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We consider an instability which may occur in a collisional nonuniform plasma wi? a heat flux. The 
magnetic field grows rapidly when this instability develops. We obtain the conditions for the occurrence 
of the instability. We evaluate the characteristic growth rates of the perturbations. The instability 
develops most effectively in a very hot and rarefied plasma when there are large temperature and density 
inhomogeneities. We apply the results of the theory to a laser plasma and to the plasma of the solar 
corona. 

PACS numbers: 52.35.Py, 52.25.L~ 

It is well known that in various experiments about 
the interaction of laser radiation with matter after a 
negligibly short time (-lom9 s )  huge magnetic fields 
may be generated in the plasma which is produced1 
occasionally reaching lo6 gauss. Apparently, the so- 
called thermomagnetic instability may play an im- 
portant role in the production of these fields.' A nec- 
essary condition for such an instability is first  and 
foremost that the plasma must be inhomogeneous and 
non-isothermal. The development of the instability 
proceeds a s  follows. Small temperature perturbations 
lead to the occurrence of a heat current. This current 
produces a magnetic field which in turn affects the 

consider a plane problem where all unperturbed quan- 
tities depend solely on a single Cartesian coordinate 
z (we shall, of course, not make any assumptions of 
this kind about the perturbations). We assume also 
that the heat transfer is mainly by the electrons and 
that the radiative heat conductivity is small. We shall 
merely be interested in the linear stage of the evolu- 
tion of the perturbations when they a r e  small compared 
to the unperturbed quantities. We shall in what follows 
indicate unperturbed quantities by an index zero and 
small perturbations by an index 1. By assumption 
V, = 0 and B, = 0 (V is the hydrodynamic velocity of the 
plasma motion, B the magnetic field). 

electron thermal conductivity and changes the regime 
of the heat transfer. The field leads to the appearance The set of magnetohydrodynamic equations for a 

of a heat flux perpendicular to the temperature gradient fully ionized plasma were derived by ~ r a g i n s k f i . ~  The 

and to the field itself. This flux supplies energy to the equation of motion has the form 

region with a higher temperature and thereby facili- 
tates the growth of the initial perturbations. The ther- 
momagnetic instability thus promotes the transfer of 
part of the energy of the heat flux to magnetic field 
energy. The strong magnetic fields which a r e  then 
generated may affect in an essential way transfer 
processes in a plasma, the hydrodynamics of the dis- 
integration, and a number of other phenomena. 

A number of authors2'' have considered the thermo- 
magnetic instability in a non-degenerate plasma in 
which electron thermal transfer predominates, We 
show that the effect of thermal effects on the field gen- 
eration has been insufficiently taken into account in 
these papers. The conclusions by these authors2" on 
the necessary conditions for the development of the 
instability a re  thus inexact. We shall in the present 
paper obtain an expression for the growth rate and we 

av i 
p - + p ( V V ) V - - V p + - [ [ O X  B ] X  B ] .  

at fin 

Here p and p a r e  the pressure and density of the 
plasma; we assume that there a re  no external forces. 
The radiation pressure often happens to be small and 
we shall neglect it. Moreover, practically always 
under astrophysical conditions and very often under 
laboratory conditions the effect of viscous s t resses  is 
unimportant and we have neglected them. 

We consider the behavior of the very small-scale 
perturbations for which the wavelength h is much 
smaller than the characteristic scale L of the change 
in the unperturbed quantities T and p (we assume that 
they a r e  of the same order of magnitude). Linearizing 
the equation of motion we find 

shall derive the necessary conditions for the develop- The linearized equation of continuity and equation of 
ment of the instability. The thermomagnetic instability state for a gas are 
may strongly affect processes occurring in a laser 
piasma and in the plasma of the solar corona. ap,/at--V ( P ~ V , ) ,  (2) 

