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Galvanomagnetic effects in thin metallic conductors with open Fermi surfaces are investigated. It is 
shown that in strong magnetic fields the direct current is concentrated near the conductor surface and 
the magnetoresistance is sensitive to the character of the conduction-electron reflection by the sample 
boundary. For specular reflection of the carriers by the sample surface, the skin effect is produced in a 
plate of thickness d <I in a magnetic field parallel to the surface if the magnetic field satisfies the 
condition r < 6 d ;  for d i s e  reflection the condition is r <16 (1 and r are the electron mean free path and 
trajectory curvature radius in a magnetic field H, and 6 is the thickness of the layer of open electron 
orbits and is referred to the Fermi momentum). Under static skin-effect conditions the electric current is 
carried mainly by electrons that ghde along the sample surface and belong to closed sections of the 
Fermi surface. Electrons with open orbits participate only in the formation of Sondheimer 
magnetoresistance oscillations that appear in specular reflection even in plates whose surfaces are 
symmetry planes of the crystal. In the case of a single group of carriers the transverse resistance p, 
grows liiearly with the magnetic field H in the case of specular reflection, and p,-H in diffuse 
reflection. In metals with several carrier groups and in magnetic fields for which r < d ,  saturation occurs 
in one and the same sample and the magnetoresistance grows quadratically or linearly with transverse- 
magnetoresistance field. From the dependence of p, on H it is possible to determine the degree of 
imperfection of the crystal surface and the probability of charge recombination on the sample surface. 
The electroneutrality equation is analyzed for an arbitrary scattering indicatrix of the carriers by the 
sample boundary. It is shown that the electric field in the sample is appreciably inhomogeneous if the 
electron reflection is not specular. 

PACS numbers: 73.25. + i, 72.15.Gd 

The unrestricted growth of the resistance of a number 
of metals with increasing field in strong magnetic fields 
i s  accompanied by a substantial redistribution of the 
electric current over the sample cross section. This i s  
caused by the special role played by collisions of the 
electrons with the sample boundary, which are as a 
rule accompanied by a jump of the center of the orbit, 
leading to an increase of the mobility of the electrons 
near the surface over the mobility of the electrons mov- 
ing in the center of the sample. For example, in a plate 
with specularly reflecting faces placed in a magnetic 
field H parallel to  its surface, the effective mean free 
path of the near-surface electrons over the entire plane 
of the plate i s  comparable with the mean free path l for 
collisions inside the volume. At the same time, the 
electrons that do not collide with the sample boundary 
can drift only along the magnetic field. The result i s  a 
substantial difference between the contributions of the 
surface and interior electrons to the transverse electric 
conductivity (electric current density j I H), and the di- 
rect electric current can become centrated near the 
surface of the sample in magnetic fields for which the 
electron-trajectory curvature radius r << 1. 

The static skin effect was predicted by Azbel'l in  

1962. He considered the electric conductivity of metal- 
lic plates of thickness d, whose surfaces reflect the 
conduction electrons diffusely, and showed that in a 
magnetic field parallel to the sample surface the elec- 
tric current flows mainly in a surface layer of thickness 
-r, and the transverse resistivity p, increases linear- 
ly with the magnetic field at r << 12/d, if the numbers of 
the electrons and holes n , and n, are equal. At r > 12/d 
the resistivity i s  proportional to H ~ ,  just as in bulky 
samples, in which surface effects are negligible. In 
uncompensated metals (n ,#n , )  the electric conductivity 
of the core of the sample i s  high enough at r << 1 (of the 
order of the electric conductivity o, of the metal in the 
absence of the magnetic field) and the distribution of the 
electric field over the sample cross section remains 
practically unchanged when the magnetic field i s  in- 
creased. 

The theory of the static skin effect was subsequently 
developed by Azbel' with one of  US.^-^ It turns out that 
in a magnetic field inclined to the plate surface the 
static skin effect does not lead to new dependences of 
the resistivity p on the strong magnetic field compared 
with bulky samples. This makes it  possible to use, in 
addition to bulky material, also thin conductors for the 
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investigation of the electron energy spectrum with the 
aid of galvanomagnetic  measurement^.^-' 

