
Contribution to the theory of disordered metals in strongly 
doped semiconductors 

B. L. Al'tshuler and A. G. Aronov 

Leningrad Institute of Nuclear Physics. USSR Academy of Sciences 
(Submitted 16 May 1979; resubmitted 1 October 1979) 
Zh. Eksp. Teor. Fiz. 77, 2028-2044 (November 1979) 

We investigate the influence of interference of the interaction between conduction electrons and their 
elastic scattering by static inhomogeneities in metals and in degenerate semiconductors. It is shown that 
this interference leads to a square-root dependence of the Fermi-level electron state density on the energy 
reckoned from this level. This singularity in the density of state leads to anomalous dependences of 
various thermodynamic quantities on, for example, the temperature. The temperature and frequency 
dependences of the electric resistance are also obtained. 

PACS numbers: 7 1.20. + c, 7 1.55.Dp, 7 1.55.Jv, 72.20.D~ 

I. INTRODUCTION AND PRINCIPAL RESULTS 

An ever increasing number of studies, mainly experi- 
mental, have been made in recent years of amorphous 
and disordered metals. These substances include me- 
tallic films, strongly doped semiconductors, and oth- 
ers.  

Disordered metals have a number of properties that 
have attracted principal attention: 

1. A negative temperature coefficient of resistivity 

creases to l0-~-10-~ cm, a negative temperature depen- 
dence of the resistance is observed, and accordingly 
an anomaly in the resistance of a microjunction a t  zero 
bias. The authors explained the observed anomaly of 
the resistance of the microjunction and the dependence 
on the voltage a s  being due to heating of the electrons 
(and not of the lattice), i. e., by taking into account the 
temperature dependence of the resistance. This has 
led to the important conclusion that the resistance de- 
pends on the electron temperature 0 and not on the 
lattice temperature T. 

is observed, sometimes up to the recrystallization 
Experiments on bismuth a r e  of great interest, since 

t e m p e r a t ~ r e . ~  A minimum is frequently observed in 
a l l  i t s  parameters a r e  well known (see, e. g., Ref. 141, 

the temperature dependence of the resistance, and this 
so  that the theory can be quantitatively compared with 

minimum can be located in a very wide range of tem- 
experiment. peratures.' 

2. The resistance minimum does not depend on the 
magnetic This minimum appears frequently 
fa r  below the magnetic-ordering t empera t~re .~"  In 
addition in the vicinity of this minimum there a r e  no 
anomalies, typical of the Kondo effect, in the thermo- 
electric-power, which depends linearly on the temper- 
a t ~ r e . ~  All this makes i t  impossible to attribute this 
minimum to the Kondo effect. 

3. In a number of experiments, for example on the 

Various theories were used to explain the anomalies 
observed in disordered metals. These a r e  primarily 
the Ziman theory of the resistance of liquid 
and the Anderson-Halperin-Varma t h e ~ r ~ ' ~ " ' ~  of elec- 
tron scattering by tunnel states. The Ziman theory 
has explained the negative temperature dependence of 
the resistance in a wide range of temperatures. At the 
same time, attempts to explain the minimum in the re- 
sistance a s  being due to scattering of electrons by tun- 
nel states was apparently unsuccessful. 

external photoeffect in amorphous metals, a minimum 
In the present paper we investigate the properties of 

is observed in the state density on the Fermi  sur- 
face."" disordered metals from a somewhat different point of 

view. It is well k n ~ w n ' ~ ' ~ '  that a metal can exist only 
4. In investigations of M-I-M tunnel diodes or tunnel 

diodes made of degenerate semiconductors, the well 
known zero-bias anomaly is observed.1° This anomaly 
sometimes takes the form of a minimum in the resis- 
tance of the tunnel junction, depends on the magnetic 
field, and can be attributed within the framework of the 
Appelbaum-Anderson theory""2 to tunneling with si- 
multaneous scattering of the electrons by magnetic 
atoms. This anomaly takes sometimes the form of a 
maximum, for which there was no satisfactory explana- 
tion up to now.'' 

In connection with the experimental investigations of 
disordered metals, notice should be taken of the work 
by ~ r o n e v o i  and ~harvin," who have shown that when 
bismuth is plastically deformed and a s  a result i t s  re- 
sistance increases strongly and the mean f ree  path de- 

in the case when the electron wavelength is smaller 
than i ts  mean f ree  path I. In the opposite case, a tran- 
sition to the dielectric state (the Anderson transition) 
is observed. However, if the condition pFl >> 1 is satis- 
fied," then the ladder approximation is sufficient for the 
description of the interaction of the electrons with the 
defects in the disordered metal, since a l l  the diagrams 
containing intersections of impurity lines a r e  small in 
the parameter l / p ~ I  (Ref. 21), where pF is the Fermi  
momentum. 

