
imum, further improvement of the technology of the 
multilayer monochromator-polarizer is necessary. 
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Nuclear level shift and radiative transitions in a proton- 
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A formula is obtained for the Coulomb shifts of the levels of proton-antiproton atoms in terms of the 
length of scattering by a strong potential V, (without the use of perturbation theory, i.e., without 
assuming the shift to be small compared with the distance between the neighboring levels). The 
restructuring of the atomic spectrum following the formation of a bound state in the potential V, is 
discussed on the basis of this formula. The connection between the level shift and the expansion of the 
effective radius is indicated. The average radius of the s state is calculated for an arbitrary value of the 
shift and for an arbitrary probability of the radiative E 1 transition between the p and s levels. The 
experimental data [M. Izycki and G. Backenstoss, paper contributed to the Fourth European Antiproton 
Symposium, Barr, France, 1978; CERN, Geneva, 19781 on the shift of the 1s level of the pp atom 
indicate that a bound QS state (quasinuclear meson) can exist in the pp system with binding energy E Z  1 
MeV and width r5 200 keV. Calculation shows that the probabilities of the radiative transitions 2p--1s 
and 2p-Qs are comparable. This points to a possibility of experimentally observing the Qs level by 
investigating the spectrum of the y rays produced in transitions between the levels of the pp atom. 

PACS numbers: 36.10. - k, 32.70.J~ 3 1.30.J~ 

5 1. INTRODUCTION 

Investigations of the interaction of antinucleons with 
nucleons yield valuable information on the nuclear 
forces. This information is of particular interest in 
connection with the existence of bound and resonant 
states in the N f l  system (quasinuclear mesons, pre- 
dicted theoretically in the papers of Shapiro and co- 
workers'; references to subsequent papers and a sur-  
vey of the present status of the NiV problem can be 
found in later papers by S h a p i r ~ ~ ' ~ ) .  Besides quasi- 
nuclear mesons1) with binding energy =50-300 MeV, 
there exist in the pF system atomic levels of the hy- 
drogen type, due to the Coulomb interaction, with a 
characteristic energy on the order of several  keV. 
These levels cannot be described by the known Balmer 
formula, but they experience shifts and broadening on 
account of strong interaction and annihilation, So long 
as  the level shift i s  small, perturbation theory in terms 
of the scattering length i s  applicable2': 

tential V, (see Refs. 4-6). When the potential V,  has a 
near-zero rea l  o r  virtual level with angular momentum 
I ,  the scattering length a, becomes large and the per- 
turbation-theory equation (1.1) no longer holds. At the 
instant when the level is produced in the strong poten- 
tial V,, a restructuring of the atomic spectrum takes 

(a similar behavior of the s and P levels was 
observeds in the electrodynamics of strong (Z> 137) 
Coulomb fields-near the critical charge of the nucleus 
Z = Z,,, corresponding to the entry of the level I s l b  
into the lower continuum). 

Several strong-interaction model potentials (square 
well, separable potential) were used in Ref. 7 to de- 
scribe the restructuring of the level spectrum of the 
atom. The qualitative aspect of the problem was ex- 
plained, but the solved models did not indicate that the 
restructuring is universal and independent of the form 
of the potential V,, and made i t  necessary to resor t  to 
numerical calculations of the level spectrum in each 
concrete case. It will be shown below that the presence 

2 (n+l) ! 
AEnl - a', (1.1) in the problem of the smal l  parameter ?',/a, (amounting 

( l ! )2(n- l - i )  !n2'+' to 4 / 3 0  for the pp atom) makes i t  possible to develop 
where a, i s  the length of scattering by the nuclear po- an analytic theory of the level shift and to describe the 
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restructuring of the spectrum without using a model. 

The shift of the ground level of the Pp atom was re-  
cently measurede 

AE,.=3.02*0.06 keV, rG2M) ev. (1.2) 

Thus, the shift is not small  and amounts to =1/3 of the 
distance between the neighboring levels 1s and 2s. The 
derivation of equations not based on perturbation theory 
in a, is therefore a most pressing problem. 

