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Weakly damped electromagnetic waves propagate in a nonnal metal placed in a magnetic field near 
cyclotron resonance and inclined to the surface of the metal. The waves propagation makes an angle with 
the magnetic field. It is shown that three waves exist near the attenuation minimum due to the vanishing 
of the Landau damping. One wave was investigated before for limiting cases, and the other two were 
obtained for the tirst time ever. These two waves have opposite polarizations. The frequency of the right- 
polarized wave is lower than that of the cyclotron resonance, while that of the left-polarized one is 
higher. The dependence of the natural frequency, of the polarization, and of the damping on the 
magnetic field H, on the wave vector 4 and on the angle between H and k was investigated for all the 
waves. A relation between the waves near the cyclotron resonance and low-frequency excitations, on the 
one hand, and the classical discrete spectrum, on the other, is demonstrated. 

PACS numbers: 41.10.Hv, 76.40. + b - .  

INTRODUCTION 

Electromagnetic waves propagating in metals and 
close in frequency to cyclotron resonance were f i rs t  
considered theoretically by Kaner and Srobov.' These 
waves, named cyclotron waves, propagate perpendicu- 
l a r  to the applied constant magnetic field and a r e  due 
to the presence in  the metals of cyclotron resonance in 
a strong (v<<Q) magnetic field parallel to the sample 
surface2; v and Q a re  the collision frequency and the 

parameter w leads to additional limitations. Thus, the 
condition lw 1 <<I limits the frequency w of the electro- 
magnetic wave to a value close to the frequency NQ of 
the cyclotron resonance1' (N  is an integer). The condi- 
tion Iwl>>l (Ref. 20) yields results  that a re  valid for 
very short waves, since the inequality I w 1 (&R)-1/2 
<<I must be satisfied in  addition to the condition Iw 1 
>> 1. By lifting the restrictions on w we can consider 
waves in  a wider range of fields, frequencies, and wave 
vectors. 

cyclotron frequency of the conduction electrons. Cyclo- 
tron waves in metals have been the subject of many In addition to the waves near cyclotron resonance, 

studies, the results of which a r e  contained in many there a r e  k n o ~ n ~ l - ~ '  also low-frequency (w <<a) waves 

and r e ~ i e w s . " ~  None the less, cyclotron waves that propagate a t  an angle close to n/2 to the magnetic 

continue to attract attention."ls field, and are classifieds as helicon waves. A distin- 
guishing feature of these waves is the discreteness of 

Cyclotron resonance is observed also in a magnetic 
field inclined to the sample surface. This phenomenon, 
however, is more complicated than in a field parallel to 
the surface, and although the effect of the inclination of 
the magnetic field on the cyclotron resonance was in- 
vestigated even in  the f i rs t  studies of this phenomenon," 
a complete theory of cyclotron resonance in an oblique 
magnetic field was developed only r e ~ e n t l y . ' ~ * ~ ~  As to 
weakly damped electromagnetic waves near cyclotron 
resonance in an oblique magnetic field, they have been 
studied only little. We know of only two papers dealing 
with these waves. Blank and KanerZ0 obtained the spec- 
trum and the damping of such waves under the assump- 
tion that the spread of the diameters of the effective 
electrons is characterized by a parameter w and that 
the case considered corresponds to 1 w 1 << 1. Aronov 
and KanerlS solved the problem for the opposite limit 
I W  I>> 1. In both papers the waves considered had a 
length 2nk-' much less  than the cyclotron radius R of the 
conduction electrons; the surface impedance was found 
to have singularities due to the existence of weakly 
damped waves. The inclination angle cp between the 
magnetic field and the sample surface was assumed 
small, i.e., the waves considered propagaged a t  an 
angle close to ~ / 2  with the magnetic field. 

their spectrum, due to the vanishing of the Landau mag- 
netic damping a t  a definite ratio of the conduction-elec- 
tron cyclotron radius to the wave vector. The similar- 
ity of their propagation conditions make these two types 
of wave close in many respect, so  that i t  is also of in- 
teres t  to trace the connection between them and to ob- 
tain general expressions for the characteristics of the 
waves. 