On the other hand, an investigation of the temperature 
dependence of the kinetic effects calls for allowance 
for the inelastic interaction of the electrons with one 
another, or  with phonons, or  with other dynamic de- 
grees of freedom of the metal. Scattering by these de- 
grees of freedom is characterized by a momentum 
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transfer q and by an energy transfer w. If ql<< 1 and 
WT<< 1, where T is the electron f ree  path time, then 
the character of the interaction of the electron with the 
scatterer changes qualitatively, inasmuch a s  during the 
time of interaction the electron manages to collide 
many times with the impurities or  with the defects. 
This means that the effective interaction vertex begins 
to depend substantially on the energy transfer w ,  and it 
is this which leads to nontrivial dependences of the ob- 
served quantities, say on the temperature. 

In 1957, pippardZ2 has noted that to analyze the lat- 
tice thermal conductivity in metals i t  is necessary to 
take into account the fact that the phonon mean free 
path depends on the electron mean f ree  path. This 
leads to an additional contribution to the lattice ther- 
mal conductivity, proportional to p, thus increasing 
the apparent Lorentz number. 

Bir, Pikus, and one of usz3 constructed a theory of 
spin relaxation of electrons on holes, when the latter 
collide frequently with impurities. It was shown that 
allowance for the diffusion motion of the holes through 
the interaction region leads to a substantial change of 
the temperature and concentration dependences of the 
spin-relaxation time compared with those given by per- 
turbation theory, since the effective time of interaction 
of the electron with the hole is increased by a factor 
(41)-1 >> 1. 

Keck and schmidt2* have shown that allowance for the 
5cattering of electrons by impurities changes the 
Eliashberg function, which determines the effective 
electron-phonon interaction that leads to pairing of the 
electrons and to the appearaqce of superconductivity. 
This renormalization of the Eliashberg function leads to 
an increase of the gap and of the superconducting tran- 
sition temperature. 

Kozlov and ~ l e r o v ~ ~  attempted later, to use the idea 
of diffusion renormalization of the interaction to explain 
the minimum in the temperature dependence of the re- 
sistance in beryllium,26 which subsequently turned out 
to be due to the Kondo effect?' Their results, however, 
a r e  incorrect because of an algebraic e r ro r  and incor- 
rect allowance for the electroneutrality. The point is 
that the vertex of the electron-phonon interaction, when 
averaged over the Fermi  surface in the single-band 
approximation, vanishes a t  q '0 (Ref. 28) and there- 
fore no diffusion renormalization takes place a t  all. 
Such a renormalization of the electron-phonon interac- 
tion exists only for  multiply connected Fermi surfaces, 
when the umklapp processes a re  suppressed for some 
reason. 

One of us2' derived a kinetic equation with account 
taken of interference of the electron scattering by im- 
purities and by any Bose excitation that preserves elec- 
troneutrality, and obtained the temperature dependence 
of the electron-phonon contribution to the resistance 
for multiply connected Fermi  surfaces. The same 
equation is valid also for the description of the inter- 
ference of the electron-electron interaction with im- 
purity scattering and for the influence of this inter- 
ference on the kinetic phenomena. 

The present paper is devoted to a study of the influ- 
ence of the electron-electron interaction on the prop- 
ert ies of disordered metals?' The principal results 
reduce to the following. 

1. When account is taken of the interaction between 
the electrons, a singularity appears in the state density 
of the electrons near the Fermi  level: 

here T is the electron departure relaxation time, c is 
the energy reckoned from the Fermi  level, A is the ef- 
fective electron interaction constant (A > 0 in the case of 
repulsion), and Di a r e  the principal values of the dif- 
fusion-coefficient tensor. In the isotropic case Di = D  

2 = vpr t , /3 ,  where T,,  is the electron transport relaxa- 
tion time and v~ is the Fermi  velocity. The function 
~ ( x )  -const= 1.07 a s  x-0, and q(x) = =at x>> 1. The 
state density on the Fermi  level has a minimum in the 
case of electron repulsion and a maximum in the case 
of attraction. 

The square-root dependence of the state density on 
the temperature leads to a corresponding temperature 
dependence of the thermodynamic quantities. Thus, 
the electronic specific heat acquires an increment 

AT'" c, ( T )  
6e= -- wT", 

2 h n Z  DvZv 

The temperature dependence of both the spin and dia- 
magnetic susceptibility of the metals acquires a 
square-root dependence on the temperature. This de- 
pendence manifests itself most strongly in almost fer- 
romagnetic metals, where the Stoner enhancement 
causes the effect to increase by a factor l /y (Y<< 1 is 
the Stoner factor): 

h T'" 
G X = X o 2 " n 2 ~ " ? 2 y o .  