The plan of the article is the following. In Sec. 2 we 
derive Eq. (2.2) for the shift of the pfi-atom levels by the 
matching method use! in the well-known paper of Lan- 
dau and ~morod insk i i '~  on pp scattering a t  low energies. 
In Sec. 3 we consider some of the properties of the 
scattering lengths and analyze the restructuring of the 
atomic spectrum in general form. In Sec, 4 we discuss 
the connection of Eq. (2.4) with the expansion of the ef- 
fective radius and with the Bethe meth~d.""~ The 
average radius of the s states is calculated in Sec. 5, 
where the limits of applicability of (2.4) a r e  also dis- 
cussed. In Sec. 6 a r e  discussed the probabilities of 
np - vs radiative transitions in  the pj5 atom. The details 
of the cumbersome mathematical calculations a re  rele- 
gated to the Appendix. 

5 2. NUCLEAR SHIFT OF THE LEVELS OF THE 
pp  ATOM^' 

We derive now a formula for the Coulomb-level shifts 
without assuming smallness of the shift. Weuse for this 
purpose the matc hing method'' and recognize that 
ro<<a,.   ere 

is the point at which the potential V, becomes com- 
parable with the Coulomb potential (we shall arbitrarily 
call r, the radius of action of the nuclear forces). 

In the region r >yo, the Schrijdinger-equation solution 
that decreases a t  infinity is expressed in terms of the 
Whittaker function Wv, ,+ ,h (2~) .  Expanding as r- 0 
we get, for example, for I = 0 

where 

Matching this result  a t  the point r =ro to the logarithmic 
derivative of the internal wave function 

L-Gm (r%), r -o-0 .  x(r)=rB(r), 
dr 

yields in the case  of s-levels 

where 
d 

$ ( ~ ) = ~ l n r ( z ) ,  

c, =2C +In2 = 1.848(C = 0.5772. . . i s  the Euler constant), 
E = - A ~ / Z  is the level energy in units of E, = 25.0 keV, 
and v =A-*  is the "principal quantum number" (in gen- 
e r a l  not an integer). In the derivation of (2.2) we used 
for the scattering length a ,  by a potential of finite radius 
i = 2, the expression 

and discarded terms of order r,/a, (we note that up) is 
the length for scattering by a hard sphere of radius r,). 

~ ~ u a t i o n  (2.2) contains the scattering length a for the 
potential V,(r) -Y-'~(Y, - r )  that includes part  of the 
Coulomb potentiaL The Coulomb interaction, being 
much weaker than the nuclear interaction a t  r <yo, can 
be taken into account by perturbation theory. Using Eq. 
(3.5) from the next section, we obtain 

where a, is the "purely nuclear" scattering length at 
1 = 0  (scattering by the-potential V,), while the pa- 
rameter r, is defined a s  follows: 

- l - x z  
ln rc= lim .-.a { ln r+ J 2 r dr) 

Here xo(r) is the wave function of the instant of the on- 
s e t  of the s level in the potential Vs and is determined 
by the Schrijdinger equation 

with boundary conditions 

xo (0)  =0, lim xo(r) =1. 
I-_ 

(2.6a) 

Since V,(r) decreases exponentially a s  r-rn, i t  follows 
that the integral in (2.5) converges on the upper limit 
a t  r -yo. As to  smal l  r, the logarithmic divergence of 
this integral is compensated by the term Im, there- 
fore the limit (2.5) exists and is finite. For a number 
of model potentials used in  nuclear physics, the value 
of r, can be found without numerical calculations. Let 
us examine several  examples. We shall compare here 
r ,  with the effective radius 

which enters in the expansion of kcot6 a s  k- 0 (see 
Refs. 14-17)- 

1) For a square well of radius Y, and depth k2/2 we 
have x,(Y) = sim, r <Yo; the appearance of the ns level 
corresponds to K,r, = (n -$)n. Hence 

In particular, for the ground level n = 1 we have 

rc/r,=exp (-I/* (C t ln  n - ~ i  n) ) =0.439. (2.8) 

2) In the Hulthen potential V, = -g/(ep' - l), the first  
s level appears a t  g = p 2 / 2 ,  with X O ( ~ )  = 1 - e-Pr6 From 
(2.5) and (2.7) we get 
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TABLE I. 

kc T ~ i r e  Remark 

, 
Hulthen potential 
Yukawa potential 

e-' 

r.=3p-' , rc/r.=z//,e-c-0,374. 

