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We study the Langmuir turbulence of a relativistic plasma in a strong magnetic field. We obtain the 
equations which describe this turbulence and analyze them qualitatively in the strongly relativistic 
approximation. We assume that the Langmuir oscillations are excited by two-stream instability. We 
consider the cases of an electron-positron and an electron-ion plasma. We show that the main result of 
the nonlinear scattering of the waves excited due to a beam instability in an ultrarelativistic plasma is the 
absorption of oscillatory energy by the particles. The accumulation of long-wavelength Langmuir 
oscillations (the condensate) which is important in the theory of a nonrelativistic plasma is appreciably 
reduced. We conclude that, as in the nonrelativistic case, the dynamics of the beam instability is 
characterized by two consecutive stages: the quasilinear and the nonlinear ones. We show that these two 
stages last for times of the same order of magnitude. 

PACS numbers: 52.60. + h, 52.35.Ra, 52.35.P~. 52 .35 .M~ 

$ 1. INTRODUCTION 

It i s  necessary to develop a theory of the turbulence of 
a relativistic plasma in connection with the ever in- 
creasing range of experiments with relativistic beams 
and the study of relativistic astrophysical objects. We 
analyze in the present paper the Langmuir turbulence of 
such a plasma. Kaplan and ~sy tov ich '  have ear l ier  
studied the Langmuir turbulence of a relativistic plasma 
when there i s  no magnetic field present. In contrast to 
them we consider a plasma in a strong magnetic field. 
According to present-day ideaszv3 there is a strong mag- 
netic field (of the order of l o i2  Oe) in the vicinity of 
neutron s tars .   oreo over,^ the vicinity of neutron s t a r s  
i s  occupied by a relativistic electron-positron plasma 
which is  produced by effects connected with the mag- 
netic field and the fast rotation of the star .  We assume 
therefore that the problem of the Lnagmuir turbulence 
of a plasma in a strong magnetic field considered by us  
may, in particular, be of interest for the physics of the 
magnetosphere of neutron stars-of pulsars. 

Our whole discussion is  performed in a one-dimen- 
sional geometry, where we assume that the momenta of 
the particles and the wave vectors of the oscillations 
a r e  oriented along the magnetic field. In that approxi- 
mation the magnetic field strength does not occur in the 
problem of Langmuir turbulence. We perform our 
analysis in the simplifying assumption that the plasma 
is strongly relativistic in the f rame of reference in 
which the average plasma velocity vanishes. According 
to present-day ideas4 the pulsar plasma moves relative 
to the neutron s t a r  with a Lorentz factor of the same 
order a s  the Lorentz factor of the "thermal" spread of 
the plasma in the res t  f rame of the star .  In the frame- 
work of those ideas one should consider the plasma in 
its own res t  frame to be moderately relativistic (with a 
Lorentz factor of the order unity). One can obtain a 
qualitative picture of the turbulence of such an inter- 
mediate case by extrapolating the results of the analysis 
of the corresponding limiting cases of the plasma (non- 
relativistic and ultra-relativistic cases). 

We assume that the Langmuir oscillations a r e  ex- 
cited by a beam of high-energy particles. The problem 
of the excitation of Langmuir oscillations in a rela- 
tivistic plasma by a beam of ultra-relativistic particles 
was considered earl ier  in Ref. 5. We studied there the 
quasi-linear beam relaxation. We neglected then the 
non-linear scattering of waves, i.e., we assumed that 
under conditions when the energy of the oscillations is 
comparable to the beam energy the linear growth ra te  
i s  nevertheless larger than the non-linear damping rate. 
We make the same assumption also in the present paper. 
An alternative point of view was formulated by Tsyto- 
vich and K a ~ l a n . ~  They stated that the non-linear 
damping ra te  i s  large compared to the linear growth 
ra te  and that the quasi-linear beam relaxation can not 
take place due to the fast non-linear removal of the 
Langmuir oscillations from the resonance region. We 
show that this point of view of Tsytovich and Kaplan6 i s  
erroneous and we explain the causes of this er ror .  