DISPERSION EQUATION AND CONDUCTIVITY 
TENSOR 

To describe the propagation of an electromagnetic 
wave in an unbounded metal we use the system of Max- 
well's equations 

i [ k  X h] =4nc-'j, (1 
F X  El-oc-'h. (2 

Here E is the alternating electric field, h is the high- 
frequency part  of the magnetic field E, haei("-Wt' , H 
is the external constant magnetic field, j is the current 
density, and k is the wave vector. We neglect the dis- 
placement vector in Maxwell's equations, in which case 
i t  follows from (1) that 

kj=O, (3) 

Consideration of cases with limiting values of the which is analogous to the condition for the electric 
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quasineutrality of the metal. 

We choose the coordinate system xyz such that the z 
axis is parallel to the magnetic field H and the x axis is 
perpendicular to the plane of H and k. In addition, we 
introduce also the coordinate frame x9L, in which the 1; 
axis is parallel to k (Fig. 1) and makes an angle a -ry 
with they axis. Substituting (2) in (1) and eliminating 
with the aid of (3) the electric-field component Ec that 
is longitudinal relative to k, we reduce Eqs. (1) and (2) 
to a system of linear homogeneous equations for the 
transverse components Ex and En. Equating the deter- 
minant of this system to zero  we get the dispersion 
equation 

Here ui j~ ui j(k7 H, W) a r e  the Fourier components of the 
conductivity tensor. The indices a, 8 and i, j take on 
respectively the values x ,  17 and x, 9, L. The dispersion 
equation (4) was f i rs t  obtained by Kaner and Srobovz1 
and describes an electromagnetic wave propagating at 
an angle to the magnetic field. 

In the case of an isotropic and quadratic electron dis- 
persion, the following expression holds for the ele- 
ments of the conductivity tensor5 

3n,e2 a 
2. 1 v - i m t i k v l  

oi, = --rl d8 sin 0 dz u. drr u, exp [ j dzVT . 
4nmQu 

0 -or 

where n o  is the conduction-electron density, e, m and v 
a re  respectively the charge, effective mass, and Fermi 
velocity of the electron, and 9 and 7 a r e  the polar and 
azimuthal angles of the velocity vector. The polar axis 
coincides with the z axis. 

Expressing the electron velocity components v , , , ~  in 
terms of vz,,,,, we obtain in analogy with Kaner and 
Srobove for the elements of the conductivity tensor 

3noez ' sin 0 w. w,' 
"'=% V-i (~-NQ-k ,ucosB)  ' 

s--- 0 

(7 

where 
ws=-iJN' ( x )  sin 8,  w,=- cos 8 cos cp-sin 0 sin cp - IN (x), ( :) 

wt=- cos tl sin cp+sin 0 cos q - J ~ ( x )  ; ( : (8) 

x=kR sin 0 cos cp .  

FIG. 1. Coordinate system. The x axis is  perpendicular to 
the plane of the magnetic field H and the wave vector k. The 
5 aix is  parallel to k and makes an angle a-cp, where cp<< 1, 
with the y axis. 

The asterisk in (7) stands for the complex conjugate; 
J , ( x )  and JL(x-1 a r e  a Bessel function and i t s  derivative 
with respect to x. At p = 0 Eq. (7) agrees with the ex- 
pression obtained for  the conductivity tensor in Ref. 1, 
which deals with cyclotron waves. In the case N =  0 and 
w <<a we get from (7) the expression for the conductiv- 
ity tensor of the discrete-wave problem.22 

We consider hereafter waves near cyclotron reso- 
nance, I v -i(w -Na)I <<a, with wavelength much short- 
e r  than the cyclotron radius of the conduction electrons 
(kR >>I). We assume also a strong spatial dispersion of 
the wave in the H direction (1 w - N C ~  I < < ~ J J ) .  The oppo- 
si te limiting case corresponds to cyclotron waves.' In 
addition we assume that kzv <<a; then, given the value 
of W, the imaginary part  of the denominator in (7) van- 
ishes only at one value of N, and we can confine our- 
selves in the sum over N to this resonant term. Taking 
into account all  the inequalities presented above we can 
write 

Whence, in particular, i t  follows that q) << ( k ~ ) - '  (kx 
= 0, k," -k, k,=pk). 