The dependence of the state density on the energy 
leads to the appearance of an anomaly in the resistance 
of tunnel contacts a t  zero bias, which takes the form of 
a maximum in the case of electron repulsion and a min- 
imum in the case of attraction. The magnitude of this 
anomaly decreases with increasing temperature in 
proportion to Tin. The additional resistance of the 
tunnel contact takes a t  T = 0 the form 

and the indicated anomaly becomes smeared out a t  T 
+ 0 over scales of the order of T. In the zeroth approx- 
imation ~ R / R ~ - T " ~ ~ - ~ " .  Figure 1 shows the addition- 
a l  tunnel resistance a s  a function of v"' for different 
tunnel junctions in accordance with the data of Bermon 
and One of the electrodes of the tunnel junction 
was a gold film sputtered on the substrate a t  helium 
temperature in a residual oxygen atmosphere. It is 
seen that the experimental points fit straight lines well. 

It seems to us  also that the minimum of the state 
density observed in experiments on the external photo- 
effect can also be partially connected with the correc- 
tion (1). 
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FIG. 1. Resistance of A1-I(0;)-Au tunnel junction as a func- 
tion of the square root of the bias voltage in accordance with 
the data of Ref. 32. The slope of the straight lines increases 
with increasing oxygen concentration in the gold. 

2. Allowance for the electron-electron correlations 
leads to a decrease of the resistivity of the metal with 
increasing temperature: 

Expression (5) is valid a t  T<< l/r. With further in- 
crease of the temperature, the resistivity begins to 
increase. The temperature dependence of the resis- 
tivity acquires therefore a minimum. It would be sim- 
plest to say that the correction (5) to the resistivity is 
a consequence of the increase of the state density onthe 
Fermi  surface with increasing temperature, in accord 
with (1). In the calculation of the conductivity, how- 
ever, this correction to the state density is canceled 
out by the corresponding corrections to the relaxation 
time, a s  will be shown below. The true case of this 
dependence is much more complicated: i t  is the result 
of interference between the inelastic and multiple elas- 
tic scattering acts. 

The characteristic value of the correction (5) to the 
conductivity in metallic glasses can be estimated in the 
following manner: it is presently assumed that these 
systems contain one or  two conduction electrons per 
atom," and therefore the concentration of the electrons 
is of the order of loz2 cm-', just a s  in an ordinary met- 
al. This means that the Fermi  momentum is of the 
order of 7~ g-cm/sec. A typical value of the re- 
sistivity of metallic glass is po -2 x 10" G-cm. There- 
fore 

p,l=3nx/e'popr-10. 

If the Fermi velocity is of the order of 10' cm/sec, 
then 7-' - lo4 K. A typical temperature a t  which the 
resistance reaches the minimum is T,,, -20 K. Sub- 
stitution of these numbers in (5) yields 

& o ( T , , . ) / ~ - f o - ~ ,  

as is in fact observed in experiment?'" 

Rayne and ~ e v ~ "  investigated the change of the tem- 
perature dependence of the resistance of the metallic 
glass Fe40N&0P14B, upon crystallization. The conduc- 
tivity a t  T = 0 increased by a factor of 1.6, and T,,, de- 
creased by an approximate factor of 9. According to 
(5) 

and this quantity should decrease by a factor of 10, a s  

was in fact observed in experiment. 

We present also a comparison of"(5) with the already 
mentioned experiments of Bronevoi and sharvin,13 who 
investigated, in particular, the temperature depen- 
dence of the conductivity of pure but strongly deformed 
bismuth. Pr ior  to the deformation, the resistance in- 
creased quadratically with temperature, a s  is cus- 
tomary for semimetals. After plastic deformation, the 
resistivity of the wire increased to 2 x 10" G-cm and 
decreased with increasing temperature approximately 
in accord with a square-root law. The Fermi  surface 
of bismuth consists of three electron and one hole 
bands, the parameters of which a r e  well known." The 
total density of states is 2 . 4 8 x 1 0 ~ ~  (erg-cm)-'. Assume 
that the electrons and holes have equal diffusion coef- 
ficients. Then the diffusion coefficient can be easily 
determined from the Einstein relation, knowing the 
conductivity and the density of states. We obtain D = 82 
cm/sec2. This corresponds to 7 = 5 lo-". Substituting 
vo and D in (5), we have a t  A =  1 

This is approximately one third the experimentally ob- 
served value. For  such a rough estimate, the agree- 
ment with experiment is good enough. 