3) Assuming 

where R is the characteristic radius of the interaction 
while the function u(x) with x =r/R specifies the form 
of the potential, we have 

r,=k,R, r,=k,R. 

The numerical values of the coefficients k i  a r e  listed 
in Table L Owing to  the factor l/r, the integral in 
(2.5) "lands" a t  shorter distances than the integral 
(2.7) as  a result of which r, is smaller by a factor 
2.5-3 than the effective radius re. We note that the 
ratio r,/re depends little on the forms of the potential. 
The exact value of r, is not very essential here, since 
it enters logarithmically in (2.4). 

Equations (2.2) and (2.4) show that the shifts of the 
Coulomb ns  levels a r e  not independent: the measured 
shift of one of the levels determines uniquely the shifts 
of the remaining s levels without any assumptions con- 
cerning the concrete form of the potential V,. Equation 
(2.4), in addition, makes i t  possible to calculate the 
scattering length a, from the value of the shift. At 
as =0, according to (2.4) we have A = l/n, and En 
= -  1/2n2 is a pure Coulomb spectrum. At )as( <<a, we 
a r e  near the pole of the function @(I - A-I); i t  is easily 
seen that i n  this case Eq. (2.4) goes over into (1.1). 
However, because of the large logarithm (1 lnr,) >> I ) ,  
the difference between (2.4) and the perturbation-theory 
formula (1.1) comes into play quite rapidly.13 

An analysis of Eq. (2.2) was carried out in Ref, 13 
(see Figs. 1 and 3 there). A more detailed discussion 
of the spectrum of the s levels will be presented in Sec. 
4, after the introduction of corrections for the effective 
radius re, 

We have considered above the case 1 = 0. Because of 
the peculariarities of the expansion of the Whittaker 
function W,,,, , h ( 2 ~ )  a s  r - 0, the procedures for I =  0 
and 12 1 differ somewhat. An equation similar to (2.2) 
for states with orbital angular momentum l #  0 is given 
in Ref. 13. 

5 3. PROPERTIES O F  THE SCATTERING LENGTH a, 

In the analysis of (2.4) we must take into account the 
properties of l /a,  a s  functions of the depth of the po- 
tential V,. Inasmuch a s  in  the scattering-theory texts 
known to  US^^.'^:'' this question is not discussed, we 
describe briefly the derivation of the necessary formu- 
las. 
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Let I =  0 and ti =2m = 1. The solution of the Schr6- 
dinger equation with zero energy 

9"-U ( r )  p=O, cp-rR ( r ) ,  (3.1) 

takes on the asymptotic forms 

where a, a, is the s-scattering length; i t  is assumed 
that the potential U(r) is not singular a t  zero and de- 
creases  more rapidly than any power of r a s  r - w. 

We consider now Eq. (3.1) for the potentials U, and 
U, and calculate the Wronskian W(cpl, cp,). The standard 
procedure yields 

from which we get, taking the boundary conditions (3.2) 
into account, 

If U(r) = - gu(r), where v(r) determines the form of the 
potential, then we get from (3.3) 

Thus, l/a, is a monotonically increasing function of the 
coupling constant g for an arbitrary attraction potential 
(i.e., v(r) 3 0 for a l l  r) .  

