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The possibility of the formation of incommensurate magnetic structures in systems with electron-hole 
pairing are considered. The inhomogeneous magnetization is caused by the fact that the spin and charge 
density waves, whose coexistence results in ferrimagnetism, are incommensurate with the crystal lattice 
period. On the phase diagram there is a point of contact between the normal, commensurate, and 
incommensurate phases (the Lifshitz point), near which the Ginzburg-Landau functional is set up and 
investigated. Various types of magnetic structures are discussed and the extent to which they are 
energywise favored is estimated. 
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1. INTRODUCTION acter of the magnetic ordering in the investigated sys- 
tem. Some directions of further development of the 

We continue here an earlier investigation of the mag- theory a r e  indicated in the Conclusion. 
netic ordering in an excitonic dielectric.13 It was 
shown in a preceding paper4 that a region of "inhomo- 
geneousv excitonic ferromagnetic state exists on the 2. THE MODEL HAMlLTONlAN 
phase diagram a t  T = 0. By inhomogeneous state we 

We shall use here a model Hamiltonian of a semi- mean one in which the spatial periods of the order pa- 
metal that has one electron band and one hole band, rameters A, and A, (singlet and triplet) a re  incommen- 

surate with the period of the crystal lattice. For  the 
with the extrema of the bands separated by half the 
reciprocal-lattice vector. The spectra E, and 5 of 

case of single order parameter, the possibility of the 
transition of an excitonic dielectric into the incom- the electron (1) and hole (2) bands a r e  similar: 

/ 4  \ 

mensurate state was discussed in many  paper^.^-^ A e l ,  r=*.(e(k) -ep). \ = I  

particularly thorough study was made of the transition 
from the commensurate into the incommensurate state 
of chromium and its  alloys. The region of the incom- 
mensurate phase is reached a t  sufficiently large dis- 
parity between the dimensions of the Fermi surfaces of 
the electrons and holes, when the imhomogeneous solu- 
tion of the self-consistency equation for the order pa- 
rameter turns out to be energywise favored over the 
homogeneous one. The phase diagram has a point of 
contact between the normal (i.e., disordered), com- 
mensurate, and incommensurate ordered phases (the 
so-called Lifshitz hint ) .  Systems with Lifshitz points 
a r e  presently intensively investigated theoretically and 
experimentally (see, e.g., Ref. 8). 

In the present study we investigate the phase diagram 
.of an excitonic ferromagnet a t  finite temperatures, and 
take into account the fact that the spatial periods of the 
charge density wave (CDW) and the spin density wave 
(SDW) a r e  not commensurate with the period of the 
crystal lattice. In Sec. 3 we develop a two-parameter 
Landau expansion near the Lifshitz point and investi- 
gate the role of the long-range part of the Coulomb 
interaction. In Sec. 4 the functional of the free energy, 
obtained in Sec. 3, is analyzed for the case of one 
order parameter. Certain possible types of inhomo- 
geneous solution a re  indicated, and phase-transition 
lines between the normal, commensurate, and incom- 
mensurate phases a r e  constructed. In Sec. 5 a r e  con- 
sidered some magnetic structures that a re  produced 
when noncommensurate CDW and SDW coexist. The 
period of the magnetic structure is macroscopic, i.e., 
much larger than the atomic distances. In Sec. 6 we 
analyze the influence of the magnetic field on the char- 

The investigation will be carried out in the high- 
density approximation, when all  the interactions can 
be regarded as between points.' It is known that in 
this case the phase transition in the system is accom- 
panied by the appearance of either a spin density was 
or  a charge density wave, and the critical temperature 
of this transition is determined respectively by the 
triplet (g,) o r  singlet (g,) coupling constants. Defini- 
tions of these constants in terms of the bare Coulomb 
and electron-phonon interactions a r e  given in Ref. 1: 

g.=g1+g2+ 4 ( 2 f / o , - g , ) ,  gr=g,+gt. (2) 

Here gl is a constant that describes an interaction of 
the density-density type of the electrons from bands 1 
and 2, g2 is the interaction connected with the inter- 
band scattering of the electrons, and 2g2/w, is the 
magnitude of the interband electron-phonon interaction. 

It is assumed that the concentrations of the electrons 
and holes a r e  not equal because of the presence of a 
reservoir (i.e., other bands that overlap the investi- 
gated ones but do not take part  in the pairing and 
ensure an overall electroneutrality). Therefore the 
Hamiltonian must be supplemented by a term in the 
form -k(A1 + %), where 2,,, a r e  the electron and hole 
density operators, respectively. Because of this 
(/A+ 0) the Fermi  surfaces of the electron and hole 
bands turn out not to be exactly congruent, so  that in- 
homogeneous solutions (slowly varying in space) can 
appear for the SDW and CDW. To investigate these 
inhomogeneous solutions near the critical temperature 
of the phase transition, i t  is necessary to construct a 
functional of the free energy for the singlet As (for the 
CDW) and triplet A, (for the SDW) order parameters. 
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3. THE TWO-PARAMETER LANDAU EXPANSION 