An important consequence of (5) is the existence of an 
anomaly in the resistance of the microjunction, a fact, 
as already noted, observed in bismuth13 and in other 
metals,35 inasmuch a s  the mechanical s t resses  produce 
a region very rich in defects near the junction. 

In a magnetic field, the tensor of the diffusion coef- 
ficient becomes nondiagonal even in an isotropic metal: 

where Gc is the cyclotron frequency. As a result we 
get 

i. e., the longitudinal magnetoresistance has the same 
temperature dependence a s  the resistance itself, and 
the minimum of the resistance becomes stronger fol- 
lowing application of a magnetic field, rather than 
weaker a s  in the Kondo effect. 

We note here that whereas in amorphous metals Stcr 
<< 1, in bismuth in fields on the order of 100 kOe this 
quantity becomes of the order of unity a t  a mean free 
path I 

3. In addition to the temperature dependence of the 
resistance, when account is taken of the interaction 
between the electrons, a frequency dependence of the 
high-frequency conductivity takes place: 

a t  w << l/r. At w>> l/r the real  part of the conductivity, 
a s  usual, begins to decrease like w". Therefore the 
frequency dependence of the conductivity should also 
have a maximum at  

om-L'/rt, ( p r l ) ' " ' ~ l / ~ .  

To obtain all  these results we used only the f act  that 
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the scattering of the electrons by the defects is elastic. 
On the other hand, i t  is known that in pure metals a t  
T >>.OD, where OD is the Debye temperature, scatter- 
ing by phonons is quasielastic. This raises the ques- 
tion of whether the phonons can play a t  high tempera- 
tures the same role a s  defects a t  low temperatures,3' 
i. e., whether allowance for interference of the elec- 
tron-electron or electron-phonon interaction can lead 
to a substantial change of the character of the tempera- 
ture dependence of, for example, the resistance. 

For  the considered phenomena to take place, i t  is 
necessary, a s  already mentioned, to satisfy the condi- 
tions WT<< 1 and ql<< 1. The important values a re  w 
-T and q-(w/D)ln -(TT)'"/z. Therefore if TT<< 1 then 
the interference will be appreciable. At high tempera- 
t u r e ~ ~ ~  TT= a and is a temperature-independent con- 
stant for a given metal. Unfortunately, we do not have 
any data concerning the parameter a for different met- 
als. A rough estimate for monovalent metals yields36 

a=25nTm/pG1,  

where T, is the melting temperature. We can attempt, 
however, to  assess  the contribution of the electron- 
electron correlations by assuming a << 1. 

The f i rs t  that should be noted is the growth of the 
deviation of the temperature dependence of the resis- 
tivity from linearity, i. e., the growth of the quantity 
p(T)/po(T) - 1 with increasing resistivity: 

p ( T ) / p o ( T ) - l . n - p o ( T ) ~ T "  -Ts, 
T*o, 

which is frequently observed in experiment [po(T) is 
the resistivity of the metal without allowance for the 
electron-electron correlations]. 

Thermodynamic quantities, such a s  for example the 
increment to the specific heat of the electron gas, 
should increase like 

C ( T )  -c, ( T )  -T"$ ( T )  c, ( T )  T 3  
r -0  

and depend substantially on the resistivity. 

To conclude this section, we wish to point out that the 
considered phenomena should take place in degenerate 
semiconductors and should lead, for example, to anom- 
alies in tunnel diodes. to negative magneto-resistance, 
and to other phenomena. 

2. STATE DENSITY 

The state density of electrons is defined by the ex- 
pression 

where GT(&,p) is the electron retarded Green's function. 

We consider f i rs t  the lowest approximation in the 
electron-electron interaction. The correction to the 
zeroth-approximation Green's functionz1 in the tem- 
perature technique 

GP(s..  p)= ( ien- ir+ 

is of the form 

where the diagram for  Z,,(E,,P) is shown in Fig. 2. 

In accord with the foregoing, the vertex part is re- 
normalized by the impurity lines; the wavy line repre- 
sents the screened Coulomb potential 

V ( o m ,  q )  = 4 n e a l q Z ~  (om, q ) ,  (11) 

where 

x2=4ne%., 

a t  w,T<< 1 and ql<<l ;  

om=2nmT, 

B(x)=l a t x > O a n d  B(x)=Oatx<0.  

Accordingly, the vertex part a t  w , ~  << 1 and ql<< 1 is 
of the form 

~ ( w , ,  q, en)=O(en)e(e,+wm)+~(-en)~(-en-w~) 
+ e (6,) e(-&.-om) + 0 ( - e , ) e ( ~ , + o , )  

z ( -o ,+Dq2)  z (wm+DqZ) ' 

(14) 

We use throughout the point-defect model, wherein 
r tT= 7.  It can be shown, however, that Eqs. (12) and 
(14) remain in force also in the case of anisotropy of 
the impurity scattering. 