1. EQUATIONS FOR SMALL PERTURBATIONS ~ ~ l p ~ = p ~ ~ p ~ + T , l T , .  (3) 

We consider the instability in a completely ionized Neglecting viscous s t resses  and the radiation pres- 
hydrogen plasma (the generalization to the case of an sure we can write Ohm's law in the following form5: 
arbitrary charge Z of the ions can easily be made) with 

[BX i l  "7 

a non-degenerate electron gas. We assume that the e + [ f x  s ] + - = - ~ + ~ - h v T ,  ecn. 
n. (en.)' en. (4) 

plasma i s  non-uniform and non-isothermal in the 
unperturbed state and that there a r e  no magnetic fields P, and n, a r e  the electron pressure and density, j if the 
or  hydrodynamic motions in it. For simplicity we electric current density, 
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aj=qj,+aLjl-crl,.[b x jl,  

~ v T = $ ~ ~ ~ v , , T + ~ ~ ~ ~ v ~ T + ~ ~ ~ ~ [ ~  X V T ] ,  
b=B/IBI. 

The (1 and I signs indicate that one must take the com- 
ponents of the corresponding vector which a r e  parallel 
and perpendicular to the magnetic field. We shall n;t 
give the general expressions for the tensors & and pYT 
a s  they a r e  very cumbersome (they a r e  written down in 
Braginskii's paper5), and we write them down only in 
the particular case 1 ((J, is the electron cyclo- 
tron frequency, T the electron "free path" time): 

Here kB i s  Boltzmann's constant, me the electron mass, 
and A the Coulomb logarithm. 

Taking the curl of Eq. (4) and using Maxwell's equa- 
tions we can obtain the induction equation. Linearizing 
it we get 

BraginskGs has also derived the equation for energy 
transfer in a plasma. Both in astrophysical and in 
laboratory conditions one can often neglect the work 
done by the viscous forces and by the heat current 
transferred by the ions (it i s  smaller by a factor 
(m,/m,)* than the electron heat current, if the ions a r e  
not magnetized, m, is the proton mass). The energy 
transfer equation then has the form 

.ii is the thermal conductivity tensor. When w,T<< 1 
i ts  components equal 

We linearize the heat transfer equation and compare the 
heat currents caused by the thermal conductivity and by 
the electric currents. One sees  easily that we can 
neglect the latter, if the inequality (k,T/m,c2)w;r2>> 1 
i s  satisfied (w, = (4ne2ne/me)Lh is the electron plasma 
frequency). We shall assume that this relation holds. 
The linearized energy-transfer equation then be- 
comes 

Equations (1) to (3), (6), and (8) completely determine 
the behavior of small perturbations. 

2. DISPERSION EQUATION 

The inhomogeneities of the unperturbed quantities 
a r e  important for the thermomagnetic instability so  that 
i t  i s  necessary to use the geometric optics approxima- 
tion (WKB approximation) for its study. Firs t  of all 
we make clear how one can in that approximation con- 
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struct a solution of the set (I), (2), (3), (6), (8) and 
obtain information about the behavior of small per- 
turbations. We perform a Fourier transformation of 
the set  with respect to the x and y coordinates and a 
Laplace transformation with respect to the time. After 
that we can write the set (I), (2), (3), (6), (8) schemat- 
ically in the form 

where Li j  is a linear differential operator, the co- 
efficients cij, dij, and ei, depend on w, k, =k,e, +k,e,, 
and z; ( i ,  j) = l , 2 , .  . . ,n; n i s  the number of equations 
in the set; +jwkL a r e  the Fourier transforms of the 
small perturbations, 

-.I 0 

ai(z) a r e  functions determined by the initial conditions. 