1. It is known1 that in the model system described 
in the preceding section a phase transition is accom- 
panied by the appearance of charge- and spin-density 
waves whose amplitudes a r e  determined by the singlet 
(for the CDW) and triplet (for the SDW) order param- 
eters A, and A, respectively. The latter, in turn, a r e  
connected with the anomalous Green's functions by the 
self-consistency equations3: 

where GI i ,  a r e  the temperature Green's functions 
written in the form of matrices in the spin indices 

where, for example, G:~'  = (Tlliif (r)$; + (r')), and Q i  + ( r )  
is the operator of annihilation of an electron in the i-th 
band a t  the point r with "up" spin. In the high-density 
approximation, the equations fo r  the Green's functions 
(4) a r e  of the standard form: 

Here i = As + A p ,  and the potential cp, i s  connected 
with the long-range part of the Coulomb interaction 
due to the redistribution in space of the excess car-_ 
r iers  that a r e  present a t  ~r # O  when inhomogeneous A 

appear. Thus, the self-consistency equations (3) to- 
gether with (5) and the equation for cp (r) ,  which will be 
derived below, form a closed system that makes it 
possible to reconstruct the form of the Landau two- 
parameter functional of the free energy. 

2. In the derivation of the equation for cp(r) we note 
that if an inhomogeneous order parameter A(r) is pro- 
duced in the system following the phase transition, 
then the local value of the produced dielectric gap 2 i  
= ( &(r) ;t ~ , ( r )  I [see Eq. (5) of Ref. 41 varies from 
point to point. This causes a spatial redistribution of 
the electron density n(r), a s  a result of which there 
appears in the system a slowly varying potential cp(r): 

It has already been taken into account here  that since 
the systemis on the average electrically neutral, the 
mena values a r e  = 0 and n = n m .  The local 
change of the electron density can be easily determined 
knowing the Green's function and the state density N, 
a t  the Fermi  level in the bands that make up the reser-  
voir. Since i t  is obvious that the change of the elec- 
tron density in the bands of the reservoir  is equal 
simply to N,[p - po + cp(r)], where po is the chemical 
potential in the unchanged phase, i t  follows that 

Inasmuch a s  the total number of electrons is not 
changed a s  the result of the phase transition, Eq. (7) 

must also be supplemented by the condition that the 
total number of particles be conserved: 

where n is the difference between the electron and hole 
concentrations in the unchanged phase and V is the 
volume of the system. 

3. We proceed now to construct the free-energy 
functional a t  small  values of the order parameters 
A , ,  accurate to A'. It will be necessary to use Eqs. 
(3) and (5)-(7) and the condition (8). The calculation 
procedure is the following. Noting that the self-con- 
sistency equations can be regarded a s  equations for the 
minimization of the sought functional, we see that this 
functional will be obtained-with the required degree of 
accuracy if these equations a r e  expanded up to h5. It 
will be shown later on that in the terms of f i rs t  order 
in A i t  suffices to retain the lowest derivatives of i\ 
with respect to the coordinate up to the a4a/a@, in the 
third-order terms up to a2b/ay2, and in the fifth order 
they can be completely disregarded. The Landau func- 
tional is derived by the Gor'kov method: i.e., it is 
assumed that and A,(r) a r e  slowly varying func- 
tions [v,q < aT,, v, is the velocity on the Fermi  sur- 
face, q is a characteristic wave vector that deter- 
mines the spatial periodicity of ~ ( r ) ] .  It must also be 
noted here that when approximate equations a r e  ob- 
tained for i i t  is necessary to expand in powers of i 
not only the Green's functions but also p and cp(r). 
The corresponding intermediate steps will not be pre- 
sented here. We shall only demonstrate the impor- 
tance of taking into account the long-range part  of the 
potential if the form of the free-energy potential is to 
be correctly determined. 

Accurate to terms quadratic in A,(A, =O), using (5), 
we obtain from (7) 

%I 
U'Z93 [ (grad As)'--2A, d iv  grad A , ]  n ( r ) = 2 ~ ( 0 ) { - A , ' + -  nT 3 ( n T )  

where N(0) is the state density on the Fermi  level in 
bands 1 and 2, while the coefficients cp, and cp, a r e  
determined by the sums of ser ies  for which expres- 
sions a r e  given in the Appendix [(A.10) and (A.12)]. 
Taking into account the electroneutrality condition (8), 
we obtain from (9) 

The superior bar denotes here averaging in the sense 
of (8), while M =Nd2N(O) is the size of the reservoir. 
The quantity po is determined from (9) in which we put 
As = cp (r)  = 0, p = pO, and then integrate and use (8). It 
turns out that 

n=2N ( 0 )  p,. (11) 

