
second pulses, the reproducibility of their characteris- 
tics, realization of maximum radiation energy, a d  de- 
velopment of a method for controlling the instant of Q 
switching in a resonator with a plasma mirror.  

 he stage-pump energies U are indicated here and below as 
fractions of the maximum value. Thus, the U2 = 0.40 means 
that the pump energy of the second stage is 32 kJ. 
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Resonant ionization of atoms under conditions of adiabatic 
level inversion 

M. V. Fedorov 
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Zh. Eksp. Teor. Fiz. 77, 2200-2210 (December 1979) 

Analytic expressions are obtained for the structure and the line shape of the dispersion dependence of the 
probability of the resonant polarization w on the radiation frequency w under conditions of adiabatic 
level inversion due to the dynamic Stark effect in a field of variable amplitude. It is shown that under 
certain conditions the w(o) dispersion curve is not characterized by a single parameter (width). A 
narrow and high principal maximum can appear against the background of the relatively broad w(w) 
line. The parameters of the principal maximum and of the w(w) as a whole are obtained. Conditions for 
the realization of the regime of adiabatic inversion of levels are investigated, particularly the conditions 
for the onset of the narrow principal maximum. The effect of spatial inhomogeneity of the field on the 
probability of resonant ionization under conditions of adiabatic level inversion is investigated. 

PACS numbers: 32.70.Jz, 32.60. + i 

1. Resonant multiphoton ionization of atoms has 
recently attracted considerable attention both exper- 
imentally''g and t h e ~ r e t i c a l l y . ~ ~ " ~  In the experiment 
i t  i s  customary to investigate either the dependence of 
the ionization probability w on the intensity of the ra- 
diation at a given frequency w, or  the w ( ~ )  dependence 
a t  a fixed field intensity. The experiments of the latter 
type a r e  apparently most suitable for the determination 
of the physical nature of the resonant-ionization pro- 
cess, since they yield direct information on the width 
and position of the maximum and in general on the 

shape of the w(w) dispersion curve. It is this which 
governs the formulation of the principal problems 
faced in the theory of resonant ionization: the deter- 
mination of the shape of the dispersion curve and the 
elucidation of the physical mechanisms of i t s  forma- 
tion. From this point of view, an investigation of the 
excitation of the resonant level is insufficient for a 
complete solution of the problem of resonant ionization. 

One of the principal parameters that characterize the 
w(w) dispersion curve is i t s  width I?. Various physical 
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mechanisms of the broadening of the dispersion curve 
in a strong external field have been inve~tigated.""~ 
It is convenient to characterize each of these mech- 
anisms by a corresponding parameter that plays the 
role of the width of the dispersion curve, i.e., the width 
of the resonance. 

According to Refs. 14 and 15, in the model in which 
the interaction is turned on instantaneously in a spa- 
tially homogeneous field theresonance width r is 
defined a s  

r=max {fi~o, r,, rs rf(r,rlfi)"). (1) 
Here Ao is the spectral width of the radiation and is 
equal to 1 / ~  in the case of a single-mode laser, where 
T is the pulse duration; rf =41 V$)l is the field width 
due to the mixing of the ground and resonant states, 
k, is the multiplicity of the resonance and of the com- 
posite matrix element of the resonant 0- 1 transition, 
v = -(1/2)d°F0, fo is the amplitude of the wave field 
intensity; ri =2nl vYE2)l2 i s  the ionization width, k, is 
the minimal number of photons necessary for the tran- 
sition from the resonant state to the continuum, 

E=Eo+ (k,+k,)Ao=E,+ k2fio, 

and Eo,, a r e  the energies of the ground and resonant 
states. The parameter rf (rir/fi)* in (1) is connected 
with the possibility of 100% ionization of the atom 
during the time of the pulse under conditions close to 
exact resonance. 

