  Then E 
= 1 0 ~ & ~ ' ~ .  For a field B, = lo4 G and an energy T =lo-" 
e rg  we have R = 5  x cm and a, = lom5, s o  that 1 turns 
out to be =1.6 cm. The dimension lcr = 1.6 cm is the 

' 

critical value of I: the inequality (19) is satisfied at 
13 In. We recall that 1 is the characteristic dimension 
of the change of the field, i.e., in fact the dimension 
of the trap. It is easy to verify that in this example the 
inequalities (8) a r e  satisfied with large margin (because 
of the small de Broglie wavelength, X =lo-' cm in this 
case). 

It was stated above that the initial velocities of the 
particles should be almost equal. It is clear that the 
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velocity spread Av must in any case be less than 6vll in 
accordance with (17). Otherwise the cluster diffuses 
before i t  splits into two clusters of different types. 
More accurately speaking, the following conditions 
must be satisfied: 

The second condition of (20) follows from the require- 
ment imposed on @, in (16) and from the fact that vll 
= v, The requirements (20) do not contradict the uncer- 
tainty relation, according to which Av >-ti/md. This 
follows in fact from relations (8) and (9). In addition, 
this can be verified also directly. The conditions (20) 
a r e  replaced by Av<< 6yl= a0v, and a t  d >>R we have 
E/md << a0v, which was in fact assumed. Thus, the 
velocity is spread fi/md that results from the uncertain- 
ty relation is small compared with 6~1.  We recall that 
a t  large R >  I ,  the uncertainty relations made it com- 
pletely impossible to carry out the Stern-Gerlach ex- 
periment.2*3 The requirement Av< 6vll means that Av 
<< v. This is preciesly why it can be stated that the 
plasma is characterized by a small velocity spread. 

We now discuss a somewhat modified Stern-Gerlach 
experiment. To this end we consider the particles that 
leave the trap. In this case the configuration of the 
magnetic field outside the trap proper becomes impor- 
tant. A section through the trap is shown in the figure. 
The trap proper [more accurately speaking, its half 
from the center (the left-hand part of the figure) to the 
mirror a t  the point A] is to the left of the point A. 
Outside of the trap (to the right of the point A) the field 
has been continued uniformly. Let now electrons with a 
small velocity spread Av< 6v =a!& be injected into the 
central part of the trap. The plasma of type 1 will then 
arrive at the point A with a velocity that differs some- 
what from the velocity of the plasma of type 2 at the 
same point, namely according to (16) we have 

Lvn(A) 1,. z=[ (vZ)o- (vla/B)oBW* (2plm) (B,-Bo) 1'". 

Here B,, is the field in the region of the mirror. Be- 
cause of the difference between the velocities, [ v , ~ ) ] ,  
and [vII(A)],, the plasma of type 1 will overtake the 
plasma of type 2. The thickness of the leading front of 
the plasma (i.e., of the region where the density 
changes from zero to the average value) depends on the 
method used for the injection into the central region of 
the trap. Let the injection of the electrons begin a t  
t = O  and let the particle flux by the instant t =At reach 
i ts  constant (after t > At) value. Then the front thick- 
ness is vll(A)&t =d (vll(A) is the velocity neglecting the 
intrinsic moment). Using the smallness of the intrinsic 
magnetic moment of the electron, we have 

The total polarization, i.e., the overtaking of the plas- 

FIG. 1. 

ma of type 2 by the plasma of type 1 over the length d ,  
occurs within a time d / 6 q  a t  a distance dvll(A)/6vll 
from the point A. By way of an estimate we assume 
that Bm, is not much larger than Bo and that vll = v, a t  
the center of the trap. Then 6yls aovll(A) and the total 
polarization takes place a t  a distance d/a0 from the 
point A. 

We note that the cri teria (8) and (9) a r e  certainly 
satisfied here if we put d s  1. In practice, let the par- 
ticle path L also be close to 1 in view of the fact that 
outside the trap (to the right of the point A) the field 
is homogeneous, we have Vw, = O  in Eqs. (13) and this 
system becomes exact for yl. The criterion (9) then 
contains only the path of the particle inside the trap. 
The criteria (8) and (9) a r e  ultimately replaced by the 
conditions A << R << 1. 