We obtain now the potential cp(r), using Eq. (6), 
which is simply the Poisson equation integral form. 
Taking (9) and (20) into account, we obtain the follow- 
ing expression for cp(r) in differential form: 
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X [ (grad A,)'- (grad A,)'-2A. div grad As+2A, div grad A . ' 
It is easy to verify that we can neglect the left-hand 

side of (12) a t  the required degree of accuracy, and set  
i t  equal to zero. This is easiest to do formally by 
solving Eq. (12) with the aid of a Fourier transforma- 
tion and recognizing that the characteristic wave vec- 
tor of the change of A, is q< T/v,, while the quantity 
8r@N(O) is the inverse square of the Debye radius in 
the high-density limit 8re2N(0) s (E,/V,)~, whereas 
T <<E, in the case of weak interaction. As a result we 
get 

1 2rp v,'cp, p-po+rp(r) = -(-1 A: (r) + _[ (grad A.)'-~A. div grad 1 . 1 ) .  
1+M nT 3 b T )  - 

(13) 
It is now easy to understand why allowance for the 

long-range part of the potential is important for the 
determination of the form of the state-energy function- 
al. In fact, assume that @ = 0  in (6). Then the ser ies  
expansion of the self-consistency equations (3) will 
then also contain [because of the dependence of the 
Green's function on p, see Eqs. (5) and (lo), a t  q ( r )  
=0] terms of the type Because of this 
there should appear in the functional the terms 
~m, which a r e  patently unphysical and cor- 
respond to an effective potential of infinite radius. 

. On the other hand, if e2 # 0, then no unphysical nonlocal 
terms will appear in the functional, since the equations 
(5) for the Green's functions contain p and q ( r )  only in 
the combination p + cp(r), and the quantity p + q(r)  is 
determined according to (13) [in contrast to (10) and 
(12)] only by the local values of h(r). ~t is also of - 

interest that this conclusion is valid for all  values of 
the charge e, since (13) does not contain the charge 
a t  all. 

4. Finally, we write down the general form of the 
Landau two-parameter free-energy functional, which 
follows from (3) and (5). We represent this functional 
in the form 

S=J F (r) dr,  

where F( r )  is the free-energy density 

Here f,(r) and ft(r)  a re  the free-energy density com- 
ponents, which depend only on A, (for the CDW) or  A, 
(for the SDW), and f,,(r) is the interference term. 
Accurate to A:, the densityf,(r) cgn be expressed in 
the form 

f,(r) =a.A.'+1/2pIA.'+1/sy1A.n+aI (grad A,)' 
+at (div grad A,)'+b,A.' (grad A,)a. (16) 

The density f t ( r )  has a somewhat more unique form 
because of the pseudovector character of the order 
parameter A,. A distinction can be made between 
two cases. In the first  only A; (the z-component of A,) 
differs from zero, corresponding to a linearly polar- 
ized SDW. This was the case considered in our pre- 
ceding paper4 a t  a temperature T = O .  The corre- 
sponding density is completely analogous to f,(r) (16) 

with the substitutions A,-- Af, a,- a,. The second 
case is realized a t  A;=O and when A:, A:, a r e  not 
equal to zero. It is convenient in this case to change 
to the linear combinations A* = A; + iA:. Then 

+a, 1 div grad A, 12+b, 1 A, 1'1 grad A, 1 '+ b, (A, grad A,'-A,' grad AL)'. 

The interference term takes in both cases the same 
form apart from the substitution I A, I - A;: 

The coefficients a,, at;Bl,,; y,,,; a,,,; b,,, a re  defined by 
Eqs. (A.l)-(A.9) of the Appendix. We note here that 
the coefficients a, and a, reverse sign a t  the critical 
temperatures T, and T,, which can be obtained from 
the equation 

It is now appropriate to point out the following cir- 
cumstance. As seen from (16) and (17), the cases of 
a linearly polarized SDW (A, = 0) and a circularly 
polarized one (A, # 0) differ substantially because of 
the term with the coefficient b2 in (17). It will be 
shown below that in a definite part of the phase dia- 
gram (in the variables p, and T) there exists a region 
where a helicoidal SDW structure is realized. It was 
stated earlier in some  paper^^*^ that no helical SDW 
structure can be realized. No account was taken in 
these papers, however, of the long-range part  of the 
Coulomb potential (6), i.e., they used essentially a 
nonlocalizable functional with an infinite effective 
radius. 

To conclude this section, we discuss the general 
form of the functional (15)-(18). The reason why it  
is necessary to retain in the functional, besides the 
ordinary gradient term   grad^)' also the next deriva- 
tive (div  grad^)' is that the coefficient a, can vanish 
and reverse sign. The need for retaining the terms 
with the second derivative in the Landau functional in 
similar cases was noted by Abraham and Dzyaloshin- 
skii.1° The point O on the phase diagram (p,, T), 
which is characterized by the system of equations 
a,=O, a , ,  =0, is called the Lifshitz point. It is the 
point of contact of three phases: symmetrical (high 
temperature), commensurate (SDW o r  CDW), and in- 
commensurate. To determine correctly the position 
of the phase-transition lines and their order in the 
vicinity of the Lifshitz point and in the inhomogeneous 
phase, i t  was necessary to retain in the functional 
terms of the form ~ ~ ( ~ r a d ~ ) '  and A ~ .  The role played 
by the latter was observed in Refs. 3 and 5. I t  turns 
out that allowance for sixth-order ternis near the 
Lifshitz point is important for the determination of 
the line of ferromagnetic transitions between commen- 
surate phases. We proceed now to investigate the 
functional (15). 