If the interaction is not turned on instantaneously, 
then all the resonance mechanisms determined by the 
parameters of Eq. (1) can be realized a s  
However, new mechanisms come into play, since the 
positions of the ground and resonant levels depend on 
the time because of the dynamic Stark effect in a field 
of definite amplitude Fo f ( t )  (ha, = f(0) = 1): 

En, , ( t )  =En, , - ' l i a o .  iFn2P ( t )  

where a0,,(w) a r e  the dynamic polarizabilities of the 
ground and resonant levels. The condition for the ap- 
pearance of new mechanisms of formation of the dis- 
persion curve takes the form r< aF:, where a 
= 1/41 a, - a,[, -and the width r is determined by  Eq. 
(1). For the case of weak mixing of the ground and 
resonant states, when rf <<fi /~ ,  this mechanism was 
investigated in Refs. 13 and 15 (see also Ref. 16). The 
main result13 is that a new width parameter appears 

and can compete with all the remaining parameters. 
This conclusion i s  valid, however, only if the field has 
a high spatial homogeneity. For pulses with a smooth 
spatial-envelope profile, the averaging of the equations 
of Ref. 13 over the spatial distribution of the field a t  
aF:>> E/T leads to  a resonance curve of width "aF2,.17 
The parameter f',, in these fields cannot determine the 
width of the dispersion curve, since it is certainly less  
than either A/T or  aF:. 

The case of a strong mixing of the levels rf >>&/T 
with a considerable Stark shift aF:> l? in fields with a 
smooth temporal envelope f ( t )  was considered in Refs. 
16 and 18. Principal attention, however, was paid to 
the atom-excitation dynamics. No analytic expressions 

were obtained in the general case for the shape and 
width of the dispersion curve, since no complete analy- 
sis was made of the conditions under which the corre- 
sponding resonant-ionization mechanism can be real- 
ized. These problems a r e  the topic of the present 
article. 

2. In accord with the problem posed above, we con- 
sider the case when the Stark shift is large, aF:>> rf, 
and strong mixing of the ground and resonant levels 
takes place, rf >> A/T. These inequalities can be 
satisfied simultaneously only for a special choice of 
the experimental conditions. In fact, the simplest 
qualitative estimate of the parameters rf and aF: 
yields 

r,-Eat (Fo/Fat) 'I, aF?-Eat(Fo/Fat)2, (2) 

where Eat and Fat a r e  respectively the characteristic 
atomic energy and intra-atomic field. According to 
(2), the condition aFt>> rf at  Fo<< Fat can be satisfied 
only a t  k, 2 3. Actually, this relation between aF2, 
and rf can be satisfied also if they have the same func- 
tional dependence on Fo, i.e., a t  k, = 2, provided that 
the composite matrix element V 2) i s  numerically 
anomalously small. In this case, however, one can 
hardly satisfy the condition rf7/tZ>> 1 for the strong 
mixing of the levels. At k, 23  the condition OF:>> rf 
is satisfied automatically, but difficulties can likewise 
a r i se  with the requirement rf r/A>> 1. TO satisfy this 
inequality in the case of k, 23,  on the contrary, it is 
necessary that the matrix element V:,) be numerically 
anomalously large. Examples of this kind a r e  Lnown. 
According to Ref. 18, in the case of the three-photon 
6s-6F transition in the C s  atom we have 

r~=lO~Eat(FoIFat) ', 
whereas 

aFo2= (loz-10~E~t(Fo/Fat)'. 

Since the numerical value of r exceeds by five orders 
of magnitude the value expected from the qualitative 
estimate (2), the inequalities 

a,FoZ>FI>filr 

a r e  satisfied simultaneously under reasonable con- 
ditions-for example a t  T = 10" sec and Fo = 5 - lo5 V/cm. 
The equations for the probability amplitudes of excita- 
tion of the atom a r e  solved a t  rf >>A/T in the quasi- 
classical approximation (in time) and according to 
Refs. 12 and 19 they yield the following expression for 
the ionization probability: 

A (t) sgn A 
[AZ(t) +t,,r,Zf2h,(t) ] ' I , )  pl''(t)l  

- m 

where 

The physical meaning of (3) is quite obvious. The 
coefficient of Z in the integrand of (3) coincides with 
the square of the modulus of the coefficient of the 
wave function of the resonant state in one of the quasi- 
energy functions of a two-level system in a resonant 
field of constant amplitude15 
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where q,,, a r e  the wave functions of the ground and 
resonant states. This means that the employed quasi- 
classical approximation is equivalent to an adiabatic 
switching-on of the interaction, such that the quasi- 
energy functions $+, and $, a r e  not intermixed. The 
dependence of the field amplitude on the time appears 
in this case only in the parametric dependence of the 
detuning A(t) and of the interaction energy rf fRl(t) 
on t. 