In a magnetic field parallel to the surface of the plate 
and in compensated metals (nl=n,) the surface current 
i s  sensitive to the character of the reflection of the 
electrons by the sample boundary, i.e., to the state of 
the sample surface. The infinite character of the mo- 
tion d the electrons specularly reflected by the sample 
boundary along the direction of the transverse current 
makes the conductivity of a surface layer of thickness 
2%- approximately equal to a,. In the case of pure dif- 
fuse reflection, when all the states are  equally probable 
for the reflected electrons, the electric conductivity of 
the same layer i s  smaller by a factor I/Y and the resis- 
tivity of the plate increases quadratically with the mag- 
netic field ( p - ~ 2 ) .  If the reflections do not completely 
diffuse and some correlation remains between the inci- 
dent electrons and those reflected by the sample bound- 
ary, then the dependence of p on H has a complicated 
c h a r a ~ t e r . ~  

In semimetals, the linear growth of the plate resis- 
tance in the case of diffuse reflection of the carriers, 
obtained by Azbel',' i s  realized, but in a magnetic-field 
region somewhat different than predicted. The static 
skin effect in semimetals, which was investigated in de- 
tail by Babkin and Kravchenko,' was quite unique be- 
cause of the weak interaction between carriers belong- 
ing to different groups (valleys). If i t  i s  assumed that 
there is no interaction between the valleys and that the 
electron and holes states do not become intermixed upon 
reflection of the carriers, i.e., this reflection remains 
specular with respect to the number of the group, then 
regardless of the character of the intravalley scattering 
the electric conductivity of a surface layer of thickness 
2%- on the surface boundary turns out to be the same in 
order of magnitude. For example, in diffuse intravalley 
scattering, as shown by Babkin and Kravchenko, the 
electric-current density in the immediate vicinity of the 
sample boundary F;,=O or d (the 5 axis i s  normal to the 
surface of the plate), just as  in the case of completely 
diffuse reflection, turns out to be smaller by a factor 
l/y than at H=O. However, with increasing distance 
from the boundary, the electric conductivity increases 
sharply and becomes comparable with a, at S = Y  and at 
d - F,= Y. The relations between the numbers of the elec- 
trons and holes are in this case not so critical for the 
value of the surface current. 

The electric conductivity in the core of the sample, 
on the contrary, i s  substantially different at different 
degrees of decompensation of the electrons and holes 
A n/n = (n, -n,)/(n ,+n,). The electric conductivity of 
bulky samples is of the order of u,(Y/z)~ if A n/n << r / l  
<< 1 and of the order of a, at r/ l<< hn/n. In the latter 
case p= a;' and the surface current introduces a small 
resistance increment proportional to I/H. At ~ n / n  
<<r/l<<l one should expect a linear increase of the re- 
sistance with the magnetic field for any intravalley 
scattering. However, when the correlation between the 
incident and reflected carriers i s  violated, i.e., when 
the reflection is not purely specular, redistribution of 
the charges takes place in the conductor. An excess of 

electrons accumulates on one of the boundaries and an 
excess of holes on the other.g 

Babkin and Kravchenko8 considered the influence of 
intervalley scattering, and of recombination of charges 
inside the conductor and on its surface, on the distribu- 
tion of the electric current over the sample cross sec- 
tion in strong magnetic fields, and have shown that the 
decompensation of the electrons and holes i s  so large 
that the resistance of a semimetallic plate whose thick- 
ness d i s  less than the intervalley diffusion length i s  in- 
dependent of H in the entire range of magnetic fields 
satisfying the condition r << I, (11 i s  the carrier mean 
free path for intravalley scattering in the core of the 
sample). In sufficiently thick plates, whose thickness d 
exceeds the intervalley diffusion length L (d >> L), the 
resistance increases quadratically with the magnetic 
field if Y < l(L/d)lh, and a linear dependence of p on H 
should be observed at l ( ~ / d ) l "  <r  << I. The character of 
the reflection of the electrons by the sample boundary 
inside the valley likewise does not influence the depen- 
dence of the resistance on the magnetic field. 

Metals a re  characterized by a substantial mixing of 
the electron and hole states in the case of diffuse scat- 
tering of the carriers by the sample boundary, and their 
mean free paths relative to intervalley and intravalley 
scattering are of the same order of magnitude. 