1008 Sov. Phys. JETP 50(5), Nov. 1979 B. A. Volkov and V. V. Tugashev 1008 



4. INVESTIGATION OF THE FREE-ENERGY 
FUNCTIONAL IN THE CASE OF ONE ORDER 
PARAMETER 

We shall investigate the solutions of the functional 
(14) for three cases: a) A,# 0, A, = 0; b) A, = 0, A, = 0, 
Af +O; c) A,=O, A:=O, 1 &,I=  const. The f i rs t  two 
cases a re  mathematically equivalent and correspond to 
phase transitions into a state with a CDW (A, + 0) o r  
into a state with a linearly polarized SDW (A:#O). The 
last solution ( ( A, I = const) corresponds to a helicoidal 
structure of an SDW. 

1. Let, for example, T, >> T,(19). Then the phase 
transition produces in the system CDW and an order 
parameter A,. The corresponding density of the free- 
energy functional takes the form (16). The depend- 
ence of the temperature T, on yo a t  which the coeffi- 
cient a, reverses sign, is known (see, e.g., Ref. 3, 
p. 8 with n =  p,). At this temperature, according to 
(16), a commensurate ordering parameter is produced 
(A, = const, doubling of the period), with an equilib- 
rium value 

Ao2=-a./p, (20) 

a t  a ,< 0, @, > 0. This solution is universally known. 
Near the Lifshitz point 0, the coefficient 0, a t  infinite 
size of the reservoir (M - .o) goes through zero (A.2), 
(A.ll) and with decreasing temperature i t  reverses 
sign and becomes negative. Therefore a solution of 
the type (20) is unsatisfactory and i t  is necessary to 
retain in the functional (16) terms of sixth order in A,. 
It turns out therefore that in contrast to the case of a 
reservoir of low capacity (M - 0), a t  temperatures 
lower than the tricritical value T,, the phase transi- 
tion in a system with a large reservoir proceeds via 
a first-order transition, and the temperature a t  which 
Pl vanishes is the supercooling temperature of the 
symmetrical (semimetallic) phase. We shall investi- 
gate hereafter mainly the case of a small reservoir 
(M - O), and the changes in the form of the phase dia- 
gram (p,, T), due to the increased reservoir size, will 
be discussed only qualitatively. 

We now must investigate the (p,, T) phase-diagram 
curves corresponding to the phase transition from the 
symmetrical phase into an inhomogeneous (incommen- 
surate) state and the lines of phase transitions from 
the homogeneous (commensurate, A, = const) phase 
into an inhomogeneous one. The entire investigation 
will be carried out in the vicinity of the Lifshitz point, 
whose coordinates a r e  p,, T, and p$nT, = 0.61, where 
in fact the free-energy expansion (16) is valid. We 
shall use a variational principle. The gist of the ap- 
plication of the variational principle to the determina- 
tion of the line of the absolute instability of a certain 
phase relative to i ts  transition to another state con- 
sists in the following. Let the equilibrium value of 
the order parameter A into the initial phase be known 
and equal to A,. It is then necessary to substitute 
in the functional (14) with the density (16) the trial  
value of A in the form 

A = A o + ~ ( r ) ,  (21) 

where ~ ( r )  is a small quantity having the symmetry of 

the new phase, and calculate the functional (14) accu- 
rate to E'. The boundary of the region of the absolute 
instability of the old phase is in this case determined 
by the inequality 

f j 'F/f j€'<O. (22) 

A similar procedure can be used also to determine 
the boundaries of the region of the absolute instability 
of the phase with symmetry ~ ( r )  relative to i ts  transi- 
tion to the "oldn phase. Therefore if i t  turns out that 
the regions of the instabilities of both phases overlap, 
then the phase transition between them is of first  
order, and the line of the thermodynamic equilibrium 
of these phases lies between the lines of their absolute 
instability. These lines have the meaning of the super- 
heating and supercooling lines. 

To find the absolute instability lines of the homoge- 
neous and high-temperature phases relative to a transi- 
tion into an incommensurate state, i t  suffices to choose 
r ( r )  in the form 

E (r) = E  eos qr. (23) 

In the calculation of the limit of absolute instability 
(supercooling line) of the high-temperature (A, =0) 
phase i t  suffices to retain in the free-energy density f, 
the terms of (16) quadratic in A. For  9- we obtain in 
this case 

Minimizing this expression with respect to qZ; we find 
that the phase transition into an inhomogeneous state 
from the high-temperature phase occurs for  a charac- 
teristic inhomogeneity wave vector 

q,2---a,/2a2>0 (25) 

and a t  a temperature TI, determined from the condi- 
tion (22) 

4 u , - ~ , ~ / a ~ < 0 .  (26) 

The subscripts of the critical temperature TI, mean 
that when the temperature is lowered the phase transi- 
tion proceeds from the symmetrical phase l(A,, =0) to 
the inhomogeneous phase 3(A0 # const). For  the commen- 
surate phase (A, = const) we shall use the subscript 2. 