We give the starting equations in 92. We summarize 
the results  of the linear and the quasi-linear approxima- 
tions which a r e  necessary to the subsequent analysis in 
83. The actual form of t h e  equations of the Langmuir 
turbulence depend on whether we a r e  dealing with an 
electron-positron o r  an electron- ion plasma. We there- 
fore f irst  consider an electron-positron plasma (94) 
and then an electron-ion plasma (95). We discuss the 
results in 96. 

$2. STARTING EQUATIONS 

We s ta r t  from the relativistic Vlasov equation for 
each kind of particles, the Maxwell equations, and the 
expression for the current density 

Here f (t, z ,p )  i s  the total particle distribution function, 
depending on the time t ,  the coordinate z ,  and the mo- 
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mentum p ;  v = p / m y  is the particle velocity, e,  and m 
its charge and mass; =(1 + p 2 / m 2 ~ 2 ) ' / 2  the Lorentz 
factor; c the velocity of light; E the electric field. The 
summation is over the kinds of particles. 

Using (2 .1 )  we get the equations corresponding to the 
weak turbulence approximati~n.~-: We put f = f o  + j ,  
where fo is the distribution function averaged over the 
oscillations and f its oscillatory part. We write f in 
the form 

f = I fk.(t, p)exp(-iot+ikz)dk d o .  

The time-dependence of f,,(t) lakes into account the 
slow variation of the amplitude of the electric field 
oscillations and of the quasi-stationary distribution 
function fo. Using an iteration method we get from the 
first  of Eqs. (2.1) f,, = f:L)+fif)+fii'+. . . , where 

ieE,. af, eaE /at af, 
f '"- ---+A- 

A" - o-kv  ap (a-kv)' 8p ' 

ieSEu a I (k', a ' )  
(2 .3)  

f -  
o-ku ap do' (k-) . )u 

The quantities E,,(t) are  defined similarly to f,,(t). 
The symbol ( . . . ) indicates an average over the ran- 
dom phases of the oscillations. This average is con- 
nected with the function I(k, w )  through the relation 

Hence it follows that the function I(k, w )  characterizes 
the average spectral density of the energy of the elec- 
tric field oscillations 

Using the expression (2.1) for the current density and 
Eqs. (2.2) to (2.4) we change the Maxwell Eq. (2.1) to the 
form 

--- aW'k't) Re[~(l~(k)+~"J(k)]~(k)-~e~ dk' d o ' ( ~ ~ , . - j ? > ,  
at  

a R e e  I ,  (2.5) 
W ( k ) =  oh-- 

amk 8n ' 

Here W@) is the spectral density of the oscillation en- 
ergy; the function I @ )  is related to I @ ,  w )  through the 
formula I(k, w ) =  I(k)6(w - w,); w ,  is the solution of the 
dispersion equation 

Re E ( k ,  or)=O; (2 .6)  

c(k ,  w )  i s  the permittivity in the linear approximation: 

~ e o " '  and ~ e u ' ~ '  a re  the real parts of the conductivities 
connected with the functions f i t  and fii): 

jit is the current density connected with the function 
f'2'. 
kW . 

The current jiz gives rise to a correlation between the 
phases of the electric field oscillations with different k 
and w .  This effect is important for the calculation of 
the last term on the right-hand side of (2 .5 ) .  It is taken 
into account through the substitution 

~t is necessary to supplement Eqs. (2.5) to (2.10) by 
relations which characterize the change with time of the 
function f,,. For this we use the first Eq. (2.1) from 
which we get, using the two formulae given above 