We find f i rs t  of all the solution of the homogeneous 
set  of the form 

8 - 

(k, a r e  some unknown quantities) after that we use the 
b, and k, to construct a solution of the set  (9). We get 
the condition for the homogeneous set to be soluble by 
putting the determinant 

dk. I L. ( -k2- i -  -ik=, a, k,, Z)  1 - 0 
dz ' 

equal to zero. Hence we find the functions k,(w, k,, z )  
for which the set  has a non-trivial solution. It is con- 
venient to write the equations for the k, in the form of 
dispersion relations 

w=o,(k, z )  =Q, ( k ,  z )  -iy,(k, z), (10) 

k =k, +k,e,, (Y is the number of the root of the char- 
acteristic equation, i.e., the number of the oscillation 
mode (we assume that the number of modes of the set  
(9) is the same as the number of equations; if we use 
the equation of state (3) to eliminate the perturbation 
of the pressure p ,  from the other Eqs. (I), (2), (6), 
and (8) our system will satisfy that condition). We can 
determine k,, a s  functions of w, k,, and z for each 
mode a from the dispersion relations (10). We can 
also express for each mode the functions b, in terms of 
an arbitrarily chosen single one, for instance, b,  :bja)  
=X\a'b(,a', where the Xia' a r e  quantities which can be 
expressed in terms of the cij, d i j ,  e,,, and also of 
kg, and dk,,/dz. 

We shall look for the solution of the set (9) in the 
form 

the summation is over all  modes, B ( O )  are  functions 
which we must find. We assume that Jlz,,~l>> 1. Sub- 
stituting into Eq. (9) we get 
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exp (-I k- dz' ) - aj  ( I ) ,  

where the A(") =~(")b;") a r e  unknown functions. In 
transforming (9) we used the fact that the b y )  a r e  solu- 
tions of the homogeneous set. 

We denote d(A(u)X:a))/dz by q~ ! " )  so that 

~ ( 0 ) ~ ( ~ ) =  $qy' dz'. 

We shall look for the in the form 

q:D'-xyexp i k,dz ; ( J  
where the xia) must satisfy the equations 

We assume that initially a t  time t = 0 the perturba- 
tions a&) a r e  given in the form of wavepackets: 

a.(z) =a: exp [-ik,(z-z,) - (z-z,)'/2bOE], 

where L>> b,>> 2n/l k,l while the characteristic scale 
of changes in a: is large (ZL), and z, is the center of 
the wavepacket at t = 0. We note that perturbations of 
a more general form (differing from zero a t  distances 
"b, near the point z,) can be written as a superposition 
of the packets considered by us. One can easily find 
for such a i (z )  the 4") as expansions in powers of the 
small parameters b,/L and A/L. One shows easily 
that to lowest order (to which we can restrict  our- 
selves) in these parameters we shall have, when the 
condition b,(b,/A) << L is satisfied 

xJa) (2 )  s Zai1 ( z , ) ~ ; : )  ( z )  exp { -iko(z-zo) + i j [kz- k ~ y  2') 

- k,(m, k,, z,) ]dz'-(z-z,)'/Zb,' ; 1 
A!;) a re  functions with a scale of variation of the order 
L. One can thus write the solution of the set (9) in the 
form 

+is [k , , (o ,  k,, z") -k,.(o, k,, 2,) ldz" 
.t 

(compare the form of the solution for 1 z -z,l < L with 
p. 26 of Ref. 6). Since k,, is a slowly changing function 
of z (characteristic scale "L) we have 

" 
j k,, dz" = j k ,  dz"+k, (z,) (2'-z,) , 

if 1 z' - z,l - b,<< L. Using this relation we can easily 
integrate over z t  in (under the condition 
1 z - z,I >> b,). 