The case 13 1 differs only in that i t  is technically 
more complicated. If we normalize the solution of the 
SchrSdinger equation with E =O by the condition 

then we get in place of (3.4) 

The instant of the appearance of the level corres- 
ponds to a, = m ;  in this case the scattering length a, 
for a small  variation of the potential ~ U ( Y )  can be ob- 
tained from (3.5) in explicit form: 

aI=-[ (21- I ) ! ! ] '  / 1 GU(r)~ , ' ( r )dr ,  (3.6) 

where x,(r) is the wave function at the instant of the ap- 
pearance of the l e v e ~ ~ )  If we substitute here U(r) 
= -gv(r) and recognize that X ;  X, - 0 a s  r - 0 for a l l  1, 
we obtain 

The last formula is valid only at a,  =w.  It shows that 
a t  the instant of the onset of the level we have da;'/ 
dg > 0 regardless of whether o r  not v(r) is positive for 
a l l  r. Therefore the dependence of a,  on g has quali- 
tatively the form indicated in Fig. 1. 

As seen from (2.3) and (2.4), the restructuring of the 
spectrum takes place near points a t  which 5 = - I and a, 
becomes infinite. According to (3.7), at these points 
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FIG. 1. Dependence of the scattering length on the coupling 
constant g (qualitative). 

l/a, increases monotonically with increasing depth of 
the strong potential. This leads to the conclusion that 
the levels E,(g) have a universal behavior in the region 
of the restructuring of the atomic spectrum. This 
region is determined by the condition 15 + A  5 ( ~ d a , ) ~ ' + l  
and is narrower the larger the angular momentum 1. 

By way of illustration, we consider a number of po- 
tentials for which a, can be calculated analytically. 

1. Rectangular well with core 

In this case 
1 K 

as=r0 - y t g { ~  (ro7r.) +arctg (- t h ~ ~ . ) ] .  
k (3.8) 

If the core is high enough (K,>>K), then 
a.=ro- (ro-Fe) $-' tg $, 

$=K(ro-F.), ie=r, ( l - th  K j J K j . )  4r..  (3.9) 

It is seen directly that (3.9) leads to Fig. 1. 

2. The potential 

U ( r )  =-Udch'pr. 

The Schradinger eqliation with E = 1 = 0 is solved in 
terms of Legendre functionsx5: 

~ ( r )  -cIPX(2) + c & ~ ( z ) ,  
2 r x ( % + I )  =Uolp2. 

The condition X(0) = 0 yields the ratio 
-- 

c, QAO) n nx -=--=- 
c; P"(0) z t g 2 .  

Taking into account the behavior of the functions P, (z) 
and Q,(z) as z - l ( r  - m), we get 

At the instant of the onset of a level we have 
x = 1,3,5,. . . . In this case c2 = 0, ~ ( r )  satisfies the 
boundary condition (2.6a), and the s-scattering length 
has a pole. 

5 4. CONNECTION BETWEEN THE LEVEL SHIFT 
AND THE EFFECTIVE-RADIUS APPROXIMATION 

We establish now the connection between (2.2) and 

(2.4), on the one hand, and the effective-radius ap- 
proximation," on the other. This leads to a more 
rigorous derivation of the equations of Sec. 2, and also 
yields the correction of order r,A2, which is difficult 
to obtain by the matching method. 

It is known (see, e.g., Refs. 12 and 15) that the phase 
of the scattering by the potential V,(r) - m-' is not 
equal to the sum of the Coulomb phase, o, 
= a r g r ( l +  1 + icu/k), and the "purely nuclear" phase 6p) 
corresponding to the potential V,. The total scattering 
phase shift is written in the form 0, +6,, where 6,  is 
different from 6p). Considering next the case 1 = 0, we 
designate 6i0) by 6, and 6, by 6,. The energy depen- 
dence of the phase shift 6,, a t  small  momenta k is de- 
termined by the Bethe equation1' 

Co'k ctg 6 , . - k h ( q )  =-l/a,.+'lfr..kz-PrCCak'+. . . , 
Coa=2nql(1-e-""n), h ( q )  =Re $( - iq )  -'Iz In q f ;  

(4.1) 

here q = a/k  is the Coulomb parameter. For potentials 
customarily employed in nuclear physics, the constant 
P is small (IP I < 0.1, see  Ref. 18). Therefore the last 
term of (4.1) can be discarded in  the region &,,S 1. 