Equations (2.5) and (2.11) and the relations given 
above which explain them a re  the starting point for the 
analysis of the Langmuir turbulence of a relativistic 
plasma which follows. These equations a r e  the rela- 
tivistic generalization of the analogous non-relativistic 
equations. 7-9 We note, however, that such a generaliza- 
tion is not complete. We take into account only non- 
linear resonances of the kind v = (w,  - w,.) / (k  - k r )  but 
neglect resonances of the kind v = (w,  +ca,,)/(k + k') (cf. 
Ref. 7 )  which a re  unimportant for what follows. More- 
over, we assume that apart from w ,  and w ,  also k and 
k r  a re  positive, i.e., we neglect also resonances of the 
kind v = (w,-  w , . ) / ( ( k  ( + Ik' I )  corresponding to particles 
with non-relativistic velocities. Let us explain that 
resonances of the kind v = (w,  +w, . ) / (k  + k t )  do not occur 
in our case, since we use the relation I(k, w )  =I(k)6(w 
- w,).  In the general case one has instead of that rela- 
tion the formula I(k, w )  = C I ( ~ ) ~ ( W  - w,) where the sdm- 
mation is over all roots of the dispersion equation (2 .6) ,  
among which there a r e  roots with w ,  < 0 .  

93. RESULTS OF THE LINEAR AND THE 
QUASI-LINEAR APPROXIMATIONS 

The dispersion equation (2.6) has a simple solution in 
two limiting cases: when w / k  >>c and when w / k  = c .  In 
the first case 

and in the second one 

Here w: =z4ne2no/m is the sum of the squares of the 
non-relativistic plasma frequencies of all kinds of par- 
ticles; no = 1 fodP is the equilibrium density of each kind 
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of particle. The bar on top indicates averaging over 
momenta with the square of the plasma frequency : 

1 4neZ 
X = 7c Xfo dp. 

0 9  

The quantities k,, a and B a r e  defined by the relations 

and the quantity yo indicates the same a s  7, i.e., yo 57. 
Tsytovich and ~ a p l a n ~  were the first  to obtain Eqs. (3.1), 
(3.2) for a particular form of f, (as p - 0); Eq. (3.2) a s  
p -  0 for a general form off, was derived earlier in 
Ref. 5. 

- 
We note that a s  to order of magnitude y" and y-" - ;', where n is  a positve integer. In particular, 

therefore, y7- ;' so that w(0) =w,. ,-w,/~:/~.  Using 
this remark and matching formulae (3.1) and (3.2) a t  
the limits of their applicability we get a qualitative dis- 
persion curve w, which is given in the figure. 

We recall that both this dispersion curve and Eqs. 
(3.1) to (3.3) refer to an ultra-relativistic plasma with a 
one-dimensional momentum distribution of the par- 
ticles. The dispersion law for longitudinal oscillations 
for the case of an isotropic ultra-relativistic distribu- 
tion considered by Silin and Rukhadzeiov" and by 
~ s y t o v i c h ' ~  differs both quantitatively and qualitatively 
from the one considered by us. The most important 
qualitative difference i s  connected with the value of k, 
and the corresponding frequency who = w, = ck,: accord- 
ing to Ref. 12 in the isotropic case  k o M  (W,~{'/~/C) ln1/2yo 
and correspondingly w, - w,y,"/2 1ni/' yo whereas in our 
case k, - W , ~ ; / ~ / C ,  w0 - w , ~ : / ~ .  AS regards the f re-  
quenc y of the oscillations with the longest wavelength 
w(O), according to Refs. 10 and 11 it remains in the 
three-dimensional case the same a s  in the one-dimen- 
sional one, w (o)-w,~, ' /~.  

It follows from (3.2) that when k zk, the phase velocity 
of the oscillations does not exceed the velocity of light, 
w/k < c,  so  that in that range of wave numbers a linear 
Cerenkov interaction between the particles and the 
oscillations is possible. Such an interaction i s  ac- 
cording to (2.5) described by the equation 

For an equilibrium particle momentum distribution 

FIG. 1. Wave-number dependence of the frequency of the 
Langmuir oscillations in the case of an ultra-relativistic 
plasma. 