In compensated metals, recombination of the carriers 
upon reflection from the sample boundary weakens the 
surface current, since the electron and hole drifts due 
to collisions with the metal surface have opposite signs. 
Their effective range in the direction of the transverse 
current, with account taken of recombination, i s  less 
than I even in the case of an ideally smooth sample sur- 
face. An experimental investigation of the dependence 
of p on H makes it possible to determine only the sum 
of the probabilities of the diffuse reflection (the charac- 
teristic of the sample surface) and the probability of 
charge recombination upon reflection. Panchenko, Kar- 
lamov, and ~tushinskii" have shown that the probability 
of charge recombination on the boundary of a metallic 
sample may turn out to be large enough and the plate 
resistance is not very sensitive to the state of the plate 
surface. They investigated galvanomagnetic effects in 
tungsten plates with atomically smooth surfaces and ob- 
served that the static skin effect manifests itself most 
strongly in those crystallographic orientations of the 
sample at which the transitions of the carriers after 
specular reflection from the electron state to the hole 
state and vice versa are  hindered. Only in this case 
it i s  possible to determine from the dependence of p on 
H the degree of imperfection of the surface of the inves- 
tigated crystal. 

In the studies cited above, the role of the mechanism 
of the carrier interaction with the sample boundary was 
investigated for metals with closed Fermi surfaces. 
From the point of view of the theory of the static skin 
effect this i s  undoubtedly the most interesting case, 
since by specular reflections from the conductor sur- 
face it is possible to produce artifically in the surface 
layer open electron orbits, which alter substantially the 
asymptotic value of the resistance in a parallel magne- 
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tic field if d<lz/r.  

No less interesting, however, is an investigation of 
the role of electrons that glide along the sample surface 
in metals with open Fermi surfaces. In bulky samples, 
the asymptotic behavior of the resistance changes sub- 
stantially if, at a given direction of the magnetic field, 
a small layer of open sections of the Fermi surface is 
produced, with thickness 6, referred to the Fermi mo- 
mentum, exceeding (r/l)a. In conductors with small di- 
mensions the static skin effect can substantially inter- 
change the roles of open and closed sections of the Fer- 
mi surface. 

We consider below the role of open electron orbits in 
the electric conductivity of thin conductors at an arbi- 
trary character of the reflection of the tlectrons from 
the sample boundary. For the sake of argument, we 
assume that the conductor is a plane-parallel plate 
whose thickness d is small compared with I, and that 
the current contacts are located on the end faces of the 
plate. 

The complete system of equations of the problem con- 
sists of the Boltzmann kinetic equation for the electron 
distribution function f(r, p) and of Maxwell's equations, 
which in static fields reduce to the condition that the 
conductor be electrically neutral: 

where f ,(&) is the equilibrium Fermi distribution func- 
tion of the electrons, &(P) is the energy and p the mo- 
mentum of the electron, and R is Planck's constant. 
We confine ourselves to the Ohm's-law approximation 
and seek the electron distribution function in the form 

The Boltzmann kinetic equation linearized over the weak 
electric field, in the 7 approximation, 

can be easily solved by the method of characteristics. 
Here t is the time of motion of the electron in the mag- 
netic field, e and v are the charge and velocity of the 
electron, and E(r) is the electric field intensity. A 
solution of the homogeneous equation corresponding to 
(3) must be chosen by using a boundary condition that 
relates the functions J ,  for the incident electrons and 
those reflected by the sample boundary 

The integration in the right-hand side of (4) is over all 
the states of the electrons incident on the boundary of 
the sample at the point r,. 

Electron scattering by not too rough a surface or by a 
surface containing defects was theoretically investigated 
by many workers, who found the connection between the 
kernel w(p, p'; r,) and the properties of the surface. For 
example, it follows from the papers of Fal'kovskii" and 
of Okulov and UstinovlZ that w is of the form 

w ( p , p n ;  r . ) - b ( p - i )  [ I - I  d p f w ( p , p f ;  r . ) ]  + W ( p , p 1 : r , ) ,  (5) 

where the function ~ ( p ,  pl ;r , )  is  the probability of elec- 

tron scattering from a state with momentum p' into a 
state with momentum p, while i, is the momentum of 
the electron incident on the surface and reflected specu- 
larly with momentum p. 

Using the boundary condition (4) we obtain for the fol- 
lowing expression (see, e.g., Refs. 13 and 14) 

+ j d p f  w  ( p l ,  p'; r , )  i d t '  exp (q) v ( t r ) E [ r , - r ( A 2 )  + r ( t l )  1 
4 

where X, are the instants of reflection of the electron by 
the sample boundary at the points r,, p , = p ( ~ ~ )  is the mo- 
mentum of the electron after reflection, and Xi,, < Xi, 
i = 1, 2, . . . . This solution can be obtained also by the 
Chambers method.15 It is easy to note that the function 
$ has the meaning of the energy acquired by the elec- 
trons in the electric field and averaged over all possi- 
ble electron trajectories. 