We estimate now the conditions for the applicability 
of Eq. (3). The known conditions for the applicability 
of the quasiclassical approximationz0 can be written 
in the form" 

( D = f i I ~ , f f I / I U e f r l ' " ~ l ,  (4) 
where Ueff = 1/4(a2(t) + 1 / 4 q  f *l(t)). By virtue of the 
condition &:>> rf, the scale of variation of the de- 
tuning A(t) is on the whole large compared with rf. 
Therefore the most doubtful region from the point of 
view of the applicability of the quasiclassical approach 
is the vicinity of the points where A(t) vanishes. In the 
vicinity of these points the derivative of the function 
U,, (t) changes sign in a small interval, i.e., the func- 
tion experiences a break. If A(to) = 0, then we can use 
in the vicinity of to the linear expansion A(t) = x(t - to), 
where x -  ~F:/T, and we can also assume F(t) 

1/4rf fhl(t)= F(to), since F(t) is a smooth function of 
t .  The function cP(t) takes under these approximations 
the form 

8iixzl t-t,l 
(D ( t )  = 

[xZ(t- t , )Z+4Fa(to)  ' 

The maximum value of cP (t) is reached at 

and its  order of magnitude is 

Consequently, the conditions for applicability of the 
quasiclassical approach and of Eq. (3) a r e  determined 
in this case by the set of inequalities 

Under these conditions, the quasiclassical approxima- 
tion and Eq. (3) a re  valid a t  all  values of the detuning 
A(0). 

3. We consider now values of A(0) such that the 
function A(t) vanishes a t  points close to the inflection 
points of the A(t) curve, t , , , ~  r7/2 (see Fig. 1). The 
probability of finding the atom in the excited state, 
which is equal to 

1 A ( t )  sgn A 
u , = l ( l -  

assumes in this case a peculiar form: i t  is small a t  
t < t, and t > t, and is close to unity a t  t ,  < t  < t, (Fig. lb). 
The time At of the transitions from the value =O to the 
value =1 can be easily estimated by expanding A(t) in 
the vicinity of the points t,,, in the series A(t) 
= rx(t - t,,,) and replacing f '*l(t) by f *l(t,,,)- 1; this 
yields 

At~I'i/x-zI'l/aFoz. 

By virtue of the inequalities (6) the transition time At 
is small compared with the pulse duration T and is 
large compared with the mixing time of the ground and 

FIG. 1. Time dependence of resonance detuning. The dashed 
curves correspond to the external values A(0) at which adia- 
batic level inversion is possible. b) Probability wi(t )  of ex- 
citing an atom in the adiabatic inversion regime. 

resonant states Erf" (the period of the Rabi oscilla- 
tions). 

Taking into account the indicated w,(t) dependence, 
Eq. (3) becomes 

According to (7), the probability w decreases if the 
detuning A(0) changes in such a way that the points 
t, and t, come closer together. If A(0) changes in the 
opposite direction, then the points t,,, go over into the 
region of weaker fields, as a result of which the in- 
equalities (6) a r e  violated, especially the condition 
rf >>f i /~  of strong level mixing, which can be more 
accurately written in the form 

ri fhqt , ,  z) BRIT. 

If the last inequality is violated, then no substantial 
transitions to the excited state take place, i.e., the 
probability of ionization also decreases. Thus, the 
characteristic scale of variation of A(0) is the interval 
that corresponds to the change of the positions of the 
points t , , ,  on Fig. la from values - r T  to zero. Ob- 
viously, this detuning scale, and consequently also the 
resonance width I', a r e  of the order of aFi. 

Equation (3) makes it possible not only to estimate 
the width I' and the value of w (7), but also allows u s  to  
trace the detailed structure of the wing of the disper- 
sion curve in the region of detunings A(0) a t  which the 
points t, and t, approach each other. Obviously, a t  
I t,,,l << T the values of t, and t, can be  obtained ex- 
plicitly by using the expansion of the function A(t) near 
i t s  extremal value 

A ( t )  =A ( 0 )  +"x2, 
(8) 

where G- aF:/r2, and Gt2 was chosen positive, for the 
sake of argument, to correspond to  Fig. la. The posi- 
tions of the point t,,, can be easily determined with the 
aid of (8): 

a t  A(O)<O. Near one of these intersection points, say 
tl, 
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which is equivalent to the linear expansion used above 
far from t =0, with x replaced by 2 (1~(0) )  2)lh. The 
expansion used here is preferable a t  ( t,,,( << T in the 
sense that it contains information on the dependence 
of t , , ,  on the detuning A(0). The transition time is 
given a s  before by 

The condition At <<t2 -tl i s  satisfied a t  I ~(0)1>> rf, 
and the condition 1 tl - t,( << T a t  1 A(o)I << Within 
the framework of these limitations, the probability is 
given by 

I, 

( 9 )  
Thus, in the detuning interval aF2,>> I A(O)I >> I'f the 

probability w decreases with decreasing ( ~ ( 0 ) l  like 
(1 &(o)l)* (Fig. 2). 