(af,/ap < 0) the conductivity is  postive (Reo"' >0) and 
the oscillations a r e  damped. This damping is impor- 
tant approximately when (k - k,) - k,. 5e6 The presence of 
a particle beam with a Lorentz factor y,>> yo leads to a 
pumping of the oscillations, i.e., to a beam instability, 
for wave numbers very close to ko, (k - ko)/ko- (ydyb)2.5 
These oscillations lead to a quasi-linear relaxation of 
the beam distribution function, described by the 'Icon- 
tracted" Eq. (2.11) 

and a corresponding change in the conductivity Reo(", 
see  Eq. (2.8). As a result the beam distribution func- 
tion acquires, as in the non-relativistic case, the 
shape of a plateau stretching up to the characteristic 
plasma particle momentum. The noise arising due to 
this occupies a range of wave numbers which a r e  char- 
acterized by the relation (Y,,/Yb)2s (k - ko)/ko s 1. Ac- 
cording to Ref. 5 the energy included in these oscilla- 
tions i s  equal to half the initial beam energy 

The duration of the quasi-linear relaxation process 
stage is of the order of5 

where A is a quantity of the order of the Coulomb loga- 
rithm. 

One can write the result (3.7) also in the form T~~ 

- h / r L ,  where rL is a characteristic linear growth 
rate of the beam instability in the stage of a strongly 
smeared-out beam: 

We assume now that the quasi-linear relaxation has 
basically ended and that the behavior of our system i s  
determined by the non-linear terms in Eqs. (2.5), 
(2.11). We turn now to an explanation of effects de- 
scribed by these terms. 

54. ELECTRON-POSITRON PLASMA 

We assume that the plasma consists of electrons and 
positrons with the same distribution functions f,. As the 
masses of the particles of the different kinds a r e  the 
same and the charges the same in magnitude, but op- 
posite in sign, the second-order electric current 
vanishes: j:: = 0. The non-linear relaxation equations 
(2.5), (2.11) reduce thus for an electron-positron plas- 
ma to the following: 

a W ( k ) l a t = - R e a ( ' ' ( k ) l ( k ) ,  (4.1) 
afo/at=~(a). (4.2) 

The non-linear terms in these equations a r e  caused 
according to (2.9), (2.13) by resonance of waves with 
particles which have velocities v,,,= (w, - w,,)/(k - k'). 
Using (3.2) we find that in the case of oscillations with 
wave numbers close to ko this resonance condition cor- 
responds to a Lorentz factor y,,, which satisfies the 
relation 
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where h i s  a coefficient of the order unity. It i s  clear 
that as to order of magnitude Y, - yo, i.e., particles 
with average momentum values a r e  at resonance, 
rather than the low-energy particles, a s  would be the 
case for a non-relativistic plasma. 

It is  also clear from (4.3) that a t  the limit of appli- 
cability of Eq. (3.2), when k and kt a r e  appreciably dif- 
ferent from ko, the qualitative relation y,,,-yo still re- 
mains valid. Moreover, when k and k' decrease, y,,, 
also decreases according to (4.3). A similar analysis of 
the part of the spectrum corresponding to longer wave- 
lengths, which is described by Eq. (3.1), shows that 
such oscillations already correspond to non-relativistic 
resonance particles. Taking the qualitative curve of w, 
of our figure into account we can thus conclude that one 
can consider the resonance particles to be relativistic 
up to (k, kt)  - W , / C ~ ~ / ~ .  

It is  clear from (2.9) that the contribution to the inte- 
gral  for the conductivity Reo "'(k) i s  negative for kt  > k 
and positive for k' < k. This means that, as in the case 
of a non-relativistic plasma, non-linear scattering of 
waves by particles leads to the pumping of noise energy 
from the short-wavelength to the long-wavelength part 
of the spectrum. Similar to the case of a non-rela- 
tivistic plasma, this transfer occurs with conservation 
of the '<number of quanta" 

One can check this by turning to Eq. (4.1) and using the 
fact that according to (29) 

j dk Z(k) (k) /ok=O. 