Near the Lifhsitz O point the coefficients a and a, 
[ ( ~ . 1 ) ,  ( ~ . l ) ]  pass through zero and become negative 
with decreasing temperature. The coefficient a, (A.7) 
is larger than zero a t  this point. Therefore the in- 
commensurate phase is produced only a t  a tempera- 
ture lower than tricritical (Te). It is easy to verify 
that the critical temperatures T, (the temperature of 
the transition from the symmetrical to the commen- 
surate phase) and T,, (the temperature of the transition 
from the symmetrical to the incommensurate phase) 
a s  functions of po have a t  the Lifshitz point identical 
derivatives aT,/a p, = aT,,/a p, (see the figure). To 
prove this i t  suffices to differentiate Eq. (26) a t  the O 
point. 

The temperature T,,, which determines the lines of 
the absolute instability of the restructured (A, = const) 
commensurate phase relative to i ts  transition into the 
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FIG. 1. 

incommensurate state is determined in similar man- 
ner. However, since the trial  solution takes the form 
(21) with A, #O (20), the free-energy functional 9 must 
be calculated accurate to A4. We find that the region 
of the absolute instability of the commensurate phase 
is determined by the conditions 

The derivatives aT,JacL, and aT,/ap, likewise coin- 
cide here (see the figure). 

We consider now the limits of the absolute-instability 
region of the incommensurate phase. To this end it 
is necessary to know the equilibrium value of the order 
parameter Ao(r) in this phase. It  is impossible to de- 
termine i t  exactly. We shall therefore use a varia- 
tional procedure, choosing A&) in the form 

A~ (r) =A cos qr. (28) 

The functional (14) with the density (16) has a mini- 
mum when 

, 
It follows from these equations that the phase-transi- 

tion line T,, (26), corresponding to absolute instability 
of the high-temperature phase, coincides with the con- 
dition for thermodynamic equilibrium between this 
phase and the incommensurate one (29). Thus, in the 
absence of a reservoir the corresponding phase transi- 
tion is of second order. In the presence of a suffi- 
ciently large reservoir the coefficient ($0, + $blq2) in 
the second equation of (29) becomes negative. The 
transition then becomes of first  order. 

Another situation arises when we consider the transi- 
tion between the commensurate and incommensurate 
phases. The absolute-instability line T,, of the incom- 
mensurate phase with respect to i ts  transition to a 
commensurate one doe not coincide here with the ab- 
solute instability line T,, of the commensurate phase, 
and lies higher. This can be easily seen if i t  is 
recognized that the line T,, is determined by the con- 
dition that the system (26) have a nontrivial solution 
in the limit qg- 0. This condition is of the form 

a,-bta./3fi,=0, (30) 

and the line T, is determined by the inequality (27) in 
the same limit: 

It is from this that the existence of superheating and 
supercooling temperatures T,, and T,, respectively 
exist in transitions between the commensurate and in- 

commensurate phases. I t  must be noted that near the 
Lifshitz point a solution of the type (28) is quite satis- 
factory (owing to the presence of harmonics of the type 
A, cos3qr). This, however, is insignificant for the 
qualitative conclusions drawn here concerning the 
character of the phase transitions, because they follow 
from the variational principle. 

The total phase diagram in the vicinity of the €3 point 
in terms of the variables j~~ and T is shown for the 
case of CDW in the figure, where the superheating and 
supercooling lines a r e  shown dashed, while the solid 
line shows the temperature of the thermodynamic 
equilibrium of the phases. The phase diagram corre- 
sponding to the formation of a linearly polarized SDW 
is exactly of the same form. 

2. We proceed now to investigate the heliocoidal 
solution for the SDW. The corresponding density of 
the free-energy functional takes in this case the form 
(17). Choosing the solution for A, in the form 

which is exact for the functional (14), (17), we obtain 

A comparison must be made between the energy of the 
helicoidal phase .FL and the linearly polarized phase 
9,. To this end i t  is necessary to know the correct 
solution of A, in the linearly polarized SDW phase. 
Using the solution (29), which is valid a t  q,v, > A, we 
find with the aid of (14), (16), (I?'), (29), and (33) that 
the energy difference between the helical and linearly 
polarized phases is 

Thus, on the line of transition to the inhomogeneous 
state, which is precisely the line on which the solution 
(29) is valid, a helicoidal SDW is produced, and fur- 
thermore via a second-order phase transition. 