The minimal value of w reached on the boundary of 
this region a t  A(0) = -rf i s  of the order of 

h-'r{~ ( r , /aFoz)  'I8. 

With further increase of A(0) (in the region of positive 
values), the character of the dispersion curve changes 
substantially. The reason is that the function A(t) a t  
A(O)> 0 does not vanish, and the probability of finding 
the atom in the excited state a t  all  values of t is small. 
At A(O)>> T j  we have 

~ ( t )  BrffaLn(t), 

which makes it possible to simplify Eq. (3): 

the maximum of the function A'2(t) is much narrower 
than the maximum of the numerator in the integrand of 
(lo), so that we get 

n r i r lS  - nzr,r; 
w =  

32h[A  ( 0 )  I-"& 32h.[A (0) ]."(aP,Z)'" 
(11) 

On the contrary, a t  A(O)> aF2, we can put A(t)= A(0) 
in (lo), so that this expression goes over into the 

FIG. 2. Structure of dispersion curve w (w) t& (O)] in the 
adiabatic level-inversion regime: a) under conditions defined 
by inequalities (6), b) under conditions when the principal max- 
imum takes place [inequalities (15)l. The dashed curve corre- 
sponds to the conditions defined by the inequalities (5) upon 
averaging of the probability w over the spatial distribution of 
the field: urnm= r,tk,/%. 

standard perturbation-theory equation 

rirfz~b+ll. 
w =  

16h[A(O)  1 % '  

where 

is the effective pulse duration for a process with 
multiplicity k, + k,. 

Thus, the detuning interval on which the probability 
w can be large and differ substantially from the per- 
turbation-theory equation is determined in our case 
by the parameter aFi for both positive and negative 
values of A(0). 

The decrease of the probability w on the left wing 
of the resonance curve w(A(0)) is due to the fact that 
when the points t ,  and t, move apart the field intensity 
a t  the term crossing points decreases. For this rea- 
son, starting with a certain limiting value -A(O), the 
adiabaticity conditions a r e  not satisfied. If approx- 
imately we neglect the nonadiabatic transitions com- 
pletely, then the probability w a t  this value of the de- 
tuning decreases sharply and vanishes (Fig. 2). The 
detuning a t  which this sharp decrease of the probability 
takes place is determined from the equations 

The maximum value of the probability is w,, 
= I', rk2/2ii, where 

is the effective pulse duration for the process of 
multiplicity k,. 

The abrupt change of the atom excitation probability 
w,(t) from 0 to 1 in a short time interval At in the 
vicinity of the point where A(t) = 0 corresponds to the 
well known effect of adiabatic level i n v e r ~ i o n . ~ ~  In the 
usual formulation of the problem of adiabatic inversion, 
100% excitation of the atom is due to the time variation 
of the resonant-field frequency. In the problem con- 
sidered here, the radiation frequency is assumed con- 
stant, but the position of the atomic levels is itsell 
shifted in the field with increasing (or decreasing) field 
amplitude. The possibility of adiabatic level inversion 
via a shift due to the quadratic Stark effect was ap- 
parently f i rs t  noted in Ref. 22, and later also in Refs. 
16, 18, and 23. Expressed in this language, the last 
inequality of (6) is equivalent to the ordinary adiabatic- 
ity condition when the frequency of the field changes 

. 

with time.'' Notice was also taken in Refs. 16 and 18 
of the analogy between the equations that describe the 
resonant ionization and the equations used in the theory 
of atomic  collision^.^^ From this point of view, the 
effect of adiabatic inversion is equivalent to one of the 
limiting cases  of the Landau-Zener theory.20 Accord- 
ing to this approach, the atom is excited mainly a t  the 
crossing points of the t e rms  A(t) = 0. The probability 
of excitation of the atom after passing through the 
point t, (Fig. 1) can be written according to Ref. 20 
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in the form (13) also remain the same a s  before, r =r,, =UP:. 

where the argument of the exponential is determined 
accurate to  a coefficient -1. Under the conditions 
when the inequalities (6) a r e  valid, the exponential 
in (13) is small, so that w, = 1, i.e., adiabatic inversion 
takes place and a l l  the conclusions drawn above con- 
cerning the structure of the dispersion curve a r e  valid. 
The width of the dispersion curve a s  a whole, just a s  
the width of the principal maximum (see Fig. 2), is 
determined by the parameter r,, = aF:. 