Knowing the electron distribtion function, we can 
find the distribution of the electron current in the con- 
ductor: 

If the dimensions of the roughnesses of the surface 
are small compared with r ,  d, and I ,  we can use in ex- 
pression (6) for $ an averaged function w(p, p'), which 
must be assumed to be the same for the entire surface 
of the plate. Then the problem is homogeneous in the 
(q,  t) plane of the plate (the 5 axis coincides with the 
projection of the direction of the magnetic field, taken 
to be the z axis, on the plane of the plate) and the elec- 
trostatic potential can be sought in the form 

where E, and E, are constant quantities. 

It is  necessary to obtain from the electroneutrality 
condition the inhomogeneous electric field I?,([) 
= - aip([)/d( and to determine the connection between 
the density of the electric current with the electric 
field components in the plane of the particle E, and E,: 

The tensor em( [ )  averaged over the depth of the sample 
determines the electric conductivity and consequently 
the resistance of the plate. 

We assume that the Fermi surface is a surface of re-  
volution of the corrugated-cylinder type, whose axis 
coincides with the p, axis, and whose closed flat sec- 
tions correspond to the electron states. The figure 
shows the trajectories of the electrons in the xy plane 
between collisions with the sample boundaries (trajec- 
tories of type I and If) and the trajectories of the elec- 
trons that do not collide with the sample boundary (III) 
in the case when [ = y  and E=z. The electrons moving 
along trajectories of type I and 11 can drift along the x 
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FIG. 1. 

axis, and their contribution to the electric conductivity 
of the plate can alter substantially the asymptotic form 
of the resistance at r << 2 compared with bulky samples. 

We now obtain the distribution of the electric current 
and the resistance of the plate in a magnetic field par- 
allel to the plate surface. Undoubtedly the most labori- 
ous part of the problem is the determination of the elec- 
tric field El((). In the absence of open electron orbits 
inside the conductor f a r  from its surface, the solution 
of the electroneutrality equation 

<$(E, t ,  p3)=0 (10) 
i s  a homogeneous electric field cp(c)=AE+~, and the 
constantA is determined from the condition that the 
electric current be continuous 

In a narrow surface layer of thickness of the order of 
the largest diameter of the electron orbit 2r, however, 
the electric field is essentially inhomogeneous. Only in 
the case of a quadratic dispersion law of the carriers 
&= aikpt pk and of pure specular reflection of the car- 
r iers  by the sample boundary i s  the electric field E, 
homogeneous everywhere, and the resistance of the 
metallic plate does not depend at all on its thickness. 

The presence of open electron orbits leads to inhomo- 
geneity of the field E, over the entire sample. If the 
layer of open orbits i s  small, then the inhomogeneity 
of the field in the core of the sample i s  small and can be 
analyzed with the aid of the electroneutrality condition 
(10) by successive approximations. Under conditions of 
the static skin effect, when the electric current i s  con- 
centrated near the surface of the sample, it is neces- 
sary to know the behavior of the electric field mainly at 
16- [,I<&. In this case the integral equation (10) for the 
electrostatic potential ~ ( 6 )  i s  quite complicated and an 
explicit solution for it can be obtained only in certain 
special cases, for example at 1 6  - Ss1<<2r. 

In the case of diffuse reflection of the conduction elec- 
trons by the sample boundary, when all the momentum 
directions of the reflected electrons are  equally prob- 
able and their distribution function i s  fo(c) - F' af,/a& 
on the surf ace [= 0 and f ,(&) -F-afda E on the surface 
[=d, it depends only on the energy of the electron, Bab- 
kin and Kravechenko8 investigated in detail the solution 
of the electroneutrality equation for the case 6=0. They 
have shown that in the near-surface layer the electric 
field E, i s  highly inhomogeneous and increases without 
limit as 5 - 5,. 

It i s  easy to verify that the presence of open electron 
orbits does not change the asymptotic behavior of E,(£,) 
at 15 - S,1<<2r. The values of F * ,  which are constant on 

the Fermi surface, can be determined easily by using 
the condition that the charge cannot flow through the 
sample boundary. Substituting the expression for 

in the expression Eq. (ll), we get 

where 

u = <u;>- - (u.(t)exp [ "O"'-t 1) :+ (ul(tirry 
k(09:-t I ) : .  

(14) 
The angle brackets denote here integration over the 
Fermi surface with a corresponding weighting factor 
(see the definition of the current (7)), the symbols 
(. . . and (. . . ) O  denote integration over the states of 
the electrons with v ,  <O for closed and open electron or- 
bits &=const and p ,  =const; the instant of reflection of 
the charge by the sample boundary X 2 A, i s  the root, 
closest to t, of the equation - 

and 
c f ) - c f ) ' + c f , " .  