We now take the inverse Laplace transform with re- 
spect to the time and find the form of the perturbations 
qj(z, t) a t  time t a t  the point z. The x and y dependence 
of the perturbations can be found elementarily and in 

what follows we shall not be interested in it. We note 
also that all  successive transformations a r e  performed 
completely identically for each of the modes. For the 
sake of simplicity we shall therefore further drop the 
index a of the functions and the summation over the 
various modes. Then we have 

+- 
( P I ( ~ ,  t )  = J dm ~ , ( a ,  ~ , ) e x ~  zot+z k , ( a ,  k,, zt)dz' 

...- { .  .! 
1 

- - bo2[ko-k*(m, k,, 20) , 2 
where k,(w, k,, z) is the solution of the dispersion 
Eq. (10) a t  the point z and the Gj(w, z,) a r e  some func- 
tions (they can be expressed in t e rms  of the initial 
conditions and of the unperturbed quantities). 

In the integral we introduce instead of w a new inte- 
gration variable k: which is related to w through the 
dispersion relation (10) a t  the point z,: w = w(k:, 2,). 
The integration over k: is over some contour in the 
complex plane. For the cases  of interest to u s  a s  
w-*m we shall have RekL-*m. If there a r e  no singu- 
larities between the contour and the real  axis, i.e., 
dw/dk:+O (which is, in particular, true for the thermo- 
magnetic waves considered by us) we can change to an 
integration over real values of k:: 

i 1 + i k,(k,', z,, z')dz' -- b,2(kZt-k,)' . 
2 I 

We thus obtain expressions for the perturbations with 
frequencies which formally depend on the coordinates 
of the point where the perturbations originate. 
Gurevich and Gel'mont7 were the f i rs t  to propose such 
a representation for a study of an instability for the 
simple case of a medium with a permittivity that de- 
pended on a single coordinate. 

For the wavepackets of the form considered by u s  
we can perform the integration over k; in $j(z,t). If 
lRewl>> IImwl, one sees  easily that the motion of the 
point z(t) a t  which the wavepackets has its maximum is 
described by the approximate equation 

dz(t)ldt=V,(k,,  z ( t )  ), 

where V,(k,, z)  = a  Rew(k,, z)/ak, is the local group 
velocity. The maximum of the absolute magnitude of 
the perturbation grows with time according to 

I ~ I -  exp {y (ko .  zo) t  + J lm kx(mo. k,, z f )dz t  ; I 
here w, = SZ(k,, z,) - iy(k,, z,), and k,(w,, k,, 2') satisfies 
the equation w, = 52(k,, 2') -iy(k,, 2'). 

When 1 52) >> 1 yl one finds easily that 

Im k,= [ r  (k"', z') -7 (ko, z,) ]lV,(k(O1, z'),  

where k(O) is determined from the relation Q(k,, z,) 
=SZ(k('), 2'). Substituting this expression into I $,I we 
get 

- -- 
t + J ( k ' ~ ' ,  z ( t ' )  ) Va(k0, z( t ' )  1 1. V,(k'", z ( t l ) )  

0 
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For thermomagnetic waves (as we shall see below) Ir, 
is independent on k, (since Rew a kg). In that case 

If, moreover, I z(t) -zo( < L, we have 

which i s  the same a s  ~ikhaIlovskiI 's  result on p. 29 of 
Ref. 6. 

One can thus for  a study of a local instability with a 
wavelength A much shorter than L proceed a s  follows. 
One first  substitutes into the original set  of equations 
perturbations of the form 

Then one writes down the dispersion equation and 
finds to lowest order in the small parameter A/L both 
the real  and the imaginary part of w as functions of 
z,  k,, and k,(z). If Reiw is positive this will mean 
that a local instability can develop. 