Since aw/ak> 0 the transfer of noise to the long- 
wavelength region means the same a s  a transfer to the 
low-frequency region. In the case of a non-relativistic 
plasma the frequency of the oscillations depends weakly 
on the wave number and is approximately equal to the 
Langmuir frequency. In that case condition (4.4) means 
that the whole energy of the noise is  approximately con- 
served in the process of the non-linear scattering by 
particles. However, in the case of the relativistic dis- 
persion law, shown in the figure, the difference in fre- 
quency of the short-wavelength and the long-wavelength 
parts of the spectrum i s  appreciable, w d w  (0)- yo. The 
("final") noise energy after it has been transferred to 
the long-wavelength region is small compared to the 
energy of the initial noise: 

The main part, however, of the initial energy of the 
noise i s  transferred to the resonance particles, i.e., 
goes into plasma heating. This effect i s  described by 
Eqs. (4.2), (2.13). Kaplan and ~sytovich'  noted a simi- 
l a r  effect of an appreciable heating of the plasma when 
discussing the Langmuir turbulence of a relativistic 
plasma when there is  no magnetic field. However, they 
assumed that the order of magnitude of the frequencies 
of all oscillations (both the initial and the final ones) 
i s  the same. In the case considered by them the order 
of magnitude of the oscillation energy remained there- 

fore also the same. In our case, on the other hand, 
there i s  a considerable change in the order of magni- 
tude of the frequency and, as a consequence, in the 
order of magnitude of the oscillation energy. 

We now find an estimate of the non-linear damping 
rate caused by the presence of the non-zero right-hand 
side of (4.1). Defining the non-linear damping rate by 
the relation rNL = $8 lnw(k)/at and dropping the nu- 
merical factor $ we can write (4.1) as an order of 
magnitude relation 

According to Ref. 5 

We find an estimate for ~ e o ( ~ ' ( k )  by putting in (2.9) 

Moreover, we use the fact that for a one-dimensional 
momentum distribution of the particles we have for 
waves with the dispersion law (3.2) the following order- 
of- magnitude relation 

Finally. using (4.7) and introducing the quantity UT' 
= I  W(k)dk which denotes the total energy of the Lang- 
muir oscillations we find the estimate 

Re (k) -ooW'/noyomc'. (4.9) 

Using (4.6) to (4.8) we get finally 

We compare (4.10) with (3.8). We note that a s  the 
energy of the Langmuir oscillations reaches the order 
of magnitude of the beam energy only after the quasi- 
linear relaxation is finished (see (3.6)), in the quasi- 
linear relaxation stage W' <nbmcZyb, and hence 

rNL<rL. (4.11) 

This justifies the neglect of the non-linear processes in 
the study of the quasi-linear relaxation, a s  was done in 
Ref. 5 and in the present paper. 

Tsytovich and ~ a p l a n ~  used in their paper, a s  an esti- 
mate for the linear growth rate, a correct expression of 
the type (3.8), but has instead of (4.10) an incorrect 
estimate for the non-linear damping rate r N L - w o w  '/ 
noyo mc2, which is larger than (4.10) by a factor yi. This 
led those authors to conclude incorrectly that the level 
of saturation of the oscillation energy i s  too low and, a s  
a consequence, that the non-linear effects a r e  unim- 
portant. 

It i s  interesting to note that after the quasi-linear 
stage is finished the non-linear damping rate is  of the 
same order of magnitude as the linear one: 

~ N L - ~ L .  (4.12) 

Hence the duration of the process of the transfer of the 
oscillation energy and of the absorption of it by the par- 
ticles in the plasma must be of the same order a s  the 
duration of the quasi-linear stage s o  that T,, " r,,, 
where T , ~  i s  characterized by the estimate (3.7). 
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85. ELECTRON-ION PLASMA 

In the case of an electron-ion plasma jg' # 0. Using 
(2.15) we then get f rom (2.5) and (2.12) instead of (4.1), 
(4.2) the non-linear relaxation equations 

Here 

(vk,k') a 

e(k-k' ,  oh-o,.)  ' (5.3) 

=4ne"o* T I  dk  dk' I (k ) I (k ' ) I rn  ( vk.,') ' 
e(k-k' ,  oh -oh . )  ' (5.4) 