We calculate now an asymptotic expression for the 
conductivity tensor under these conditions. Thus, out 
of the entire sum over N we retain in a, only the reso- 
nant term. We note here that by virtue of (9) the reso- 
nance takes place a t  cos9 <<I, so  that the Bessel-func- 
tion argument x>>1 and we can use for these functions 
their asymptotic  expansion^.^^ Integrating next in (7) 
with respect to  9, we get after cumbersome ckcula- 
tions 

Here 

I U  1 <<I according to (9). Next 

(see, e.g., Ref. 25 concerning the method of integrating 
F d 

Go = '1 d8 sine cos (2 .  sin 8 )  = (%a)  cos(2a-nl4). (12) 
0 

The integration was by the stationary-phase method 

1 * sin (23. sin 8 )  
F ,  = ;! dB sin2 8 

u f i  cos 8 

1 "  cos ( 2 a  sin 0 )  
~ , = - - j d e s i n e  

x u f i  cos 0 
0 

where 
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2 ' A *  2 ' h *  
s(w)- (-1 j sin pat, c(w)= (--) j ms pat; 

n , a  0 

S(w) and C(w) a r e  Fresnel integrals. 

The integration of F, and F2 was approximate. By 
changing to a new variable y = a'I2 cose, we reduce the 
expressions fo r  F, and G, to integrals that are  ex- 
pressed," after replacing the upper limit by infinity, 
in terms of the probability integral @ 0. In addi- 
tion, i t  was assumed that a! sin6 " a! - */2/2. The calcu- 
lations in (13) a r e  accurate to u2. 

From (lo), ( l l) ,  and (13) i t  follows that the real  part  
of a,,, which is mainly responsible for the wave damp- 
ing, has an oscillating term 1 - ( - I ) ~  sin(2a! +w2) that 
describes the magnetic Landau damping21*27 and van- 
ishes at 

a+'/,w'=a,=n[n+'/,(-i)"], n=i, 2, 3, . . . . (14) 

The mechanism of such Landau-damping oscillations of 
electromagnetic waves propagating at an angle to the 
magnetic field was f i rs t  described by Kaner and Sko- 
bov2l and is essentially analogous to the geometric 
resonance in the damping of ultrasound in a metal in a 
magnetic field." 

We now dwell on the physical meaning of the pararn- 
e ter  w. The main contribution to o, is made by reso- 
nant electrons, i.e., those for which the denominator 
of the integrand in (7) vanishes. Finding v - i(w -NO) 
from this condition we have, in accord with the defini- 
tion of w, w2 = ( v / ~ ) ~ k R .  Hence 

kR+w2/2=kR (1-v.'/2u'). 

Under condition vJv < < l t h e  factor 

R (1-v.'/2v2) =Rl,  

where R, is the cyclotron radius of the electrons from 
a noncentral section of the Fermi surface. In this case 
R, characterizes the resonant electrons. Consequently 
k(R -R,)=w2/2, i.e., the parameter w is a measure of 
the distance from the Fermi-surface section of the 
resonant (effective) electrons and the central section. 
In particular, the condition I w I <<I means that R -R, 
<<k-'. According to (191, Iw 1 <<all2, and then R -R, 
<<R . 

We consider hereafter waves near the minimum of 
their damping, i.e., at a! ucl, - w2/2. We then obtain 
from (101, taking (11)-(13) into account, the following 
expression for the two-dimensional components of the 
conductivity tensor GU6 (5): 

-'h 
u==oo[t-qa'+i (pa. -P+Qf) I, (15) -* 

a,=-io, (pa. - f ) .  ~ ~ = o o  (g-Qf) , Um=-U,. 

where 

w = wo(l - i r), I' is the relative damping of the wave. 
We assume in 11 at  N * 0 that wo=NO. Thus, p is a 
spectral characteristic of the wave, and describes the 
damping. Finally, 

In (15) we have used also in the assumption that pq <<I. 
The Fresnel integrals a re  then readily resolved into 
their rea l  and imaginary parts: 

S ( w )  =iS(p)--q(2/n)'" sin pz, C(ru) =-iC(p)+q(2/n)'" cospZ, 

P=C(p)--S(p). Q=C(p)+S(p), f = M / q ~ z .  

We consider the case f <<I, and neglect therefore in 
(15) the terms of higher order in  f. In addition, we neg- 
lect 9a!,'I2 compared with 7. From the condition for f 
and from the inequalities in (9) we have N/2a2 <<cp <<a!-'. 

SPECTRUM, POLARIZATION, DAMPING 

Now, substituting the expressions for  the conductiv- 
ity-tensor Gu6 (15) in the dispersion equation (4), we 
obtain for its real  part  

We have introduced here the symbol X = k2c2/4nwouo. 
Since we have fixed kR, i t  is convenient to change from 
k i n X  to a!. In this case 

where ha = P/3n1l2n is the normalized magnetic 
field (h - O/w,, w, is the plasma frequency of the con- 
duction electrons). Solving (17) for h2 we get 

where 

Equation (18) represents the wave spectrum in the form 
of the dependence of H on w, and a!,. 