It should be noted that this conclusion is valid only 
in the limit of a small reservoir (M << 1). This follows 
from the equation for qi (33). In fact, with increasing 
M, in accord with (A.8) and (A.9), the difference 
b, - 4b2 in (33) becomes positive, and at  a, + (b, - 4b2)A: 
2- 0 no helicoidal solution i s  realized a t  all, since qi 
turns out to be less than zero. In addition, an 
increase in the size of the reservoir (as already noted 
above) makes the phase transition of f i rs t  order. 
Therefore in systems with a large reservoir a first- 
order phase transition takes place into a state with 
linearly polarized SDW. A good example of this is 
chromium. 

To conclude this section, we note that the physical 
reason why the helicoidal solution (32) i s  favored over 
the inhomogeneous linearly polarized solution in the 
case of a small reservoir lies in the long-range Cou- 
lomb interaction (6). It is seen from (13) that in the 
case of an inhomogeneous linearly polarized SDW there 
is produced in the system a potential q ( r )  which hin- 
ders the formation of the sinusoidal structure, and 
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this potential is maximal when the reservoir  is small, 
On the other hand, formation of a helicoidal structure, 
in which 1 Al 1 is constant, does not cause a t  a l l  a 
spatial redistribution of the carr iers ,  so  that in this 
structure cp(r)=O and there is no Coulomb repulsion. 

5. INHOMOGENEOUS MAGNETIC STRUCTURES 

In this section we consider the question of the possi- 
ble magnetic structures that a r e  produced when singlet 
and triplet order parameters coexist. The case of 
coexistence of homogeneous SDW and CDW was con- 
sidered previously in Refs. 1-3. It turned out that 
this case leads to formation of a ferrimagnetic phase 
(excitonic ferromagnet). We shall therefore investi- 
gate here the situation when a t  least one of the order 
parameters is inhomogeneous. Out of the entire 
manifold of possible structures, we investigate the 
existence of inhomogeneous CDW and SDW, when the 
SDW is plane-polarized, and discuss briefly the possi- 
ble coexistence of a CDW with a helicoidal inhomogene- 
ous SDW. 

1. Let the critical temperature for  the SDW T, be 
much higher than the temperature T,, and let  a state 
with plane-polarized SDW of the type (29) be realized 
in the system. We examine the stability of such a so- 
lution with respect to formation of CDW a t  a certain 
temperature T,. To this end it is necessary to calcu- 
late the functional (14) accurate to terms quadratic 
to A,, which can be chosen in the form 

I.=& cos(q,r+O). (35) 

Proceeding in the usual manner we find that an incom- 
mensurate sinusoidal structure with SDW is unstable 
to a transition into a magnetic state a t  a temperature 
lower than T,: 

a t  @ = O  and 3(p1 - &)+2b1q2,>O; alternately 

a t  @ =n/2 and 30, - p, - 4b,qE > 0.  Taking into account 
the expressions for pl and 0,  [(A.2) and (A.3)], we see  
that the magnetic instability (the appearance of As 
against the background of A,) se ts  in usually a t  the 
temperature (36), a t  which a CDW that is shifted in 
phase by n/2 relative to the SDW appears. We note 
that Eq. (36) goes over a t  go - 0 into the corresponding 
formula of Refs. 2 and 3, where the Curie temperature 
is determined for the coexistence of homogeneous 
order parameters A, and A ,. The coexistence of CDW 
and SDW with a relative phase shift n/2 does not lead 
to a homogeneous magnetization. In fact, i t  is shown 
in Ref. 4 that the magnetic moment of the system is 
M-A,(r)A ,(r) - c o s g r  sinq,,r, i.e., i t  oscillates a t  
double the period of the incommensurate structure. 
Such a picture might be realized in chromium, but i t  
is very difficult to observe because of the small  mag- 
nitude of the effect (of the wavelength of the magnetic 
superstructure -n/q,). 

2. We now discuss briefly the conditions for the 
coexistence of a helicoidal SDW with a homogeneous 
CDW. The helicoidal SDW can be visualized a s  a 
superposition of SDW that a r e  plane-polarized in per- 
pendicular planes and whose phases a r e  shifted by n/2. 

Assume that against the background of such a heli- 
coidal SDW there is produced a CDW having the same 
period. According to conditions (36) and (37) for the 
coexistence of SDW and CDW with different phase shift 
@ between A ,  and A,, we see  that for one of the phase 
relations, 9 = n/2, (37), the coexistence of SDW and 
CDW is favored, for the other (36), a t  the specified 
numerical values of the coefficients p, and p, [ ( ~ . 2 )  
and ( ~ . 3 ) ]  the coexistence conditions a r e  not satisfied. 
And since the helicoidal structure consists of two se ts  
of SDW, i t  is quite natural for the coexistence of an 
inhomogeneous order parameter A, with a helical SDW 
to be always energywise unfavored. This does not 
hinder in any way the coexistence of a commensurate 
CDW with a helicoidal SDW. The result obtained in 
this case is practically obvious from the form of the 
densities of the free-energy functional (16), (17), (18), 
and Eqs. (33). The Curie temperature for a magnetic 
transition from a helicoidal structure, following the 
appearance of a commensurate CDW near the Lifshitz 
0 point, agrees with the results (36) i f  we let  in the 
latter q: - 0. In this case, in accordance with Eq. (38) 
for the magnetic moment M -A$,, large-scale mag- 
netization is produced in the system and rotates in a 
plane perpendicular to the helicon axis with a period 
2n/90. 