8 i B  
UkII '  = - -  wk-ku 

dp o - k u  ap (ak.-k'u) [ o h - o h . -  ( k -k ' )u ]  . (5.6) 

V,,,, and v,,,, a r e  connected through the relation 

Just a s  64 we assume that Reoa'(k) and Sa '  a r e  
caused by resonances of the kind w, - w,. =v(k - kt). As 
the resonance velocity l ies in the range of thermal ve- 
locities the imaginary terms in the integrals over the 
momenta on the right-hand side of (5.3) and the analo- 
gous imaginary terms in (5.6) a r e  not small compared 
to the real ones. To simplify the calculations we can 
make a rough approximation of the problem by assuming 
those imaginary terms to be large compared to the real  
ones. We then get, in particular, 

It is clear from a comparison of (5.8) and (2.9) that 
Reo'" has the opposite sign of ~ e o ' ~ ' .  This means that 
the correlations between the phases of the oscillations 
lead to a weakening of the process of the transfer of the 
oscillation energy to the long-wavelength part of the 
spectrum considered in 04. A similar effect also oc- 
curs  in the case  of a non-relativistic plasma. In that 
case the terms ~ e o ' ~ '  and ~ e a ' ~ '  almost-up to terms of 
the order of the small  parameter (kv/w,)2-completely 
cancel each other. The direction of the transfer (from 
short to long wavelengths),remains the same a s  before 
(i.e., a s  when ~ e o ' ~ '  is neglected), but the ra te  of the 
transfer is considerably weakened (by a factor (kv/wJ2). 
However, in the case  of a relativistic plasma there is 
no small parameter of the kind (k~/w,)~.  The sum 
Reo'" + ~ e o ' ~ '  is thus of the same order of magnitude 
a s  ~ e o ' ~ '  s o  that there i s  no appreciable weakening of 
the transfer rate. As to the direction of the transfer, 
one can verify that it is conserved. To do this one must 
show that the sum ~ e [ o ' ~ '  has the sign of ~ e o ' ~ ' .  
For this purpose we write that sum in the form 

where 

6 (or-one- (k-k' )  U )  dfo 
a ( p ) =  [- y a ( ~ k - k u ) s  

Next, taking into account Schwartz's inequality 

I a 2 d p  I b 2 d P >  (J = b d P ) ' .  

we verify the foregoing. 

All qualitative estimates obtained in 04 for an elec- 
tron-positron plasma thus remain valid also for an 
electron- ion plasma. 

$6. DiSCUSSION OF THE RESULTS 

We have obtained equations for the Langmuir turbu- 
lence of a relativistic plasma with a one-dimensional 
particle momentum distribution and we have analyzed 
them qualitatively in the approximation of the strong 
relativistic case, yo >> 1. As in the case of a non-rela- 
tivistic plasma these equations describe non-linear 
scattering of waves by particles. The main result of 
such a scattering in an ultra-relativistic plasma is  the 
absorption of the oscillation energy by the plasma par- 
ticles. As to the accumulation of the long-wavelength 
Langmuir oscillations (condensate), which is important 
in the theory of a non-relativistic plasma, this effect i s  
considerably weaker in an ultra-relativistic plasma. 
Only a small fraction of the initial oscillational energy- 
of the order of ,'-is transformed into the condensate. 

We have considered an electron-positron and an elec- 
tron-ion plasma. In the case of an electron-positron 
plasma with the same distribution functions for the two 
kinds of particles there is no current in second order of 
the wave amplitude. (This peculiarity of an electron- 
positron plasma was also noted in Ref. 13.) This means 
in terms of Ref. 7 that the process in which an eigen- 
oscillation decays into another eigenoscillation, and no 
strongly damped density perturbation is present in an 
electron-positron plasma. However, in the relativistic 
case this difference in the structure of the equations 
describing an electron-positron and an electron-ion 
plasma does not lead to important consequences a s  
would be the case in the non-relativistic situation. The 
reason is that in our problem there is no small  param- 
eter  such a s  kv/w with the corresponding cancellation of 
contributions from different turbulent processes. 