To change from (4.1) to the discrete spectrum, we 
make the substitution 

k-R, - a  ctg 6+1. (4.2) 

Here 

and Cgkcot6 goes over into 

andcancels out the last term in h ( ~ ) .  As a result we 
have 

To find the "purely nuclear" scattering length a, we 
use the relation 

Cozk ctg 6..-2ah ( q )  

dr 
( i i ( " ) ~ - ~ ( o ) ~ ) -  + In 2ar+X (4.4) 

(see Ref. 12, Eq. (348) of Chap. 6, where the defini- 
tions of the functions do), Z, etc. a re  also given). Put- 
ting k - 0, we get 

i / a . - i / a , . = k ( h  Rc+co), (4.5 

where c, = 2C +In 2, 

Equations (4.4)-(4.6) a re  exact, but a r e  by them- 
selves not very useful because the functions dO),ii,. . . 
depend on a, and a,. We note that the integral in (4.6) 
converges a t  r -r, (at r > r, the strong potential is 
turned off and do) - a('), G - Z). Replacing T i  by and 
iZ by d") in the region r S Y, (where the nuclear inter- 
action is stronger by two orders of magnitude than the 
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Coulomb interaction), and assuming by virtue of 
IEI <<I V,(O)l that zb)(r)  = l , ~ ~ ( r ) ~ ~ , ( r ) ,  we find that 
Rc-r,  and 

The scattering lengths a r e  measured here in units of 
a,, c, = 1.848, and r ,  is defined in (2.5); a! = 1 for the 
p$ system and a! = - 1 for pp scattering. From (4.7) 
and (4.3), discarding the correction of order r,,, we 
arrive a t  Eq. (2.4). 

The accuracy of (4.7) can be assessed using a s  an 
example 

(a separable Yamaguchi potential that admits of an 
exact sol~t ion '~) .  In such a potential, the bound level 
appears at g = 2PS, and x0(r) = 1 - e-". The integral 
(2.5) can be easily calculated and Eq. (4.7) yields in the 
case of pp scattering 

I 
a,. 2 

Table I1 lists the values of the parameter P a n d g  and 
of the scattering lengths a, and a,, taken from Refs. 
20 and 21 (the experimental value of a,,, according to 
the latest c ~ m p i l a t i o n , ~ ~  is a, = - 7.828i 0.008 F for 
PP scattering in the 'So state). The value of a,, was 
calculated in Ref. 20 by numerical integration and in 
Ref. 21 analytically. The last column gives the values 
of a,, calculated from Eq. (4.9). It is seen that the cal- 
culation of the Coulomb interaction in the region r < ro 
in accord with perturbation theory, with (4.9) and (2.4) 
a s  the result, is accurate in this case to -lo?. 

We present now the scattering lengths a, and a,, for 
the pp  system, calculated on the basis of the experi- 
mental shift of the 1s  levelDg Equation (4.3) yields 
a,, =4.64* 0.13 F (the e r r o r  is due mainly to the ex- 
perimental uncertainty of the shift AE,; the term 7, 
in (4.3) changes a,, by only -0.1% when r, changes 
from 0 to 2 F), The purely nuclear a,, is calculated 
with a greater uncertainty, since Eq. (2.4) contains 
lnr,. The value of r, can in principle be easily cal- 
culated if a definite Nfl-interaction potential is speci- 
fied (for example, by choosing the OBEP one-meson 
exchange potential). Since the important role in the in- 
tegral of (2.5) is played by r <<Yo, and the properties 
of the NN interaction a t  short distances have not been 
sufficiently well investigated, this procedure does not 
seem to us reliable enough a t  present. We therefore 

TABLE II. Parameters of Yamaguchi poten- 
tial in singlet pp-scattering lengths. 

FIG. 2. The length a, for p$ scattering, corresponding to the 
experimental shift9 of €he level Is. 

show in Fig. 2 a plot of a, against the parameter r,. 
Since r ,  = 0 . 4 ~ ~  (see the examples in Table I), the val- 
ues r, = 0.8-1.2 F seem the most probable. The scat- 
tering length a, then amounts to approximately 7 F. 