3. SPIN POLARIZATION OF A PLASMA WITH A 
THERMAL VELOCITY SPREAD 

It was shown above that the velocity 6v at which the 
clusters move apart is proportional to ti; in other 
words, this velocity is small. It might seem therefore 
that in the classical case, when a! is quite small in ac- 
cordance with (12), the velocity 6v cannot be discerned 
against the background of the thermal motion. This, 
however, is not always the case. We shall illustrate 
the feasibility, in principle, of polarizing a thermal 
plasma using what is probably the simplest example, 
that of an emptying adiabatic trap. The gist of the 
process is that the coefficients of reflection of the par- 
ticles from the mirrors  is different for particles of 
different types. The rates of emptying of the trap for 
the plasma of type 1 differs from that of type 2, as a 
result of which the residual plasma in the trap becomes 
polarized. We a r e  interested here in final analysis in 
the number of particles that leave the trap after passing 
once through the trap. Therefore, just a s  in the Stern- 
Gerlach experiment (see the end of Sec. 2), the quasi- 
classical approximation is valid a t  A<< R<< 1. 

The condition of particle containment follows directly 
from (16). The velocity vll, a s  seen from (16) is given 
by 

(un) ,= [ ( v Z )  ,- (v121B) ,B* (2plm) (B-Bo) I"'. (22) 

For  the particle to be reflected, the radicand of the ex- 
pression must become negative inside the trap: the 
particle cannot pass into a region where this expression 
is less than zero. From this we obtain the relection 
condition: 

Naturally, neglecting the instrinsic magnetic moment 
[N = O  in (23)], we return to the well known reflection 
condition: sin2g> l/k. Consequently, the number of 
particles that leave both ends of the t rap per unit time 
is determined by the quantity (see 5 10 of Ref. 13) 

where s is the cross  section of the central part of the 
trap, and n d v  is the density of the particles with veloc- 

1098 Sov. Phys. JETP 50(6), Dec. 1979 



ities between u and v +du; the velocity distribution is 
assumed Maxwellian. 

Integrating over the velocities, we have 

Here U: =~T/w, T is the temperature, and zr =mu:/ 
2B,, N,,, i s  the number of particles of the f i rs t  and 
second kind in the trap. The volume of the trap i s  sl' 
(I' s I), and consequently N,,, = sl'n,,,. Substituting this 
N,,,  in (24), assuming that the Maxwellian distribution 
is maintained in the t rap  by the collisions, and assum- 
ing also a constant temperature, we obtain an exponen- 
tial decrease of the density. It follows from (24) that 
the arguments of the exponentials a re  somewhat differ- 
ent for the particles of type 1 and 2. As a result, the 
residual plasma becomes polarized. 

According to the definition of the measure of the 
polarization (lo), we obtain, using (24), 

It is seen therefore that at t >> l/v, we have I P I - 1, i.e., 
the polarization becomes complete. It must be borne 
in mind that the Coulomb collisions that lead to iso- 
tropization of the distribution function, depolarizes the 
plasma at the same time. Nonetheless, polarization 
can take place. The point is that the frequency v, of 
collisions in which the spin of the electron is  rotated 
through an angle n (or the frequency of spin flip a s  a 
result of collisions) is negligibly small  compared with 
the usual collision frequency v .  Thus, the described 
polarization will take place if 

. v,, v=-vn. 

We have demonstrated above the possibility, in prin- 
ciple, of spin polarization of a plasma that is initially 
in thermal equilibrium. As to the experimental real- 
ization of this possibility o r  its occurrence under as- 
trophysical conditions, two difficulties ar ise  here. 
First ,  the quantity v, contains a small  parameter p h r  
=$a,, as  a result of which the time of polarization be- 
comes quite large. Second, by the time polarization 
becomes substantial, the density of the plasma itself 
becomes exponentially small. Nonetheless, this pos- 
sibility cannot be denied under conditions of interstellar 
clouds and over cosmological times, when large density 
differentials (by many orders of magnitude at long 
times) a r e  usual phenomena. 

We proceed now to consider plasma polarization in 
an alternating magnetic field, which is of greater 
interest from the point of view of applications. It is 
known that the particles become accelerated in a non- 
stationary field. The gist of the mechanism is that the 
particles of type 1 and type 2 a r e  accelerated some- 
what differently. The difference in the energy incre- 
ment per unit time of the particles of the different types 
accumulates. After a long time interval this difference 
can become appreciable. We consider below the accel- 
eration of particles in a nonstationary field of an adia- 
batic trap, and acceleration by MHD waves. 

We consider f irst  the nonstationary trap. It is  known 

that a periodic perturbation of the magnetic field of the 
t rap  in the region of the mirror can accelerate the par- 
ticles. We consider perturbations in the form of perio- 
dic shifts of the entire magnetic fields in the region of 
the mirror  along the t rap  axis. Then the motion of the 
particle between the mirrors  recalls the motion be- 
tween walls, one of which executes periodic oscilla- 
tions. The particle-energy increment is given by (see 
Refs. 14 and 15) 

where v is the particle velocity (in our case this is ull), 
V is the velocity of the wall (mirror), and t' is  the time 
of motion of the particle between the walls. The mirror 
oscillation frequency w is  assumed large compared with 
2n/t', and in addition, v<< V, for otherwise an adiabatic 
regime is realized, the longitudinal adiabatic variant is  
conserved, and there is no acceleration. 