It is well known that the temperature Green's func- 
tion coincides with the retarded one a t  discrete points 
on the positive imaginary semiaxis, i. e., G(E,) 
= GT(ic,) a t  c,, > 0. We put 

Then the state density is obtained from (15) by analy- 
tic continuation to the real axis and taking the imagin- 
ary part: 

At wmr << 1, ql<< 1 the integration of the three Green's 
functions with respect to  d9p yields 

- n i v , ~ ~ { ~ ( s , ) e ( - E , - ~ m )  - ~ ( - ~ n ) e ( e n + o m ) } .  

The remaining calculations a r e  elementary. Let c,, 
> 0, then 

where ~ = 4 s e ~ v ~ / x ~  = 1. 

After subtraction of an inessential constant, the ana- 

a b 

FIG. 2. a) Diagram of first-order perturbation theory in the 
interelectron interaction for the mass operator of the electron. 
A straight line corresponds to an electron propagator, and a 
wavy line to a renormalized Coulomb potential. b) Renormali- 
zation of the vertex part by impurity centers. 
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lytic continuation leads to the expression 

where n(c) is the Fermi distribution function. Integra- 
ting by parts, we obtain 

here 

where b(x) is the Riemann zeta function. At x>> 1 we 
have q(x) = (2x)ln. 

In the sense of the derivation of (14), the pole in 
~(w,, q) is a diffusion pole that determines the diffusion 
spreading of the fluctuations of the occupation numbers 
of the states with definite energy c,. In the anisotropic 
case this pole acquires, naturally, the form (- w, 
+Duqiqk)", where Du is the diffusion tensor of an 
electron with a given energy g. A procedure similar 
to  the one used in the isotropic case shows directly 
that the state density contains the quantity (det D ~ ~ ) ~ ' ~  
in place of the D312 in the isotropic approximation. 

We turn now to calculation of the tunnel current. If 
the tunnel junction is made up of two different metals, 
then the expression for the tunnel current is 

Here R is the resistance of the tunnel junction without 
allowance for the interaction between the electrons and 
V is the voltage on the junction. Assume for  the sake 
of argument that the state density in the second metal 
is constant, and in the f i r s t  metal vl(c) = vo + ~ v ( c ) .  
Then the additional resistance of the junction is 

6R an(e-eV) GV(E) -=J 
R 

- de. 
-- a~ Y o  

From this we obtain directly a t  eV>> T, using (la), the 
expression (4) and a t  V=O we have 

6R -- AT" --c- (21) 
R 2'1xntD% ' 

where 

The foregoing analysis was carried out in first-order 
perturbation theory in the electron-electron interac- 
tion. We show now that a l l  the final expressions con- 
tain the exact vertex part of the electron-electron in- 
teraction with small energy and momentum transfers. 
We consider for simplicity the case T = 0. We note 
f i rs t  that frequent scattering of the electrons by defects 
does not change, if the distance from the Fermi  sur- 
face is large enough, the fact that the probability of 
inelastic scattering of two quasiparticles is propor- 
tional to c2. Therefore the Green's function has the 
same form a s  in the Landau Fermi-liquid theory, but 

FIG. 3. Renormalizatio_n of electron-electron part by im- 
purity centers. ro and r are respectively nonrenormalized 
and renormalized vertex parts containing no two-particle sec- 
tions. 

with account taken of the impurity damping, i. e., ex- 
pression (9) but with a residue different from unity a t  
the pole.21 The total vertex part can be represented in 
a form that separates all  the two-particle sections and 
blocks that do not contain them. These two-particle 
sections with ql<< 1 and wr<< 1 must be "screened" by 
impurity lines without intersection, a s  shown in Fig. 
3. It is easy to verify that the only combination of w 
and q on which the vertex part depends is iw/(iw +Dq2). 
The self-energy part can be obtained from the vertex 
part 

As shown in Fig. 4, in the calculation, say, of the den- 
sity of states we can neglect the dependence of r,, ,,, 
on p, i. e., we can assume that p =pF. AS a result, 
instead of the Born amplitude of the Coulomb scatter- 
ing X, = 4ne2v0/x2 = 1 all  the expressions contain the 
quantity 

We shall not stop here to express r,,,,, in terms of 
a vertex part that contains no singular sections, a s  is 
done in Fermi-liquid theory. We note only that the 
final expressions contain the true values (renormalized 
with account taken of the Fermi-liquid corrections) of 
the diffusion coefficient, of the time of relaxation on 
the impurities, and of the density of states. 