After eliminating the constants, the electroneutrality 
equation takes the form 

The superscripts + and - of the angle brackets indicate 
' 

that the electron has arrived at the point (17, 5, z )  from 
the surface [= 0 or from the surface { = d ,  respectively. 

If should be noted that the second term in the left-hand 
side of (16) receives contributions mainly from elec- 
trons that do not interact with the sample boundary, 
while the last term in the left-hand side, and the right- 
hand side of (16), are determined only by the electrons 
that collide with the surface of the conductor. Near the 
surface of the plate at 5 << r and (d - 5) << r the electrons 
that do not collide with the sample boundary can be dis- 
regarded, and we have for cp (5) with sufficient accur- 
Z Y  

cp(E)=a,(E)Ep-Bg(E). (17) 

Substituting (17) in (16) without the second term in the 
left-hand side, we easily determine the constant B. It 
is easy to note that 
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If 15 -.$,I << r. i.e., theelectric field E ,  = -dp/d[ in- 
creases without limit at the surface of the sample also 6 
+ 0. The reason i s  that the function $(( , t, p,) for closed 
sections of the Fermi surface experiences a jump when 
5 and t satisfy the conditions 

.- 

It i s  easy to verify that even at an arbitrary character 
of the carrier reflection from the sample boundary the 
solution of the electroneutrality equation 

4 
- (J ~ P Y  J ~ P .  w(pr7 P , )  w(pt / ,  p 2 ) _  J exp (F) p ( ( ,+g(tT)  

h, 

at 15 - e,(<<% will have a square-root dependence on 
15 - &,I if the reflection i s  not specular. Here $,E, 
coincides formally with the function $ if we put E,([)=O 
in (6). 

In the Fuchs approximation of the specularity parame- 
t e r  the electrostatic potential cp (5) takes the form 

where q i s  the probability of specular reflection of the 
electron from the sample boundary. In the case of 
specular reflection (q= 1) the electric fields tends to a 
finite limit when 5 -  t,, but the field ER does not coin- 
cide with the electric fieldE', at the center of the sam- 
ple even in the absence of open electron orbits if the 
carrier dispersion law is  anisotropic and nonquadratic. 
The quantity D does not depend on q and 5. 

An analysis of the electroneutrality equation at the 
core of the sample shows that the electric field far from 
the conductor boundaries undergoes almost periodic 
changes with a period T Vt, where Dt is  the average 
electron velocity along the normal to the surface of the 
sample during the period T of its motion in the magnetic 
field. 

We now obtain the resistance of a thin plate and the 
distribution of the electric current over the sample 
cross section, assuming that the thickness 6 of the lay- 
e r  of open electron orbits is small. 

A. Specular refZection. In specular reflection, the 
electrons belonging to the closed Fermi-surface sec- 
tions can drift in the near-surface layer and their ef- 
fective mean free path coincides with 1. If the y axis 
coincides with the 5 axis, then the displacement of the 
electrons with the open orbits along the direction of the 
transverse current during the free-path time does not 
exceed rl/d, i.e., they are much less mobile than the 
electrons that do not leave the surface layer with thick- 

ness on the order of r .  In extremely strong magnetic 
fields (r -0) the electric current i s  concentrated in a 
narrow surface layer and the electric conductivity of 
the plate is  determined mainly by the electrons belong- 
ing to the closed sections of the Fermi surface. 

The role of the electrons with the open orbits reduces 
to formation of Sondheimer oscillations, l6 since they do 
not drift along the q axis if they pass through the entire 
thickness d of the sample during a time that i s  a multi- 
ple of the period of motion T in the magnetic field. 
With changing magnetic field, the condition d = n2' 8, 
will again be satisfied at a different value of 61, and this 
in fact is the cause of the oscillatory dependence of the 
resistance on H .  Since all the electrons with open or- 
bits shift into the interior of the sample during the per- 
iod T by an equal distance, then there are no preferred 
electrons among them and all contribute to the oscilla- 
tory effect. The possibility of Sondheimer oscillations 
in a parallel magnetic field was pointed out to Pip- 
pard.'' In many theoretical papers, including Pip- 
pard's, i t  is customarily assumed that the Sondheimer 
oscillations are due to the dissipative character of the 
collisions of the electrons with the sample boundary. 
This effect, however, can occur also in pure specular 
r e f l e c t i ~ n , ' ~ ~  as will be shown below. 