It is seen that both solutions of (17) a r e  real. How- 
ever,  only values h2>0  have a physical meaning. At 
N = 1.3 and n = 20 these solutions a re  shown in Fig. 2. 
In the numerical calculations i t  was assumed that no 
= 10'' crne3, v = 1.46 0 1 0 ~  cm/sec, and cp = 4 lo-'. The 
number of the curve on the figure corresponds to the 
value of N for which this curve was plotted, and the + 
o r  - subscript of the number of the curve corresponds 
to the sign in the curly brackets of (18). 

Figure 3 shows the dependence of h: on n(cp = 10-',N 

FIG. 2. Spectrum of electromagnetic waves near cyclotron 
resonance. Plot of h,(p) at fixed Nand n=20. The number of 
the curve coincides with the value of N for which the curve was 
plotted. The Lndex of the number of the curve coincides with 
the index of the solution. 
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FIG. 3. Spectrum of electromagnetic waves. The solid curve 
is a plot of h,(p) at fixed a,  and N =  1. The number of the curve 
coincides with the value of n for which the curve was plotted. 
The index of the number of the curve coincides with the index of 
of the solution. The dashed curve shows the spectrum of the 
low-frequency waves at N = 0 and n = 5. The dashed line is a 
plot of the field for which the dispersion curve of wo&) was 
plotted on Fig. 4. 

= 1). Just a s  in Fig. 2, the index of the number of the 
curve corresponds to the sign in the curly brackets in 
(18), but the number of the curve now coincides with the 
value of n at which this curve was plotted. It is seen 
that the solution h2 exists in a limited region of positive 
values of p. It follows from (17) that h! becomes posi- 
tive when the f ree  term of this equation i s  positive. The 
postive value of this term determines also the region of 
negative p in which there are  no solution hf >O. The 
solution h: exists in a wider range of fields and fre- 
quencies than h2. The spectrum of the wave determined 
by h+ consists of two branches, one of which located 
entirely in the region of negative p, i.e., the wave fre- 
quency is  lower than the cyclotron frequency. The sec- 
ond branch crosses the ordinate axis. This means that 
the dispersion curve passes through NS2. Such a singu- 
larity of the wave was noted also in Fkf. 20. 

The solution h: oscillates with change of p. These 
oscillations a re  due to the Hall conductivity a,,. As al- 
ready noted, the main contribution to the dissip.1tive 
conductivity i s  made by resonant electrons from a non- 
central section of the Fermi surface. On the other 
hand, the important role in the Hall conductivity i s  
played by the contribution of electrons from the central 
section of the Fermi surface. Since we fix a + w2/2, the 
a,, term that oscillates as a function of o! becomes a 
function of p (15). In Eq. (18) the oscillations a re  de- 
scribed by the functiong. The amplitude of the oscilla- 
tions decreases with increasing p and depends on N and 
n. It increases with increasing N and decreases with n .  

We present now the spectrum of the wave in the form 
of a function w, of k at a fixed magnetic field H. From 
the definition (16) of p we can obtain 

where p i s  already a function of H, an, and cp and should 
be determined from (18). At fixed H and cp this can 
yield P(%) and then, using (19) and (14), we can easily 
plot w@), as shown in Fig. 4, in the coordinates (w 
- S2)/S2 and kR. The dispersion curve was plotted at H 
= 4.25 lo4 Oe and rp = This value of the field H i s  
shown'in Fig. 3 by a dashed line parallel to the abscissa 
axis. The abrupt change of the slope of the dispersion 
curve is due to the ambiguity of p at the given H (Fig. 
3). The steep section of the curve i s  plotted a t  one 
value of a,, and the entire dispersion i s  due to the 
change of p. In those cases when H falls in the interval 
where p i s  single-valued in the region of the allowed 
values, there is no steep section on the dispersion 
curve. As can be seen from Fig. 3, this is valid, for 
example, a t  h2= 1.8 The distinguishing features 
noted here a r e  typical of all the spectrum branches de- 
termined by h,. The function w,@) for the h- wave i s  
more complicated. At lower frequencies and small  H 
- lo3 Oe (h2 - this wave was negative dispersion. 