4. We discuss now the case when the Stark shift is 
so large that the adiabaticity condition [the last in- 
equality of (6)] is violated, i.e., let aF:> I'j~/ti. In 
this case the system goes through a resonance in too 
short a time to make a substantial mixing of the ground 
and resonant states possible. According to (13), the 
possibility of the excitation of the atom is small in this 
case, as is also the ionization probability. It is ob- 
vious, however, that the rate of passage through the 
resonance depends on the slope of the A(t) curve a t  
the point t , , , .  This slope decreases as t, approaches 
t,, i.e., with decreasing 1 ~ ( 0 ) ) .  This means that while 
the adiabaticity condition is not satisfied a t  large de- 
tunings A(0) corresponding to the term crossing in the 
vicinity of the maximum slope of the A(t) curve, none- 
theless the corresponding condition can be  satisfied 
a t  smaller 1 A(o)I corresponding to the crossing of the 
t e rms  near the extremal value of A(t). For a quantita- 
tive analysis of these conditions we can again use the 
expansion (8) and replace n by 2(1 A(o)~ x ) ~ ,  from 
which i t  follows that the adiabaticity condition is 
satisfied a t  

1 A (0) 1 < r ; ~ ~ / d 2 h ~ = r ~ ~ .  max , (14) 
where r,,,,, is the maximum value of ( A ( o ) ~  a t  which 
the condition (14) is still satisfied; in other words, i t  
is the width of the principal maximum of the resonant 
ionization (Fig. 2). At 

I A (0) I >rpr. max 

the condition (14) is not satisfied, there is no adiabatic 
level inversion, and the ionization probability is small. 
With increasing OF: the width l7 ,r,max(l4) decreases, 
i.e., the principal maximum of the resonant ionization 
becomes narrower (Fig. 2). The condition for the 
narrowing of the principal maximum with increasing 
OF: and the condition for the existence of an adiabatic- 
inversion regime takes respectively the form 

daZBrpr. max. rpr. rnaxBrt9 
which yields in place of inequality (6) 

ti rtzt rtSrZ rc<-arl<-(aF~a-. 
t h hz 

(15) 

The maximum value of the probability w under these 
conditions can also be easily estimated 

The structure of the dispersion curve at A(O)> 0 re- 
mains in this case the same as when the inequalities 
(6) a re  valid. It follows therefore that the maximum 
width that characterizes this curve under conditions 

A decrease of the slope of the A(t) curve takes 
place not only in the vicinity of its vertex, but also 
on the wings of the curve, i.e., at large values of 
-A(O). However, no possibility of adiabatic inversion 
of the levels in this region of detuning arises.  The 
reason is that the resonance multiplicity k,, as was 
~ l e a d y  noted, must of necessity be large: k, 23 .  This 
means that the dependence of the parameter r ) ~ / t i  on 

fo is much stronger (-F: at k, =3) than the dependence 
of the Stark shift aF:. Therefore if the condition 
aF:<<r?r/tZ is not satisfied in the central part of the 
A(t) curve, it is all  the more not satisfied on i t s  
wings. Although the slope of the A(t) curve (and the 
coefficient of aF:) does decrease when the term cross- 
ing points t, and t, move apart, the parameter rjr/tZ 
decreases even more rapidly with decreasing field 
intensity Fo f(tl,,) and the adiabaticity condition is not 
satisfied on the wings of the A(t) curve. With in- 
creasing parameter OF: the region of applicability of 
the adiabatic approximation becomes narrower and is 
localized in the vicinity of the vertex of the A(t) curve, 
a fact reflected in the narrowing of the principal max- 
imum of the resonant function w(A(0)) (Fig. 2). 

We note finally that if we consider the process of 
adiabatic inversion in the resonant ionization a s  a 
function of the peak value of the intensity Fo, then 
when Fo is increased a narrow principal maximum i s  
first  produced-conditions (5) a r e  realized. With in- 
creasing field, the width of the principal maximum 
(14) increases to its maximum value -aG. At these 
and larger values of the intensity Fo, the adiabaticity 
conditions a r e  satisfied both near the vertex of the 
A(t) curve and in i t s  central part, i.e., the inequal- 
ities (6) a r e  valid. 