We turn now directly to a study of the set  of Eqs. 
(I), (2), (3), (6), (8). We note f i rs t  of a l l  that on the 
right-hand side of the equation of continuity (2) we can 
drop the term of order 1/L in comparison with 1/A.  
In the induction Eq. (6) we can neglect t e rms  propor- 
tional to a,,/AL in comparison to all /h2 since the in- 
stability develops only if the Joule dissipation is suf- 
ficiently weak (we give below a quantitative criterion); 
in that case the term aall /AL gives merely a small 
correction to a small effect (dissipation). It i s  further 
convenient to use the induction equation, taking the 
scalar product of it with [k X e,] a s  the magnetic field 
occurs in the energy transfer equation only a s  
B,[k x e,]. The term poc,(V,VTo) in Eq. (8) i s  smaller 
than poVVl by a factor L/A and we can thus neglect it. 
We use the fact that x o a  T:" and x, a 5x0T1/2T0 (one 
can neglect the T and p dependence of the Coulomb 
logarithm) and we drop in Eq. (8) t e rms  of order 
noT,/L2 in comparison with n0~,/A2. After al l  these 
transformations we can put the set  of Eqs. (I), (2), 
(3), (5) to (8) in the following form: 

opI=pokV,, okV,=kzp,lpo, pllpo=pllpo+T,lTo, 

o,=e2n.,t.,/0,5lm,. 
Using the first  three equations of this set  we can 
easily express p,, p,, and k V, in t e rms  of T,: 

t = w2po/k2p0. Substituting the expressions for pl and 
p, into the induction equation and the expression for 
koV, into the heat transfer equation we get a set of 

two equations connecting the two unknown quantities 
Bl[k x e,] and TI. Putting the determinant of that set 
to zero  we get the dispersion equation for the thermo- 
magnetic mode 

It i s  rather difficult to obtain the general solution of 
this equation. We study the behavior of the solution in 
two special cases: 1 w(>>kc, and ( w( <<kc, (1 f I>> 1 and 
1 51 << I), where c, is the sound speed. 

3. THERMOMAGNETIC MODE WHEN Iwl>> kcS 

One can use  (12) to check easily that when I g1>> 1 the 
relative perturbation p,/po is much smaller than the 
relative perturbations in pressure and temperature: 

For the velocity perturbation we get approximately 

Substituting this expression into the heat transfer equa- 
tion we see that the term proportional to k o V ,  can be  
neglected compared to iwpoc,Tl. This means that when 
1 wl>> kc, the convective energy transfer by the motions 
of the plasma is small compared to the transfer due to 
heat conduction. In this case the motion of the plasma 
affects neither the excitation of a magnetic field nor 
the heat transfer in the plasma. If besides 1 dpo/k2pol 
>> 1 the inequality I dpo/dzI >> I k2/02(( dp0/dz ( i s  also 
satisfied (i.e., the characteristic scalefor  temperature 
changes i s  not much smaller than the scale for density 
changes), we obtain for w instead of (13) a quadratic 
equation which can be  solved elementarily. This equa- 
tion has a solution with Re(iw)> 0, if 

If inequality (14) i s  satisfied this means that the growth 
of the magnetic field due to a heat current turns out to 
be  much faster than i t s  damping due to Joule dissipa- 
tion. Indeed, it is clear from the induction equation 
that the characteristic time for Joule dissipation of the 
field t, (determined by the second term in the braces 
on the left-hand side) in (11) will be of the order 
4no0/3c2k2- 47rA2e2neor0/c 'me. The characteristic time 
for field changes due to thermo-effects t T  (determined 
by the last term in the braces  on the left-hand side) is 
of the order m,L2/k,~o~,. One checks easily that when 
(14) i s  satisfied the dissipative term is small and 
t ,  >> t .. 

When (14) holds the root corresponding to the instabil- 
ity equals 

(when carrying out the calculations we assumed that 
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T, a ~ : / ~ / p ,  and neglected the weak temperature and 
density dependence of the Coulomb logarithm). Apart 
from (14) a necessary condition for the development 
of the instability will be 

k.E dTO d l n p ~  dT, d l n  To dZT 
( 1 . 0 1 - 1 . 8 2 ~ )  T-+ t22----+0.81-ZO . (16) 

k z dz dz dz  dz2 

The characteristic time to for the growth of the in- 
stability is given by l/Re(iw) and equals 

It is clear that the growth time depends strongly on 
the magnitude of the gradients of the unperturbed tem- 
perature and density. The growth time decreases with 
increasing gradients of p, and To. Using the fact that 
roc= q k / p o  and estimating VT, and Vp, to be T,/L and 
p,/L we find that to i s  approximately proportional to 
P,/T;'~, i.e., the instability develops most effectively 
in a very rarefied and hot plasma. 