It follows from our analysis that, a s  in the non-rela- 
tivistic case,  the dynamics of two-stream instability in 
a relativistic plasma is  characterized by two consecu- 
tive stages, the quasi-linear and non-linear. These two 
stages have durations of the same order of magnitude, 
given by Eq. (3.7). 

We noted in 0 1  that the problems of the dynamics of a 
relativistic plasma with a one-dimensional distribution 
function i s  of interest in connection with the problem of 
pulsar radiation. One considers it to be generally ac- 
cepted4 that the polar region of the magnetosphere of a 
pulsar i s  a relativistic plasma penetrated by an ultra- 
relativistic beam. The importance of the two-stream 
instability in the physics of the pulsar magnetosphere 
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has often been emphasized (see Ref. 5 and the literature 
cited there). However, there is  a s  yet no definite point 
of view about the actual mechanism connecting this in- 
stability with the observed pulsar emission. This is 
connected with the complexity of the problem and the 
fact that the theory of two-stream instability has not 
been worked out sufficiently for the particular case of 
the pulsars. In parti'cular, the results given above in- 
dicate that the dynamics of the Langmuir turbulence 
excited by that instability in the pulsar plasma must 
evidence itself appreciably differently from what would 
happen in a non-relativistic plasma. It i s  also clear 
that one needs further studies for an actual use of the 
ideas of Langmuir turbulence in the problem of the in- 
terpretation of pulsar emission. 
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Possibility of diagnostics of magnetic fields in a laser 
plasma using the spectral composition of the scattered 
radiation 
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The possibility of diagnostics of the spontaneous magnetic fields in a laser plasma using the spectral 
composition of the scattered radiation near 0,/2 is investigated. It is shown that at 1 it i s  possible 
to determine, from the shift of the spectral components, the intensity of the magnetic field and at 
sufficient spatial resolution also its orientation. 

PACS numbers: 52.70.Kz, 52.50.Jm, 52.25.P~ 

Calculations and experimentls2 show that magnetic of the mechanism of the coalescence of the waves that 
fields of the order of or larger than 1 MOe can be pro- result from the decay.3s4 
duced in a laser plasma because of the presence of 
spatial inhomogeneity of the density and of the temp- 
erature. This circumstance can influence the symmet- 
rical compression and the heating of the laser target, 
so that i t  i s  important to have reliable information on 
the intensities and force-line configurations of the mag- 
netic fields. Measurements with the aid of magnetic 
probes or by rotation of the plane of polarization en- 
counter great difficulties because of the small dimen- 
sions and inhomogeneities of the laser plasma. It i s  
of interest in this connection to be able to effect the 
diagnostics of the magnetic fields by means of the spec- 
t r a l  composition of the scattered radiation near wL/2 
(w, is the frequency of the laser radiation). Diagnos- 

Magnetic fields generated in a laser plasma influence 
the dispersion of the electromagnetic waves and the 
processes of transformation of the incident radiation. 
Parametric instability of the pump wave near a density 
n,  /4 can lead in a magnetoactive plasma to frequency 
shifts of the scattered waves relative to wL/2 by an 
amount -51 (the cyclotron frequency of the electrons) ,5 

if one of the scattered waves propagates collinearly 
with the laser radiation in a cone with apex angle S k,/ 
kL(ko= (51w,)$/c, kL = 3iwp / c ,  kz - k,), while the other 
has a wave vector k, < k,. In this case w (k,) = w, & 51/2 
or w(kJ = w, at any orientation of the magnetic field 
relative to the vector k,. 

tics using the spectral composition of other harmonics To calculate the thresholds and the increments of the 
(3wL/2,2wL, etc.) is less direct because the interpre- paramagnetic instability of the incident wave, we con- 
tation of the 3wL/2 and 2w, spectra calls for analysis sider the system of equations for slow amplitudes of 
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