In the derivation of (22) we have assumed that the 
essential role in all nonsingular elements is played by 
large momentum transfers. In other words, we took 
into account in (22) the renormalization of the interac- 
tion between the electrons on account of the region of 
large momenta. We consider now the case when sev- 
era l  Coulomb lines carry small momenta and energies. 
To this end we note f i rs t  that the first-order diagram 
can be estimated by redrawing it in the form shown in 
Fig. 5a, where the dash-dot line corresponds to 
8(&)8(- c - W)/IT(~W + ~ q ' )  and the cross  corresponds to 
X/vo. Then, if we separate in second order the region 
of small momenta qll << 1 and q21 << 1, then this diagram 

FIG. 4. 
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FIG. 5. 

can be represented in the form shown in Fig. 5b. It is 
seen now that it is small relative to the first-order 
term in terms of the parameter 

We consider now the third-order term (Fig. 5c). If 
each of the momenta ql, q2, or  q3 is small, then their 
sum is also small. Therefore it is necessary to 
"screen" with impurities not only each vertex part, but 
also all three Coulomb-interaction lines, a s  shown in 
Fig. 5c. There is no need for "screening" two Cou- 
lomb lines because of the 8 functions. Therefore the 
diagrams containing an even number of Coulomb lines 
can be disregarded: they a r e  small in terms of the 
parameter Bo << 1. 

However, even diagrams with an odd number of Cou- 
lomb lines a re  also small in terms of this parameter. 
The point is that the vertex of a transition of one diffu- 
sion pole into three is of the order of r3&. A simple 
estimate shows that allowance for this diagram leads to 
a correction to the state density of the order of 

B0 is thus a true perturbation-theory parameter, and 
the theory is valid for all  c<< 1/r. 

3. TEMPERATURE AND FREQUENCY DEPENDENCES 
OF THE RESISTANCE OF DISORDERED METALS 

We investigate the temperature and frequency depen- 
dences of the resistance in the temperature region T 
<< f / r  and a t  external-field frequencies w << 1/7. To 
calculate the contribution of the electron-electron in- 
teraction to the conductivity i t  is necessary to calculate 
the sum of the diagrams shown in Fig. 6. 

If the f i rs t  two diagrams (a, b) describe the influence 
of the interaction between the electrons on the state 
density, then the two others (c, d) yield renormaliza- 
tion of the departure part of the relaxation time, and 
diagram 6e shows the renormalization of i t s  arrival 
part. Since the vertex of the interaction of the elec- 
tron with the external field i s  vectorlike and the poten- 
tial of the impurities is pointlike, the field vertices 
need not be "screened" with impurities. 

In the calculation of the corrections to the electric 
conductivity i t  must be remembered that the main con- 
tribution is made by the t e rms  containing the maximum 
of diffusion poles. For  this purpose it i s  necessary 
that the imaginary parts of the Green's functions, joined 
in each vertex of the electron-electron interaction 
have opposite signs. This condition limits the region 
of summation over E, and w, in each expression. Thus, 
in diagrams a and b the regions of summation over the 
frequencies can be either - w, < &, < 0 at  0 < w, < S&, or 
- 4 < c , < o a t  w m > 4 ,  or  finally -wm<&,<-&(nk>>).  

At the same time, the arrangement of the signs of the 
imaginary parts in diagrams e, f, g, h, and i is deter- 
mined by the choice of the sign of &,. (As usual, we 
have here wm=2nmT, ~ , = a T ( 2 n  + 1)) =2ankT. We 
assume that nk > 0.) 

We note immediately that a t  Qkr<< 1 and TT << 1 the 
sum of the first  five terms (a-e) makes a small contri- 
bution compared with the sum of diagrams f -is and it  
is the latter which we shall now calculate. To this end 
we must first  calculate the element shown in Fig. 7. 

As usual, i t  is necessary to take into account only the 
latter approximation. By standard calculations we find 
that a t  w,r<< 1,q1<< 1 

Since the field vertices a r e  proportional top, and pl,, 
each diagram f-i vanishes if the Green's functions to  
the left and to the right of T a r e  taken in the zero ap- 
proximation in q ' V. On the other hand, allowance for 
the next terms of the expansion of the Green's func- 
tions in q . V leads to the appearance of the factor ~ q i ,  
and this extra q2 in the numerator cancels out one of 

FIG. 6 .  
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Expression (29) can be easily continued downward to 
real frequencies by simply making the substitution i4 
-w where w is the frequency of the external field. The 

FIG. 7. 

expression for the electric field takes the form 
the diffusion poles, so that a s  a result each of the dia- 
grams contains only two such poles. Integrating with 
respect to S, and summing over &,,, we obtain after - 
cumbersome but quite straightforward transformations 
the following expression for the current: 

We consider first  the temperature dependence of the 
conductivity a s  w '0: 

where at  4.r << 1, w,.r << 1 we have Integrating by parts, we obtain 

It is seen from (25) that a s  a - 0  the current contri- 
bution proportional to the vector potential A, vanishes, 
a s  it should. To obtain the frequency and temperature 
dependence of the conductivity it is necessary to con- 
tinue analytically the expression for the current to the 
real axis. 