The electric field in the waves considered i s  directed 
mainly along k: 

EL=- (iQE.+E,) /2rpa, (20) 

whence Ec>> Ex, E,. The electric field components 
transverse to k a r e  connected by the relation 

where the polarization coefficient D, is given by 

The character of the dependence of D, on p is shown 
in Fig. 5 fo r  n = 20 and N= 1. For the waves determined 
by h+,D+>O and fo r  the h- wave the polarization coeffi- 
cient D-<O, i.e., h+ and j ,  describe right- and left-po- 
larized waves. The broad minimum of D+ a t  p >  0 oc- 
curs in the region where the h_ wave exists. The oscil- 
lations of D+ as a function of p, just a s  the oscillations 
in the spectrum, a r e  due to a,. 

When (15) is substituted in i ts  imaginary part  the dis- 
persion equation (4), takes the form 

qa'-E-O. (23) 

This yields for the relative damping r 
v ' 2cpor: r=--- 
NP Na' 

a' was defined earlier. This is an even and negative 

FIG. 4. Spectrum of electromagnetic waves. Plot of w,&) at 
N =  1 and constant H. The points are the values of wo at kR 
= an+ p2/2 .  
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- -6f  
FIG. 5. Dependence of the polarization of the electric field in 
the electromagnetic wave on p at N = l  and n=20. 

function of p: when lpl is increased, a ?  increases 
monotonically. 

We consider now limiting cases. Under the condition 
lpl <<I J3q. (17) simplifies. Retaining in i t  the principal 
terms in  p and a", we get 

At p << 1 we have P a  Q =  (2/lr)'12p. Expressing p [from 
(25)land substituting the result in (19), we obtain for the 
wave spectrum the result of Blank and Kaner20 

[ ( 9" ) ' 2 - L ( ? ) ' a ~ + ( ~ ) " ' a i ' ] .  (26) oo-NQ l+ - 
w V N  4 Qc 

Here Gp= (9/27~)'/~w~. For  the damping r we readily 
obtain from (24) 

which also agrees with the result of Ref. 20. 

When p tends to zero we have a'=-(2/r)1/2. In the 
other limiting case p>> 1 we can neglect the renormali- 
zation in GaB (f= O), and in addition P = 0 and I Q 1 %  1 
accurate to 6'. Taking this into account, i t  follows 
from (15) that all the components a,, in the real  par t  of 
the dispersion equation (4) a r e  of the same order, and 
a,, and om are  equal in magnitude and opposite in sign. 
The coefficient of k2 in (4) is then zero and the solutions 
of the dispersion equation, which a r e  equal but oppo- 
site, are  determined by the f ree  term -(o,o,, +I?,). 

According to (18) we obtain for these solutions 

x = + ~ - " .  (27) 

absti tuting (27) in (19), we obtain for the wave spec- 
trum 

Accurate to a coefficient 2/3, the expression for  the 
spectrum of the wave with w,>NSZ agrees with the re-  
sult  of Aronov and Kaner1),18 where the wave was con- 
nected with on,. We note that in Refs. 18 and 20 they 
investigated the same wave but for different limiting 
cases. 

Equation (18) describes also the spectrum of the low- 
frequency waves. At N = 0 we get from (18) 

This expression differs analytically from the analogous 
expression previously obtained in Ref. 23, where F, 
= 1 was assumed. This difference, however, leads only 
to a numerical difference between the results; all the 
spectrum singularities noted in Ref. 23 remain here, 
too. A plot of the function h:b) corresponding to (29) 
is shown dashed in Fig. 3. No oscillations of h: appear 
in this case, since they a r e  suppressed by the stronger 
dependence on p in the factor preceding the curly 
brackets in (29). 

CONCLUSION 

The equation obtained for the spectrum of electro- 
magnetic waves propagating a t  an angle to the magnetic 
field thus describes waves near the cyclotron resonance 
as well as low-frequency (w <<a) waves at N = 0. Three 
waves exist near cyclotron resonance. One was inves- 
tigated earl ier  in the limiting cases I w ( >> 1 and I w 1 
<<I. It is considered in  this article in the entire region 
I W ] / ~ ' / ~  <<I of the values of w. This wave has right- 
hand polarization. The two other waves were investi- 
gated here for the f i r s t  time ever. Their polarization 
coefficients a r e  of opposite sign. The frequencies of 
the right- and left-polarized waves are smaller and 
larger than NS2, respectively. 