It is completely unnecessary for the development of 
the instability that Vp, and VT, should be in the same 
direction (see, e.g., Refs. 2 to 4) and in certain cases  
the perturbations can grow also when Vp, and VT, a r e  
in the opposite direction. The presence of an imaginary 
part of iw leads to  the fact that the instability turns out 
to be a drift instability, i.e., the initial perturbation 
will not only grow with time but also move in the 
plasma. The velocity of the perturbations decreases 
a s  the magnitude of k,(z) decreases. One checks easily 
that the drift of the perturbations proceeds in the di- 
rection in which the plasma temperature decreases. 

4. THERMOMAGNETIC MODE WHEN lo1 <<kcS 

It follows from (12) that in this case the relative pres- 
sure perturbations a r e  much smaller than the relative 
density and temperature perturbations: 

For the velocity perturbations we now get k V, 
= - w(T,/T,). If we substitute this expression into the 
heat-transfer equation one sees  easily that in that 
case the convective transfer of the energy of the plasma 
motion has an appreciable value (the t e rms  iwp,c,T, 
and ip,k*V, a re  of the same order of magnitude). The 
excitation of the magnetic field i s  basically guaranteed 
by the density perturbations, and not by the pressure 
perturbations, a s  when 1 ~1>> 1. We shall assume that 
apart from ( dpo/k2pol << 1 the inequality I d/k2(1 dpo/ 
dz ( << I dp,/dz I i s  satisfied; in that case we get for w, 
a s  before, a quadratic equation which has a solution 
with Re(iw)>O only when condition (14) is satisfied. 

Assuming that T, a: TS,"/~, we can write that solution 
in the following form: 

For the presence of the instability i t  i s  necessary that 
the condition 

is satisfied. The characteristic growth time to of the 
instability will when I t(<< 1 be equal to 

As  when 1 g(>> 1 the growth time depends strongly on 
the magnitude of the density and temperature gradients. 
The growth time is approximately proportional to 
p , / ~ ~ ~ ,  i.e., also in this case does the instability 
develop faster in a rarefied and hot plasma. As be- 
fore, the perturbations drift to the region with a lower 
temperature. 

5. DISCUSSION OF THE RESULTS 

We compare first  of all the results obtained by u s  with 
those of other authors. Tidman and Shanny2 were the 
f i rs t  to study the thermomagnetic instability in con- 
nection with experiments with a laser plasma. These 
authors considered the case 1 1;1>> 1 and perturbations 
with k l  e,. They neglected hydrodynamic motions, con- 
vective energy transfer, and the presence of density 
perturbations which in the given case is justified. How- 
ever, the effect of thermal effects on the magnetic field 
generation was incorrectly taken into account. The 
authors of Ref. 2 dropped the t e rms  in the square 
brackets on the left-hand side of the induction Eq. (11). 
One of these terms, indeed, vanishes when k l  e,, but 
the second one is non-vanishing, even when k, = 0. 
They therefore obtained an incorrect expression for the 
growth ra te  [if we put k, = 0 in (15) the result of Ref. 2 
will differ from ours by a term O.~~V(T,VT,)/T, in the 
braces]. In Refs. 3, 4 the case I dpo/k2p01 >> 1 was 
also considered (although the authors themselves do 
not mention this). The authors took into account the 
effect of one of the thermal effects on the magnetic 
field generation (the so-called thermal-drift field, 
corresponding to the term 0.81ik,(k,~,/m,)(dT,/dz)B, 
on the left-hand side of the induction equation) but they 
also neglected the second term in the square brackets 
of the left-hand side of (11). In those papers they 
therefore obtained a qualitatively incorrect conclusion 
that the instability develops only when the gradients 
of p, and To a r e  parallel. It is clear from Eq. (16) that 
this is altogether unnecessary. The case 1 wl <<kc, 
which is of most interest for astrophysical applica- 
tions has (as far  a s  we know) not been considered 
earlier. 