In the calculation of the temperature-dependent part 
of the conductivity, an important role is played by S1 
-T << l/r, so that we can use Eq. (26). Substituting 
(26) in (32) and integrating over the angle variables q, 
we obtain 

The expression in the curly brackets of (25) can be 
represented in the form 

Integration with respect to dq yields 

So(T)  - )IZ AT'" -- 
a  6n' DY*vVo ' 

where 

where the contours C1 and C2 a r e  shown in Fig. 8a, and 
N(S1) =(en'= - 1)". Since F ( 4 ,  - iS2) has no singulari- 
t ies with respect to $2 in the upper half-plane, with the 
possible exception of a point on the imaginary axis 
i4 - ioq2, the integration contours C1 and Cz can be 
deformed into the contours Ci, C{ and Cf, a s  shown in 
Fig. 8b. As a result we get 

This result can b e  obtained also in a perfectly dif- 
ferent manner," namely, by using the kinetic equation 
derived in Ref. 30. 

We now calculate the frequency dependence of the 
conductivity a t  T = 0. To this end we substitute in (30) 
the expression (26) for F(-iw, - iS1). 

1 
A -  j d~  Q ~ F  (Q,, - i ~ )  N ( Q )  . 

2ni --+io* 
(28) 

Separating the temperature-independent term, we get 

Making the substitution S1-S2 + i4 in the first  and third 
integrals and using the fact that N(S1 + i 4 )  = N(SZ), we 
obtain 

Since we a r e  interested only in the frequency-depen- 
dent part of the conductivity, we subtract from the in- 
tegrand its limit a s  w -0, which is equal to 4iw/(iS1 
+ Dq2)', i. e., that part of the conductivity which does 
not depend on the frequency of the external field. Af- 
ter  this subtraction all  the integrals in (36) can be cal- 
culated to conclusion. As a result, 

It must be emphasized here that it is precisely the in- 
terference of the inelastic and elastic scattering which 
leads to this dependence of the conductivity on the fre- 
quency. As shown by Maleev and ~ o ~ e r v e r ~ , ' '  the in- 
terference of the elastic scattering of electrons by dif- 
f erent centers introduced into the high-frequency con- FIG. 8. 
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ductivity corrections that a r e  proportional only to wSn." 
In connection with the square-root dependence of the 

conductivity on the frequency, we note that according 
to the Einstein relation the increment to the diffusion 
coefficient also has a similar frequency dependence. 
According to Ref. 37, the change of the mean squared 
distance between particles with time is determined by 
the expression 

Since 6D(w)-w'I2,  it follows from (38) that 

<F(t)  )=6(Dt+at5), (39) 

and a s  t - m  the law governing the spreading of the den- 
sity has a non-diffusion character, i. e., a long time 
tail is produced in the diffusion.3840 

CONCLUSION 

In conclusion, we summarize the principal physical 
results obtained in the present paper. 

Allowance for the interference of inelastic electron- 
electron interaction and of the elastic impurity scatter- 
ing of the electrons in disordered metals, semimetals, 
and degenerate semiconductors leads to the onset of 
singularities in the behavior of a large number of ther- 
modynamic and kinetic quantities: 

I. The state density on the Fermi level has a 
square-root singularity which is responsible for the 
anomalies of the resistivity of tunnel junctions at zero 
voltage. 

2. Non-analytic corrections to the specific heat and 
to the magnetic susceptibility a r e  obtained. 

3. A minimum of non-Kondo type appears in the 
temperature dependence of the resistivity. 

4. This effect becomes stronger when a longitudinal 
magnetic field is applied. 

5. The anomalous temperature dependence of the 
resistivity leads to the onset of anomalies in the resis- 
tivity of the microjunctions. 

6. The conductivity f i r s t  increases with increasing 
frequency, and then begins to decrease. 

7. Even in pure metals, a t  high temperatures the 
interference between the quasielastic scattering by pho- 
nons and the inelastic scattering of the electrons by one 
another leads to a deviation of the temperature depen- 
dence of the resistivity from linearity. This deviation 
is larger the larger the resistivity itself. 