We shall see below that the values of t' differ some- 
what for particles of type 1 and 2. This will cause par- 
ticles of the different types to be differently accelerated. 
The period t' is  defined according to (16) a s  follows: 

The integration is  carried out up-to the points where 
the denominator vanishes, and xll is  the length of the 
path along the force line. We consider the following 
model: 

Here xll is reckoned from the center of the t rap  (where 
xI1=0). Then 

t,, ,=na[ (piTp)Bo]-'"=t'(l~i/Zp/pI), (28 

where t' is the period without allowance for the intrinsic 
moment; the last equation in (28) is  accurate to within 
a quantity of the order of Neglecting the colli- 
sions, p ,  is conserved and consequently t,,, does not 
depend on the energy, and t, # t,. 

The solution of (25) takes the form 

We see therefore that the difference between the ener- 
gies of particles of type 1 and 2 increases gradually and 
after a time 

their difference will be of the order'of the thermal 
energy. 

We have thus described in this example the polariza- 
tion of a plasma in phase space. In addition, polariza- 
tion in ordinary space takes place here simultaneously. 
In fact, the point of reflection in the model (27) moves 
away in the course of the acceleration into the region of 
ever increasing xll, xi?)= vll/tf (XI,'?) is the reflection 
point). Consequently the particles of the different types 
accelerate differently, and the points of reflections for 
the different particles move away from each other. 
After a time 
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the distance between the reflection points becomes =a, 
and plasma of only one kind is present between the re -  
flection points, i.e., the plasma is completely polarized. 

The foregoing particle acceleration is due to the non- 
stationary character of the magnetic field. The field of 
the t rap  was perturbed in the region of the mirrors.  
One can expect a perfectly analogous effect to occur in 
the presence of nonstationary perturbations in the cen- 
t r a l  region. 

We turn now to particle acceleration in the field of 
MHD waves propagating against the background of a 
homogeneous magnetic field. The particles move main- 
ly along the force lines, i.e., almost along the straight 
line of the background field, and "follow" the perturba- 
tions-the MHD waves. Larmor rotation with velocity 
v, causes the particle to wind its way around the force 
line. The classical magnetic moment p, = m < / 2 ~  is, 
a s  is well known, an adiabatic invariant. Consequently, 
v2, fluctuates together with B, but is conserved on the 
average. As to the velocity u,, along the force lines it- 
self, it was shown with the nonstationary t rap  as an ex- 
ample that the averaged value (v;) can increase because 
of the nonstationary perturbations-the MHD waves. 
The particles of different type a r e  differently accelera- 
ted, and this leads to spin polarization of the plasma. 

We write down the equation for vll (see Ref. 13): 

m h = e ( h ) - p 1 ( h ~ B ) + r $  ( ~ [ h ( h ~ ) h ] ) - p , ~ ( ~ ~ [ h ( h ~ ) h ] ) ;  (29) 
0. 

h = B / B .  We represent the field in the form B  =Bo +b, 
where Bo is the homogeneous field and b is the fluctua- 
tion. The third and fourth terms of the right-hand side 
of (29) a r e  quadratic in the fluctuation and will be dis- 
regarded. Expression (29) contains the entire informa- 
tion on the forces acting on the plasma. In particular, 
the specific force due to the presence of the magnetic 
moment of the electron, &vw,/2e (see (13)), is inclu- 
ded in the electric field E. 

If the intrinsic magnetic moment is neglected, Eq. 
(29) becomes much simpler when account is  taken of 
the fact that for MHD perturbations, a s  i s  well known, 
E.h=O: 

The acceleration i s  perfectly analogous to the accelera- 
tion of a particle in the field of a nonstationary poten- 
tial. The physical meaning of the acceleration becomes 
clearer if we change to the expression for the energy: 

This expressionreduces, naturally, toEq. (6.13) of 
Ref. 13: 

dT/dt=e(Ev) -cp,(h rot E ) ,  (32) 

where T is  the energy. We have used here the electro- 
dynamics equation 

rot E=-c-'aBlat, 

and in the approximation linear in the perturbation we 
must put E - v =O. It is seen directly from (32) that the 
acceleration is connected with the solenoidal electric 
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field that is produced because the magnetic field is not 
stationary. 