6. INFLUENCE OF EXTERNAL MAGNETIC FIELD 

The magnetic field H is introduced into the functional 
(14) by adding to the free-energy density functional the 
term3 

where y = (4n~,/rT)cp,, p, is the Bohr magneton. 

The influence of the homogeneous field on the linear- 
ly polarized SDW coexisting with the CDW in the inho- 
mogeneous phase i s  obvious. The external field H 
simply shifts them relative to the phase, so  that a 
magnetic moment is induced in the system. A more 
peculiar action is exerted by an external homogeneous 
field on the critical temperature T,, a t  which the co- 
existence of the commensurate CDW and the helicoidal 
SDW sets  in. 

To determine this influence, we consider a system in 
a field H parallel to  the z axis, in which in the absence 
of the field there is only a commensurate CDW. If a 
magnetic field H is superimposed on such a system, 
then with increasing H there will be induced in the sys- 
tem a commensurate triplet order parameter A, (SDW). 
We now change the parameters of the system (for ex- 
ample, the temperature) near the Lifshitz 6 point with- 
out changing the field, s o  that the system tends to be- 
come unstable relative to the appearance in it of a 
helicoidal SDW. The influence of the external homo- 
geneous field H on T, of the helicoidal instability can 
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be obtained by calculating the functional 9- accurate to 
terms quadratic in H, A:, and A,. This can be easily 
done near the Lifshitz point, where the gradient terms 
in the functional make a small contribution. It  should 
be noted that inasmuch with such a formulation of the 
problem the triplet order parameter turns out to be 
three-dimensional, an additional term appears in the 
total density of the functional 

f(r)=Pt(Atz)'IALl2. (39) 

Minimizing the total functional (14) at  the required 
degree of accuracy, we find that in an external mag- 
netic field H there is induced in the system the triplet 
parameter of the homogeneous SDW: 

where 

In the derivation of (40) we used the approximate equal- 
ity fll = &, which is valid near the Lifshitz point [ (~ .2 ) ,  
( ~ . 3 ) ]  a t  which cp, = O  (A.ll). This gives rise to a cor- 
rection to the singlet order parameter, A,=A:+ A:, 
where 

A,'=-l/s(yH) 'u,-' (at-a,)-'. (42) 

Ultimately, taking into account the results of (33), we 
find that whereas in the absence of a magnetic field the 
temperature T, of the transition from the homogeneous 
state with CDW into a state with coexistence of a ho- 
mogeneous CDW and a helicoidal SDW is determined 
by the condition 

in a magnetic field this condition becomes much more 
stringent 

1 a. 
a + a q + a 2 q - a  + - y Z a i - a  [I - ] 0 (44) 4 

Therefore an external magnetic field should lead to a 
sudden change of the helicoidal magnetism into ferri-  
magnetism, in analogy with what was observed in M 
and Si." We stipulate immediately that the present 
paper does not claim to explain the properties of M 
and Si, all  the more since the band structure of this 
compound has not been sufficiently well studied. 

7. CONCLUSION 

The Landau two-parameter expansion method used 
in the present paper makes i t  possible to determine 
qualitatively the character of the magnetic solutions in 
the incommensurate phase. A substantial shortcoming 
of this analysis is, however, that with increasing dis- 
tance from the Lifshitz point, on going into the region 
of noncommensurate solutions, i t  is necessary to take 
into account an increasingly larger number of higher 
gradient terms with respect to A, owing to the strong 
increase of the role of the harmonic components of the 
SDW and CDW, and owing to the rapid increase of the 
quantity q which characterizes their spatial periodicity. 
In a recent paper, Kotani12 discusses the role of higher 

harmonics of CDW and SDW a t  T =0, and shows that 
in the case of the two-band model the helicoidal SDW 
structure is not favored a t  any value of q. This result 
was obtained without allowance for the long-range 
Coulomb interaction. As shown above, allowance for 
this interaction makes the helicoidal SDW structure 
favorable near the Lifshitz point a t  a small reservoir 
size. 