It i s  necessary for the development of the thermo- 
magnetic instability considered by u s  that the electron 
heat transfer in the plasma dominates over the radia- 
tive transfer. Such a situation may occur, for 
instance, in a laser plasma or  in the plasma of the 
solar corona. We estimate the characteristic times fo r  
the development of the instability in those cases. 

A laser plasma drop is strongly inhomogeneous with 
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a characteristic scale L -  cm. The time of i t s  
dispersion tH is of the order of 10'' s. In order that 
the field may be  created by the mechanism considered 
in the present paper i t  i s  necessary that the condition 
tH>>to be satisfied. It is clear from (17) and (20) that 
a s  to order of magnitude to= L2m,/k,T0~,. The tem- 
perature of the plasma in the drop To= lo7 K, and the 
density no= loz1 emm3. Under those conditions A =  8, 
ro= 10'12 s. For the growth time of the instability we 
get t ,= 6 X 10'" s, i.e., the thermomagnetic instability 
can fully guarantee the generation of a strong magnetic . 
field during the time the drop exists, provided condi- 
tion (16) i s  satisfied. It is rather complicated to es- 
tablish whether there exists a region in the laser  
plasma drop in which (16) is valid. To do this it i s  
necessary to know the detailed coordinate dependence 
of the temperature and density. It follows from the 
calculations by the authors of Ref. 8 that near the front 
of the heat wave the temperature and density gradients 
a re  in the opposite direction. However, one sees  easily 
from Fig. l a  of Ref. 8 that there exists a region near 
the front where ( d lnpo/dz 1 < I d lnTo/dz ( and d2~,/dz2 > 0. 
In that region condition (16) can fully be satisfied and 
the instability will develop. 

however, the instability develops in a region with a 
characteristic scale of lo9 cm, the growth time will 
be  of the order of one hour. Inequality (14) is satis- 
fied with a large margin. We see thus that the thermo- 
magnetic instability may occur also in the solar corona 
leading to the formation of fine-scaled magnetic fields 
and motions. 
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A new mechanism of saturation of parametric instabilities in a magnetized plasma is revealed. The 
saturation level and the spectrum of the Langmuir turbulence excited by the pump wave in a 
homogeneous magnetoactive plasma are obtained. The question of the efficiency of parametric absorption 
of microwave energy in installations with magnetic containment of plasma is investigated. 

PACS numbers: 52.25.Ps, 52.35.Py, 52.35.Ra 

1. Much attention is being paid presently to the prob- 
lem of additional heating of the plasma in  magnetic-con- 
tainment installations. One of the most promising is the 
use of electromagnetic radiation in the centimeter and 
millimeter bands for  this purpose. The electric field 
intensities needed to attain the necessary heating rate 
are  such that the plasma in the electromagnetic-radia- 
tion field turns out to be  parametrically 
Thus, Alikaev et ~ 1 . ~  observed experimentally ion heat- 
ingunder decay-instability conditions. Grek and Porko- 

lab3t4 observed, besides anomalous absorption, a r i se  
in the level of the turbulent pulsations, which likewise 
points to the presence of a correlation between the 
anomalous absorption and the development of paramet- 
r i c  instabilities. Theoretical estimates of the efficiency 
of the parametric absorption were made by a number of 
~ o r k e r s . ~ , ~  Rubenchik et ~ 1 . ~  have shown that paramet- 
r i c  effects can impede the penetration of the electro- 
magnetic radiation into the central regions of the plas- 
ma. Ramazashvili and Starodub proposed a new method 
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