As already noted, the parameter w i s  a measure of 
the distance from the section of the Fermi surface of 
the effective electrons to the central section. We note, 
however, that a distinction between these sections i s  
meaningful only if the difference R - R, =Rp2/2a be- 
tween their radii is larger than the spread AR = R ( A ~ ) ~ /  
2, of the radii of the effective electrons, which is de- 
termined by the width A9 =v/k$ of the maximum of the 
resonance curve [v - i(w - NSZ - kzv cosO]-' in (7), i.e., 
if v/kY <Pa'112. This inequality leads to v < 1 w, - NQ 1 . 
In the opposite case the sections R and R, do not differ 
and then (14) takes the form a = a,. At I w 1 <<l ,  even if 
v <I w,-Nn I ,  presence of w2 in (14) i s  immaterial and 
consequently a t  small  Iw 1 the results obtained here do 
not depend on the ratio of v and I w, - NO ( . 

Thus, from the data on the electromagnetic waves in 
the case v <I w, - NSZ I we can obtain information on the 
non-extremal sections of the Fermi surface of the con- 
duction electrons. The most convenient for observation 
a re  right-polarized waves in the field and frequency re-  
gion in which Iw 1 -  1, i.e., fo r  example, at H- 5 *lo4 Oe, 
rp-10-2,kR=20, ~ -S2=0 .05n .  

'"I?he absence of N from the denominator of the right-hand side 
of the equation for the wave spectrum in Ref. 18 is  apparently 
the result of a misunderstanding. 
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Observation of the refraction of conduction-electron 
trajectories by an intercrystal boundary in aluminum 

Yu. V. Sharvin and D. Yu. Sharvin 
Institute of Physics Problems, USSR Academy of Sciences 
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A radio-frequency size effect (RSE) was observed in bicrystalline aluminum plates with a twin boundary 
parallel to the outer surface. The positions and amplitudes of the RSE lines attest to a high transparency 
of the twin boundary to electrons, and indicates that the tangential component of the quasimomentum is 
conserved when this boundary is crossed. 

PACS numbers: 61.70.Ng, 72.15.4111 

The interaction of conduction electrons with in te rc ry-  
s t a l  boundaries w a s  previously revealed in  experiment  
by i t s  averaged effect on the e lec t r ic  conductivity of 
polycrystals of pure meta l s  ( s e e ,  e.g., Refs. 1 2nd 2). 
It  is obviously of in te res t  t o  develop experimental  
methods with which to observe  the sca t te r ing  and dif- 
fraction of various groups of e lec t rons  by in te rc rys ta l  
boundaries of various types. 

We have attempted for th i s  purpose to  observe  the 
radio-frequency size effect (RSE) in the  geometry indi- 
cated above. It can  be  assumed that in this  c a s e  one can 
observe the l ines  of the o rd inary  FfSE i n  each of the 
c rys ta l s ,  as a resul t  of diffuse scat ter ing of the elec-  
t rons  by the boundary as well  as l ines  of the FfSE due t o  
the presence of e lectron t ra jec tor ies  that are re f rac ted  
on passing through the boundary. 

P lanar  intercrystal l ine boundaries w e r e  obtained by 
annealing (one hour  a t  650 C) aluminum samples  mea-  

sur ing  1 x 1 x 2  c m  with a res i s tance  ra t io  R ~ ~ ~ ~ / R ~ , ~ ~  
= 3 - 5 .  lo3. P r i o r  to  annealing the samples  w e r e  cooled 
in liquid nitrogen and subjected to 3-4% deformation. 
In approximately half the s a m p l e s  etching h a s  revealed,  
besides the m o r e  o r  less bent boundaries between a r b -  
i t ra r i ly  or iented c r y s t a l s ,  also twin boundaries directed 
along the  (111) planes of bordering c r y s t a l s  obviously 
produced from one seed.  Measurements  under a mic-  
roscope revealed no vis ible  deviations of these bound- 
aries from a plane (accura te  t o  3 - 5 p m )  over  the en- 
t i r e  p e r i m e t e r s  of the boundaries ,  which i n  s o m e  cases 
passed through the en t i re  sample.  

A sample  containing a twin boundary w a s  mounted on 
an e lec t r ic - spark  cutting machine i n  such a w a y  that the 
cutting plane w a s  paral le l  t o  the twin plane, and single- 
c r y s t a l  and b ic rys ta l  plates of equal  thickness  w e r e  cut 
f rom the c rys ta l .  After  chemical  polishing we  mea-  
s u r e d  the thickness  of the single c r y s t a l  and the bicry-  
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