We have neglected in our analysis the spin-orbit 
interaction, which can exert a noticable influence on 
the form of the magnetic solutions (in particular, a 
preferred direction of the magnetization appears). 
The absence of sufficient experimental data on the band 
structure and the Fermi surfaces of weak ferromag- 
nets (ZrZk,  Sc,In, MnSi, and others) does not make i t  
possible at  present to carry out calculations within the 
framework of a more realistic model. Nonetheless, 
i t  is clear even now that many data on NMR, on the 
relaxation of the nuclear spin, and results of neutron 
diffraction investigations of these substances fit quali- 
tatively within the scheme of "excitonic ferromagnet- 
ism.ws 

APPENDIX 

The equations presented in the Appendix were obtained 
with the aid of Gor'kov's standard procedure (Ref. 9, 
Sec. 38). In our case it reduces to a solution of Eps. 
(3) and (5)-(8) by series expansion in powers of A 
with accuracy to As, with assumed to be a slowly 
varying function of the coordinate r .  We have 

Here 
pi= ~ ~ ( 2 k + l ) - ' ( i - ! - $ ) - ' ,  (A.10) 

A>" 

where wk=nT(2k + 1). In (A.l)-(A.13) the temperature 
T is determined by the investigated region of the phase 
diagram (F,, T). 
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The propagation on nonequilibrium transverse acoustic phonons (T > 5-10 K, vm,,Z4X 10" Hz) in Ge is 
investigated at 1.8 K by a technique in which heat pulses are applied and detected with a 
superconducting bolometer. If the sample pumping is pulsed, the signals registered by the bolometer 
reflect the picture of heat propagation in Ge (at q11[100]) at velocities smaller than those of transverse 
sound, and characterize the change from ballistic phonon propagation to diffuse propagation with decay 
followed by ballistic propagation. The bolometer-signal fall-off time (7- 1C-18 psec) is evidence that the 
phonons are produced by a relaxation mechanism connected with the cooling of the photoexcited 
carriers, since the phonons emitted following Auger recombination of the carriers in the EHD would 
produce signals with times of the order of the recombination time of the carriers in the EHD, i.e., 7-40 
p-. 

PACS numbers: 71.35. + z, 71.38. + i, 43.35.Gk 

The problem of heat  relaxation and heat  dissipation 
is of essent ial  in te res t  both f o r  the solution of the 
bas ic  problem of the behavior of a sys tem of nonequi- 
librium phonons in a c rys ta l ,  and f o r  p rac t ica l  ap-  
plications, say heat dissipation in microelectronics .  
A natural need arises f o r  t rac ing  the  behavior of non- 
equilibrium phonons, studying the i r  propagation in a 
c rys ta l  and the i r  passage through a crystal-liquid 
helium interface, their  interaction with impuri t ies  
o r  nonequilibrium carriers, etc.' 

Few direct  experimental observation s w e r e  made 
of the interaction of nonequilibrium phonons with non- 
equilibrium  carrier^."^ The heat-pulse technique 
used in some studies  makes  it possible  to observe 
separately in t i m e  the a r r i v a l  of longitudinal and 
t r a n s v e r s e  mode in a bal l is t ic  reg ime (when the  phonon 
mean f r e e  path A is l e s s  than the  sample  length I ) ,  and 
thus study direct ly  the  action of t h e  medium on A and 
hence on the  phonon propagation. 

Absorption of longitudinal sound of high frequency 
v 2 10" Hz by electron-hole d r o p s  (EHD) in germanium, 
and hence the dragging of EHD by a flux of such pho- 
nons, w a s  observed by Hensel  and Dynes.' They have 
a l s o  shown that t r a n s v e r s e  phonons interact  weakly 
with EHD, the  TA-phonon absorption being not m o r e  

than 7%. On the o ther  hand, judging f r o m  the distribu- 
tion obtained by Greenstein and Wolfe5 f o r  the  EHD 
cloud in a crystal ,  it is seen that  a nar row f l a r e  of 
t h i s  cloud s t r e t c h e s  out in the [lOO]direction. T h i s  
anisotropy of the distribution can b e  due ei ther  to 
anisotropy of the  longitudinal phonons along the [ 1001 
axis ,  which is denied in Ref. 3, o r  anyhow to the 
dragging of the  d r o p s  by the  TA phonons, although the- 
oret ical ly  the interaction of the  TA phonons with the 
c a r r i e r s  can  b e  due only t o  nonsphericity of the  con- 
duction band or to a complex s t r u c t u r e  of the valence 
band of Ge. 

One of the  t a s k s  undertaken in the p resen t  study w a s  
t o  produce a l a r g e r  volume of the liquid phase than ob- 
tained by Hensel  and Dynes2 who used f o r  the excitation 
a cw l a s e r  of low power, 6 mW (volume excitation), 
s ince we wanted t o  r e g i s t e r  rel iably the damping of the 
TA phonons. The phonon propagation direction w a s  
specially chosen to b e  the [100] a x i s  of the c rys ta l ,  
s ince it is precisely in t h i s  direct ion that the  heat 
propagates  in p rac t ice  only in the f o r m  of a t r a n s v e r s e  
mode.6 

Hensel  and Dynes2 cited surpris ingly long EHD motion 
t i m e s  under t h e  influence of the  LA phonons (up to 6 
~ s e c ) .  It  might s e e m  that th i s  t i m e  can in fact  not 
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