We note that the perturbation-theory equation (1.1) 
yields (at the same shift AE,,) a value a, =3.5 F, which 
is half the true value. Thus, perturbation theory in 
terms of the scattering amplitude is valid in a rather 
narrow range. The reason lies in the distinctive be- 
havior of the Coulomb wave functions, see  Ref. 13. 

The large value of the scattering length a, = 7 F points 
to the existence in the pp system of a near-zero level 
Q s  of the quasinuclear t y ~ e , ~ . ~  which in fact causes the 
large shifts of the Coulomb ns  levels. Its binding en- 
ergy &(Qs) can be obtained from the shift AE, by using 
Eq. (4.3). This yields v = 0.106 and &(Qs) = 1100 keV at 
r,, = 0. With increasing radius r,, the energy & in- 
creases  to & = 1400 keV at  r,, = 1.5 F. We see  therefore 
that the determination of the position of the Qs level is 
less  reliable than for Coulomb ns levels, because of the 
high sensitivity to the correction for the effective 
radius. A more accurate calculation of &(Qs) must be 
made within the framework of the two-channel problem 
(see the remark in Sec. 7). 

For  an experimental verification of the existence of 
the Qs level i t  is important to investigate i t s  principal 
properties : the average radius, the probability of 
radiative transitions to this level, etc. We proceed 
now to deal with these questions. 

55.  EFFECTIVE SIZE OF pp ATOM 

For the PP-atom levels considered by us, the con- 
ditions r,<<a, and A r 0  << 1 a r e  satisfied. In this case 
the average radius - 

<r>= iX2rdr  
0 

can be calculated in analytic form. In the region r 5 r, 
we can neglect the Coulomb interaction and the binding 
energy & = 1/2va compared with the potential V,. There 
fore the wave function of the s state takes the form 
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where v =A- '  and x,(Y) is defined in (2.6). 

Joining together expressions (5.1) a t  r ,<<r << 1 / ~  
and taking into account (2.1) and the normalization con- 
dition 

we determine the constants 
C ~ = C / ~ ( ~ - - V ) ,  

hr. + 0 (hr.2 In r.) . I 
Here re is the effective radius for the strong potential 
V, [see (2.7)], while J(v,  0) is an integral calculated in 
Appendix A. 

Mean values of the type (ra) a r e  determined simi- 
larly: 

The last term in the curly brackets is of the order of 
smallness (r0/aB)"', s o  that a t  q>  0 it can be neglected 
compared with the change of the normalization constant 
c (on the contrary, if -1 < q< 0 this correction is the 
principal one). 

In particular, the average radius is 

where pc is the average radius of the state vs in the 
limit when the interaction Vs is characterized by a zero  
radius. With the aid of (8.8) and (8.9) we get 

At the integer points v =n = 1,2,3,. . . we have A(n) 
= 1, B(n) =0, and (Y) =gn2 is the knowni5 value for the s 
states in  the field of a point charge. If v is not an in- 
teger, then pc exceeds 3v2/2. For Coulomb levels 
(v2 I), the difference between these quantities is small 
and decreases rapidly with increasing v. On the other 
hand, a t  v << 1 (the Qs level, for which c >> Ec) we have 
pc/(3v2/2) = 1/3v >> 1. 

The results of the calculation of (Y) a r e  shown in  Fig. 
3. With increasing level binding energy, the average 
radius decreases monotonically. The correction for the 
finite radius of the nuclear forces becomes noticeable 
a t  v- 0.5(c > 50 keV), and reaches 25% for the quasi- 
nuclear leveL It is seen from Fig. 3b that (r) exceeds 

I 
a 8 1.0 1.2 

6 ,  Me" 
- ---- 

FIG. 3. ~ i e r a g e  radius of the v s  state: a) as a functidn of the 
parameter v(6-) is  given in units of aB); b) in the region of en- 
ergies & near the quasinuclear level. Curves I-?-,= 0. 2-re 
= 2  F .  The dashed curves are plots of (r) = 1 . 5  9. 

re noticeably at E < 1.3 MeV. Therefore the Qs state is 
analogous to a deuteron: p and spend an appreciable 
fraction of the time outside the effective radius of the 
nuclear forces. Consequently, Eqs. (2.4) and (4.3) 
st i l l  remain meaningful a t  c 5 1.5 MeV. On the other 
hand, if pc -re, then the properties of the bound state 
begin to depend substantially on the form of the poten- 
t ia l  V,, by virtue of which such states cease to be de- 
scribed by Eq. (2.4) or (4.3). 