8. All these results a r e  valid a t  an arbitrary 
strength of the electron-electron interaction, when the 
substance has metallic conductivity, i. e., above the 
Anderson localization limit so  long a s  there is no re- 
structuring of the ground state. 
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Static skin effect in metals with open Fermi surfaces 
0. V. ~irichenko, V. G. ~ e s c h a n s k i ,  and S. N. Savel'eva 
A. F. Ioffe Physicoteehnical Institute, USSR Academy of Sciences 
(Submitted 16 May 1979) 
Zh. Eksp. Teor. Fiz. 77, 2045-2060 (November 1979) 

Galvanomagnetic effects in thin metallic conductors with open Fermi surfaces are investigated. It is 
shown that in strong magnetic fields the direct current is concentrated near the conductor surface and 
the magnetoresistance is sensitive to the character of the conduction-electron reflection by the sample 
boundary. For specular reflection of the carriers by the sample surface, the skin effect is produced in a 
plate of thickness d <I in a magnetic field parallel to the surface if the magnetic field satisfies the 
condition r < 6 d ;  for d i s e  reflection the condition is r <16 (1 and r are the electron mean free path and 
trajectory curvature radius in a magnetic field H, and 6 is the thickness of the layer of open electron 
orbits and is referred to the Fermi momentum). Under static skin-effect conditions the electric current is 
carried mainly by electrons that ghde along the sample surface and belong to closed sections of the 
Fermi surface. Electrons with open orbits participate only in the formation of Sondheimer 
magnetoresistance oscillations that appear in specular reflection even in plates whose surfaces are 
symmetry planes of the crystal. In the case of a single group of carriers the transverse resistance p, 
grows liiearly with the magnetic field H in the case of specular reflection, and p,-H in diffuse 
reflection. In metals with several carrier groups and in magnetic fields for which r < d ,  saturation occurs 
in one and the same sample and the magnetoresistance grows quadratically or linearly with transverse- 
magnetoresistance field. From the dependence of p, on H it is possible to determine the degree of 
imperfection of the crystal surface and the probability of charge recombination on the sample surface. 
The electroneutrality equation is analyzed for an arbitrary scattering indicatrix of the carriers by the 
sample boundary. It is shown that the electric field in the sample is appreciably inhomogeneous if the 
electron reflection is not specular. 

PACS numbers: 73.25. + i, 72.15.Gd 

The unrestricted growth of the resistance of a number 
of metals with increasing field in strong magnetic fields 
i s  accompanied by a substantial redistribution of the 
electric current over the sample cross section. This i s  
caused by the special role played by collisions of the 
electrons with the sample boundary, which are as a 
rule accompanied by a jump of the center of the orbit, 
leading to an increase of the mobility of the electrons 
near the surface over the mobility of the electrons mov- 
ing in the center of the sample. For example, in a plate 
with specularly reflecting faces placed in a magnetic 
field H parallel to  its surface, the effective mean free 
path of the near-surface electrons over the entire plane 
of the plate i s  comparable with the mean free path l for 
collisions inside the volume. At the same time, the 
electrons that do not collide with the sample boundary 
can drift only along the magnetic field. The result i s  a 
substantial difference between the contributions of the 
surface and interior electrons to the transverse electric 
conductivity (electric current density j I H), and the di- 
rect electric current can become centrated near the 
surface of the sample in magnetic fields for which the 
electron-trajectory curvature radius r << 1. 

The static skin effect was predicted by Azbel'l in  

1962. He considered the electric conductivity of metal- 
lic plates of thickness d, whose surfaces reflect the 
conduction electrons diffusely, and showed that in a 
magnetic field parallel to the sample surface the elec- 
tric current flows mainly in a surface layer of thickness 
-r, and the transverse resistivity p, increases linear- 
ly with the magnetic field at r << 12/d, if the numbers of 
the electrons and holes n , and n, are equal. At r > 12/d 
the resistivity i s  proportional to H ~ ,  just as in bulky 
samples, in which surface effects are negligible. In 
uncompensated metals (n ,#n , )  the electric conductivity 
of the core of the sample i s  high enough at r << 1 (of the 
order of the electric conductivity o, of the metal in the 
absence of the magnetic field) and the distribution of the 
electric field over the sample cross section remains 
practically unchanged when the magnetic field i s  in- 
creased. 

The theory of the static skin effect was subsequently 
developed by Azbel' with one of  US.^-^ It turns out that 
in a magnetic field inclined to the plate surface the 
static skin effect does not lead to new dependences of 
the resistivity p on the strong magnetic field compared 
with bulky samples. This makes it  possible to use, in 
addition to bulky material, also thin conductors for the 
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