5. We have assumed so far  that the ionization width 
is so small that the maximum value of the probability 
is automatically less  than unity. Under the conditions 
when the inequalities (14) a r e  valid, this is equivalent 
to the initial assumption ri <<W/r, and under conditions 
when a dispersion curve is produced with a narrow 
central maximum, this  restriction on ri becomes less  
stringent and takes the form 

ri~aF."AZ/r,2rZ. (17) 

If these inequalities a r e  violated, the principal max- 
imum of the w(A(0)) curve is cut off a t  the level w = 1, 
since the probability w cannot exceed unity. This does 
not lead to an additional broadening of the dispersion 
curve s o  long as 

i.e., so long a s  the width r,t = aFt, due to the adiabatic 
inversion, is larger than the width due to the total ion- 
ization of the atom rf(l?i~/ti)h.13*15 In the opposite 
case, when 

rt (rct/h)'h>r,t 
the broadeningdue to 100% ionization of the atom is the 
predominant effect, and none of the singularities con- 
nected with the adiabatic level inversion manifest 
themselves. 
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Mathematically, these conclusions follow formally 
from the fact that at ri>ti/r (but ri<< aFt- I A(o)\) 
Eq. (3) is replaced 

where w, is given by Eq. (3). 

6. Allowance for the spatial inhomogeneity of the 
field in the focal region leads to  the need for averaging 
the probability w over the distribution of the intensity 
Fo. If the distribution of Fo with respect to the trans- 
verse coordinates x and y i s  characterized by a smooth 
function p(x, y), such a s  a product of Gaussian curves 
(P " exp(-(x2 + y2)/d2), where d i s  the transverse dimen- 
sion of the caustic, then averaging over p(x, y) influ- 
ences quite significantly the shape of the principal 
maximumOL7 The results of these changes is shown 
qualitatively by the dashed curves in Fig. 2. The 
height of the principal maximum narrows down to  the 
value 

r11~~ r p r .  max 
E- - jjj- - - E , " ~ ~ ~ - .  

( a F o 2 )  'A2 aF," 

Its  width increases and becomes approximately 
equal toL7 

Bearing these results in mind, we can present a 
general definition of the dispersion-curve width w(w) 
with account taken of the adiabatic inversion process 
and with allowance for the spatial inhomogeneity of the 
field and of the probability averaging. In the general 
case, to generalize the definition (1) i t  is necessary 
to include among the competing parameters that can 
determine the value of I' also the Stark width rSt = aF:: 

By virtue of the averaging over the spatial distribu- 
tion of the field this equation does not contain the width 
parameter ?,, = (CYF~)'~(A/T)~ '3.L3117 

The parameter r,, = aFi can determine the width of 
the resonance a t  two different physical broadening 
mechanisms: a s  a result of the spatial averaging of 
the probability, and directly a s  a result of the adiabatic 
inversion of the levels. This difference between the 
physical mechanisms is, of course, beyond the scope 
of Eq. (19), which is likewise not sensitive to the 
difference between the two adiabatic-inversion regimes 
characterized by the inequalities (15) and the inequal- 
ities (6). Nevertheless, the relation (19) can be useful, 
since it characterizes one of the possible parameters 
of the dispersion curve and also, albeit not fully un- 
ambiguously, it characterizes the broadening mech- 
anism. The finer points of the detailed structure of the 
w ( w )  curve and of the various methods of realizing the 
Stark broadening can, naturally, not be taken into ac- 
count in a single formula (19). They were investigated 
for the most part earlier,"'15 and some new aspects 
were considered in the present article and in recent 
~ o r k . ' ~ " ~  Within the framework of the considered 
general scheme, a particular place i s  occupied by the 
case of two-photon resonance (k, = 2) a t  arbitrary k2 

and especially a t  k, = 1. According to qualitative esti- 
mates of the type (2), in the latter case we have 
r, - rf- r,, . One of these parameters can prevail over 
the others only on account of anomalies of numerical 
character. If there a r e  no such effects, then, just a s  
in the case of instantaneous turning-on," none of the 
intermediate broadening mechanisms-field, ioniza- 
tion, and Stark broadening-can occur. The width of 
the dispersion curve is determined by the relation 

r=max {Ah, r, (ridti) I b ) .  

With increasing field, a direct transition takes place 
from broadening due to the nonmonochromaticity of 
the radiation to a broadening due to 100% ionization 
of the atom during the pulse time. 

The authors thanks N. B. Delone for discussions 
that prompted the present study. 
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