5 6. PROBABILITIES OF RADIATIVE TRANSITIONS 
IN THE pp ATOM 

Measurement of the spectrum of the gamma rays 
emitted in transitions between the levels of the pp 
atoms provides a convenient method of verifying the 
theory expoundedabove. We have therefore calculated 
the probabilities of the electric dipole transitions 
nib -us. Since the region of restructuring of the atomic 
spectrum for levels with 1 = 1 is much narrower than 
for 1=0, the shift of the P levels was neglected. In the 
calculation of the radial matrix element (vslrl np) the 
wave function of the vs level was chosen in the form 
(5.1), while for np we used a solution regular a t  zero 
[see Eq. (8.11)j. As a result of the calculations, the de- 
t a i k  of which a r e  discussed in Appendix A, the matrix 
element (vslrlnp) and the probability of the transition 
can be obtained in  convenient analytic form: 

where w =(n2- v2)/2n2v2 is the transition frequency, 
a=e2/Ec=&, 

(k+2) ! (n-2) ! 
f (n,  V )  = X ~ ( I + X ) ~ ~ + ~  - ( I - z )  k-2 [ L=Z ( -1 ) ' (k -2 ) !  ( n - k ) ! r ( k + 3 - v )  

where x=(n-v)/(n+v), with O<x< 1 at  n>v ;  the quan- 
tities A(v) and re were defined in (5.6) and (2.7), and 

p , = [ v P ( l - v )  J(v ,  0) I - I  
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(the probabilities w a r e  expressed here in units of 
me4/Fi3 = 3.80- 1019 sec-I for the pp atom). The argu- 
ment of the hypergeometric functions that enter in 
f(n, v) is  x/(1 + x )  = (n - v)/2n < $. Therefore their 
values can be easily calculated with the aid of the usualz3 
power ser ies  for ,F,(cr,p; y; I), which in this case con- 
verges rapidly. 

We consider now the results of the numerical cal- 
culations, the properties of the transition probabilities, 
a s  well a s  some limiting cases. 

1. If a near-zero level with 1=0 exists in the nuclear 
potential V,, then a small  change of the depth of V, 
al ters greatly the energies of the s levels while the np 
states remain practically unchanged. It is therefore of 
interest to determine the probabilities of the transition 
np - vs a s  flmctions of v = ( 2 ~ ) - ' ~ ~  AS v- n these prob- 
abilities vanish like (n - v)3 because of the factor w3; 
as  v - 0, they decrease because of the weak overlap of 
the wave function Inp) and Ivs) (see Fig. 4), Somewhat 

FIG. 5. Relative prob- 
abilities of the transi- 
tion 

R,= w (np+vs)/w (Zp-tvs) 

The values R, at fixed v 
correspond to a definite 
spectral series (Lyman 
series at v = 1, Balmer 
series at v = 2 ,  etc.). 

unexpected i s  the fact that in the interval 0 < v < n  the 
dependence of w(np - us) on the binding energy c is not 
monotonic but has n - 1 maxima and n - 2 zeros, The 
zeros a r e  due to the fact that the matrix element 
(uslrlnp) i s  a continuous function of v and has different 
signs at v = rn and v = m  + l .  As a result, unique "dy- 
namic" hindrances a r e  imposed on the dipole transi- 
tions np -us  a t  certain (non-integer) values of the pa- 
rameter v (see Fig. 4b). 