When account is taken of the intrinsic magnetic mo- 
ment, a term f f i~w, /2e  is added to the electric field, E, 
and this changes the electric-field component parallel 
to the magnetic field. Now the f i rs t  terms of the right- 
sides of (29) and (32) no longer vanish and, a s  can be 
,asily verified, these f i rs t  terms turn out to be of the 
same form as the second terms, with (1, replaced by 
*p. By combining these terms we get the potential U 
=(p,r  p ) B  [cf. (15)], and instead of (32) we get accord- 
ingly 

dTldt-c(*p-p,) ( h  rot E ) .  (33) 

In (33) we must integrate along the trajectory 
I 

T=To+ j fdt; 
O 

f is the right-hand side of (33). Iff is a stationary (in 
the statistical sense) random process, then the integral 
of f increases, even though (f) =O. In fact, 

Thus, the energy increases like t1I2. 

The assumption that the function f is stationary along 
the trajectory acquires a clear physical meaning a t  
v ,, > vr, where v, is the Alfven velocity. The frequency 
of the perturbation w =v,/l is much smaller here than 
v / l ,  where 1 is the inhomogeneity scale (the wavelength). 
In a time interval on the order of several  correlation 
times of the random function f it  can be assumed ap- 
proximately that 

In this approximation, the assumption that f is s ta-  
tionary is  essentially the quite natural assumption that 
the magnetic fluctuations a r e  homogeneous. It is con- 
venient to change over to the variable r in the integral 

0 

and write down (34) in differential form: 

0 ( r )  =<f (x+r) f (2) >, dy=dr/vp, 
'I' 

T -  (5) m, q = = 2 f ~ , ( r ) d r .  
0 

The las t  expression is valid a t  large t. 

According to (33), the expression for q in (35) is 
different for unlike particles. Whereas unlike particles 
having same initial energy ~ ( 0 )  should, neglecting the 
intrinsic moment, acquire by the instant of time t and 
energy ~ ( t ) ,  the actual difference between the energies 
of the unlike particles reaches by that instant the value 



In conclusion, I am grateful to P. L. Rubin (Lebedev 
Institute) for helpful discussions. We see therefore that after a time 

(T, is the thermal energy) the energy difference 
reaches the value T,. 

In the situation described above, the plasma becomes 
spin-polarized in phase space. Polarization in ordinary 
space can be the consequence of this process. In fact, 
a s  stated above, the particle moves mainly along the 
force line, i.e., almost along a straight line. Assume 
that the region in which the MHD waves propagate is  
finite, s o  that the particles ultimately leave this region 
and land in an unperturbed homogeneous magnetic field. 
Because of the different velocities of particles of dif- 
ferent type, the leading front of the plasma, on entering 
the homogeneous field, is  polarized in analogy with the 
situation in the Stern-Gerlach experiment (see the end 
of Sec. 2). A similar situation will obtain also when 
accelerated particles land in the region where the 
plasma can no longer be regarded a s  collisionless (for 
example, the spilling of particles from the earths mag- 
netosphere into the ionsphere). Particles of different 
types, having different energies, have different mean 
f ree  paths, as  a result of which the plasma becomes 
polarized over a finite length. 

The described acceleration and polarization of par- 
ticles in phase space can take place in an interstellar 
plasma, and produce in turn circular polarization of 
the passing electromagnetic radiation. 
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Advanced magnetothermal phenomena in a laser plasma 
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The possibility of spontaneous generation of sizable magnetic fields in a laser plasma within periods much 
shorter than hydrodynamic times is demonstrated. The field growth has a threshold that depends on the 
geometrical factors of the corona and on the dimensions of the heat-release region. The magnetic fields 
cause a qualitative restructuring of the heat front and decrease the heat transfer substantially. In 
particular, heat can penetrate into the plasma in the form of a magnetothermal jet. 

PACS numbers: 52.50.Jm, 52.25.Fi 

1. The magnetic fields produced spontaneously in a 
laser plasma were investigated in a number of experi- 
mental and theoretical s t~dies . ' '~ '  The hertofore con- 
sidered magnetic-field generation mechanisms can be 
broken up into two groups. 

The first  group includes mechanisms connected in one 
way or another with the process of absorption of the las- 
e r  radiation. Notice should be taken of the transfer of 
momentum from the light wave to the electrons in reso- 
nant absorption when the radiation is  obliquely incident 

on the critical ~ u r f a c e , ~ ' b f  the electromagnetic insta- 
bility due to the anisotropy of the distribution of the 
electron velocities in the absorption of the para- 
metric generation of magnetic fields by beats between 
the high-frequency motions of the electrons ,6'7 and of 
the generation of magnetic fields by the advanced Lang- 
muir motions in the plasma.8 The foregoing field-gen- 
eration methods a r e  of considerable interest from the 
point of view of their influence on the light absorption, 
and particularly on the diffraction of the absorbed ener- 
gy and i t s  distribution over the critical surface. The 
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