In the case when the axes 5 and y coincide, the motion 
of the electrons specularly reflected from the sample 
boundary is strictly periodic (see the figure): 

where 2Tx=X1 -A, i s  the period of the motion of the 
charges on the open orbits and double the period for 
electrons belonging to closed sections of the Fermi sur- 
face; a t l  and a t ,  are the phase discontinuities occurring 
upon reflection of the electron. For electrons that do 
not collide with the sample boundary, $ is the first term 
in (22), in which we must put A,=-m. 

Electrons that move on open orbits retain upon reflec- 
tion their velocity along the surface of the plate, while 
v ,  reverses sign. The phase t of the electron changes 
to T - t, so that 
v.'(t) =v.(T-t),  v,'(t) --v,(T-t) , F,=cb/eHT>O, F,'=-F,, (23) 

where b is  the period of the open orbit in momentum 
space: 

b=p,(T+t) -p,(t).  (24) 

By virtue of the symmetry of the Fermi surface, the 
time of motion of the charge from one sample boundary 
to the other does not depend on the direction of motion 
and i s  equal to 

Taking (23) into account, as well as the periodicity, 
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with period X I  -A,, of the motion of the charges belong- 
ing to closed sections of the Fermi surface, we obtain 
the following expression for II in the case of closed and 
open electron orbits 

In (27), the electron velocities in all the integrals are 
reduced to the values on one edge of the open section of 
the Fermi surface, S,= 1, S,= - 1. 

With the aid of (26), (27), and the electroneutrality 
condition we obtain the distribution of electric current 
inthe plate and determine its resistance. In the calcu- 
lation of the magnetoresistance it is useful to substitute 
in the expression for the electric current the function $ 
averaged over the depth of the sample. We can then re- 
place the integration with respect toy to integration 
with respect to A,, with the aid of the relation 

dy=-v,(A,)dA,. 

Further calculations entail no special difficulty if the 
electron velocity is expanded in a Fourier series. 

To determine the correct order of magnitude of that 
part of the plate resistance which varies smoothly with 
H, the approximation of the homogeneous electric field 
is perfectly satisfactory. Using expressions (26) and 
(17) for the function $, we can easily determine the 
transverse electric conductivity of the plate: 

~i=~*n-~nt~rs!~tr (29) 

Omitting numerical factors of the order of unity, which 
are not reliable in this approximation, we obtain for the 
transverse resistivity p, the expression 

where po=oo-' is the resistivity of the plate in the ab- 
sence of a magnetic field. 

In magnetic fields satisfying the condition (r/d)'= 6, 
the saturation of the resistivity gives way to a quadratic 
growth, but the distribution of the electric current sam- 
ple cross section is practically homogeneous. The role 
of the open electron orbits is  quite appreciable so long 
as 6d <r  < 61hd, and then, with increasing magnetic 
field, the current gets crowded into the skin layer, and 
the electrons with open orbits take practically no part 
in the electric conductivity of the plate: 

Under the conditions of the static skin effect, the Hall 
field 

does not depend at all on the strong magnetic field 
(Y << d6). If there are several groups of carriers (for 
example, the Fermi surface is made up of a corrugated 
cylinder and a closed hole surface), then, under the 
condition that there i s  no recombination of the charges 
upon specular reflection, we obtain for the magnetore- 
sistance 

If the deviation &/n from the compensation of the 
electron and hole volumes, due for example to the 
presence of impurities in the metal, is  small compared 
with 6'14, then the resistance of the plate increases 
linearly with the magnetic field and the electric current 
is confined to the skin layer in the entire region of mag- 
netic fields satisfying the condition r << d. At An/% >> 6lI4 
saturation of the resistivity is possible, which gives 
way to a quadratic growth, after which p, again in- 
creases linearly with the mzgnetic field: 

If the direction of the electron drift into the interior 
of the sample deviations from the normal to the surface 
of the plate by an angle 8,  then Eqs. (30)-(33) turn out 
to be valid for the transverse resistivity, and p, i s  in- 
dependent of 8 so long as I cos9 > d, even though the 
electric conductivity tensor components, naturally, de- 
pend strongly on the direction of the electron drift. For 
example, 

o,,=as {r/d+6 ( d l l )  a tg' 6+6 (rid) 0 sina6+6 (f l ld )  0). (35) 

The last two terms in (35) oscillate with the magnetic 
field: 

Qel -e -d"  cos ( d l r )  . (3 6) 

For the sake of brevity, only the first harmonics are 
written out in the oscillating terms. 

The homogeneous-field approximation is  too crude for 
a determination of the oscillatory dependence of p on H. 
Even under conditions of the static skin effect, when the 
part of the plate electric conductivity that varies 
smoothly with the magnetic field is  determined mainly 
by the component o,,, the part of the second term in 
(29) oscillates withH and turns out to be larger than in 
on,, or else of the same order. Therefore allowance 
for the inhomogeneous electric field E,(t;) is very im- 
portant. A specific case i s  when the closed orbits are 
ellipses, and the transition region to the open orbits, 
where the shape of the trajectories is  far from elliptic, 
i s  of the order of 6, As 6 -0 the inhomogeneity of the 
electric field is small in the entire sample, and putting 
E,=QTE, we obtain for the oscillating part of the resis- 
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tivity porc the expression 

Simple estimates show that allowance for the weak in- 
homogeneity of the field is of no importance for the cal- 
culation of pw, at least so long as 6 5 r2/ld. 

B. DifBse reflection. In the case of diffuse reflec- 
tion of the carriers, the concentration of the electric 
current in the skin does not change the dependence of 
the resistivity p, on the magnetic field H. The trans- 
verse electric conductivity 

either saturates or i s  proportional to r2: 

At r 9 16 the distribution of the electric current i s  
homogeneous, and the quadratic growth of the resistiv- 
ity with the magnetic field i s  due to the substantial con- 
tribution made to a, by the electrons with open orbits. 
At r << I6 the resistivity also increases quadratically 
with the field and does not depend on the mean free 
path, but the electric current i s  carried mainly by the 
electrons belonging to the closed sections of the Fermi 
surface and moving near the sample boundary. The con- 
centration of the direct current in the skin layer at 
r< 16 is not accompanied by a change of the amplitude 
of the Sondheimer oscillations, which take the form 

An investigation of the smooth and oscillatory depen- 
dences of the resistivity on the strong magnetic field 
does not entail any special difficulty also if the scatter- 
ing indicatrix i s  arbitrary. If i t  i s  assumed that the re-  
flection of the electrons by the sample boundary i s  elas- 
tic and the reflection changes only the value of p, and 
the phase on the electron orbit, then to analyze pm""(H) 
and pW(H) it i s  advisable to represent the scattering 
indicatrix of the electrons with Fermi energy in the 
form of a Fourier series: 

where a, i s  the phase of the electron on the orbit prior 
to the collision with the sample surface at the point r, 
at the instant of time A,; (x, -X,,, i s  the time during 
which the electron traverses a path equal to r, - rj-,, 
i.e., the root of the equation 

Here 52, =sz(P,,), and 5, i s  the projectionof the vector rj  
on the 5 axis, and i s  equal either to zero or to d. 

Substituting (41) in (6) we can analyze with the aid of 
relation (7) and Eq. (20) the distribution of the electric 
current over the section of the sample and the depen- 
dence of the resistance on H in the case of arbitrary 
reflection of the carriers by the sample boundary. If 
this reflection differs substantially from specular, the 

scattering indicatrix W(p, p'; r,) i s  a smooth function of 
i ts arguments and the probability of electron drift from 
one surface of the plate to the opposite is proportional 
to the weight of the states of the electrons with open 
orbits, i.e., i t  i s  proportional to 6. The effective elec- 
tron mean free path at the surface of the plate turns out 
to be 

where w i s  the probability of the transition of the elec- 
trons from the closed orbit to any open orbit. At small 
6 the averaged probability is w =A6, where A -1. We 
have left out of (43) numerical factors of the order of 
unity. 

In a bulky sample (d>>l) the effective mean free path 
of the surface electrons, as seen from (43), i s  

and in thin plates (d << 1) it decreases because of the pos- 
possible drift of the electrons in opposite directions at 
the surfaces [=0 and [=d. 

The electric conductivity of the surface layer at w 
>> r / l  turns out to be much larger than the conductivity 
of the sample core and i s  of the same order of magni- 
tude as for pure diffuse reflection, i.e., 

r r  P 
o1=0,,-- = oo-. 

lw d Id6 (45) 

The substantial deviation from the quadratic dependence 
of the resistivity on H begins to manifest itself when the 
electron reflection i s  close to specular. To describe 
the static skin effect in this case it i s  quite convenient 
to use an approximation that makes use of the Fuchs 
specularity parameter q. In the presence of several 
groups of carriers, the quantity (1 -9) that enters in 
the formulas for the resistivity (see Refs. 2-4 and 20) 
i s  the sum of the probabilities of diffuse reflection and 
the probability of charge recombination, i.e., the argu- 
ments advanced in Ref. 10 are fully justified. 

In a magnetic field inclined to the surface of the plate, 
pmO"(H) i s  not very sensitive to the surface state of the 
sample, and the amplitude of the Sondheimer oscilla- 
tions decreases sharply, since the drift of the carriers 
into the interior of the sample in one period depends on 
the projection of the electron momentum p ,  on the di- 
rection of the magnetic field. Therefore only selected 
electrons take part in the Sondheimer oscillations, just 
as in the absence of open electron orbits, namely the 
electrons with extremal displacement, over the period, 
along the magnetic-field direction, and the electrons at 
the limiting point of the Fermi surface. 

The amplitude of the oscillations of p reaches a maxi- 
mum value in the case of specular reflection of the car- 
r iers  from the sample boundary; i t  i s  equal to 

where r, i s  the displacement of the electrons at the 
limiting point of the Fermi surface along a normal to 
the surface of the plate during the period, and r, i s  the 
extremal displacement. 
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The simplest situation ar ises  in a magnetic field nor- 
mal to the surface of the plate. If the sample boundary 
coincides with the symmetry plane of the crystal, then 
the solution of the electroneutrality equation i s  a homo- 
geneous electric field, and E , ( [ ) = O .  In the case of 
specular reflection of the charges by the surface of the 
plate, which coincides with the symmetry plane of the 
crystal, there are  no Sondheimer oscillations in a mag- 
netic field normal to the plate, and the appearance of 
these oscillations is due to the imperfection of the sam- 
ple surface. The dependence of the amplitude of the 
Sondheimer oscillations on the magnitude of the mag- 
netic field turns out to be a s  a rule the same a s  in the 
specularity-parameter approximation, i.e., the ampli- 
tude is proportional either to H - ' I 2  or to H", and the 
proportionality coefficients a r e  functionals of the scat- 
tering indicatrix. The linear dependence we obtained 
p r e ~ i o u s l y ' ~  for the amplitude of Sondheimer oscilla- 
tions on I/H is more readily an exception than the rule, 
since the employed model of the scattering indicatrix, 
in which i ts  width AV in terms of the angular variables 
was assumed to be independent of p,, up to the limiting 
point of the Fermi surface, does not describe the 
properties of real slightly rough surfaces of a conduc- 
tor. (We are  most grateful to V. I. Okulov and V. V. 
Ustinov for calling our attention to this circumstance.) 

Thus, the specularity-parameter approximation i s  
perfectly satisfactory for the description of galvano- 
magnetic phenomena in strong magnetic fields. 

In thin metallic conductors, the role of open electron 
orbits is less  important than in bulky samples. The 
electric conductivity of plates in a strong magnetic 
field parallel to the plate surface i s  determined mainly 
by the electrons belonging to closed sections of the 
Fermi surface, which glide along the sample surface. 
The static skin effect sets in at r < 6d, if the ca r r i e r s  
a re  specularly reflected by the sample boundary, and 
at r < 16 in the case of diffuse reflection. In specular 
reflection, the transverse resistivity p, reaches satur- 
ation at r < d, then gives way to a quadratic growth, and 
under conditions of the static skin effect it increases 
linearly with the field. At arbitrary reflection of the 
carr iers  from the sample boundary, p, has a compli- 
cated dependence on the magnetic field H and from the 
p, (a)  dependence we can determine the degree of spe- 
cularity of the plate surface. 

In metals with compensated electron and hole volumes 
the static skin effect se ts  in fields r < d. An important 
role i s  played here by umklapp processes in specular 
reflection, which a re  capable of decreasing the effec- 
tive mean free path of the carriers.  The principal con- 
tribution to the electric conductivity of plates with 
ideally smooth faces is made by conduction electrons, 
for which such processes a re  impossible. The de- 
crease in the number of effective electrons on account 

of umklapp processes leads to an increase of the sam- 
ple resistance, thereby hindering somewhat the deter- 
mination of the specularity parameter q from the func- 
tion p,(H). 

The oscillatory dependence of the resistance of thin 
plates in a parallel magnetic field on H can take place 
also for  purely specular reflection of the carr iers  from 
the sample boundary. The formulas presented for p OSC 

at q= 1 were obtained in the approximation of a homo- 
geneous electric field. The investigation of the role of 
umklapp processes in the electric conductivity of thin 
conductors, will be the subject of a separate communi- 
cation. 
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