2. The relative probabilities R, =w (np - us)/ 
?u(2> -us) vary much more smoothly in the region 
v < 1.5. If the level is deep enough (v < 0.5, i.e., E 

2 50 keV), then R, has a very  weak dependence on the 
level energy, see  Fig. 5. At small  v we have 

To calculate A,, B,, etc., i t  is convenient to s tar t  
from the integral representation of (vslrl np). given in 
Appendix B (where explicit formulas a r e  also obtained 
for A,, B,, and C,). The numerical values of these co- 
efficients a r e  given in Table III. A comparison with the 
results  of the numerical calculation in accordance with 
the exact formulas (6.1) and (6.2) shows that the e r ro r  
of (6.3) does not exceed 1% a t  v < 0,65, i.e., at c > 30 
keV. Therefore it is convenient to use the expansion 
(6.3) when transitions to the quasinuclear level Qs a r e  
considered. 

It should be noted that when R, 'is calculated the first- 
order correction for the radius of the nuclear forces 
cancels out. Therefore the values of R, a r e  theo- 
retically determined more reliably than the absolute 
transition probabilities w,. 

3. As v -  0 the wave function (5.1) takes the form 
Xvs(r) = (2/v)lke-'I", which corresponds to a level in a 
13 potential. In this limit, the calculation i s  ele- 
mentary: 

FIG. 4. Probabilities of E l  transitions np- us as functions of 
the "principal quantum number" v of the s level: a-at v < 2. 
b-in the region of atomic levels. The curves for n =  3, 4 ,  and 
5 are plotted for re= 0. For the case n = 2  (transition 2p- vs) 
the figure shows the plot of w, against the effective radius re,  
as well as the approximation (6.4) (dashed curve). The prob- 
abilities w , ~  w(np- us) are given in units of lo-" sec-I 
= 6 . 5 8 ~ 1 0 - ~  eV. 
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The corresponding curve i s  shown dashed in Fig. 4a. 

A comparison with the exact calculation shows that 
this approximation has a rather narrow range of va- 
lidity (v s 0.1). Because of the simplicity of the equa- 
tions, however, i t  can be used to estimate the prob- 
abilities of the transition to the quasinuclear level. 
For transitions from the p states of the continuous 
spectrum to the vs level we obtain in this approxima- 
tion 

dw 16 
-=- 

k , l+kZ 4 
dk 9a3v----erp(-Tai-ctgkv), l+kzvz I - ~ - z ~ I *  

where E =k2/2 is the initial energy. At E > E, the value 
of &/dk increases like E ~ ~ ,  

4. Another limiting case is that of transitions from 
highly excited P levels, when n>> 1 and n >> v. The sum 
(6.2) contains then many terms of the same order, 
thereby complicating the calculation. In the limit as 
n - 03, however, i t  is possible to obtain for the transi- 
tion probability a simple asymptotic equation. 

Assuming n - 03 and fixed values of 1 and r, we have 

where A, is connected with the Bessel function by the 
relationz4 

In particular, as r - 0, 

Using (6.5) and (A.41, and taking into account the value 
of the integral 

we obtain 

lim (vslrlnp>=p ( v )  n-", 
"-- 

where P(v) is given by formula (A.7). 

Thus, in the limit of large n the dependence of the 
transition probabilities on the quantum numbers of the 
initial and final states factors out: 

w (np-vs) . , ,=oo~(v )  n-', (6.6) 

where 

2zv+3A'(v) [ 1'(k+5) 
P ( v )  = ( -2v)  

9 r ( v ) r ( v + l )  k-o k!r (k+5-v )  

w, =cySme4/E3 = 1,47 10'' sec-', and A(v) is defined in 
(5.6). 

We note the limiting cases 

and for integer v = 1,2, 3, . . . 

A numerical calculation yields for P(v) the curve shown 
in Fig. 6. We note that the zeros of the function P(v) 
lie a t  v = 1.52,2.56, . . . . These points correspond to the 
energy values E(vs) = - 1 2 . 5 ~ - ~  [keV] a t  which the proba- 
bilities of E l  transitions to the level us from the high- 
lying P states vanish. The largest values of the proba- 
bility of the transition np -us  a r e  reached a t  v =0.55, 
when P(v)=0.53. With increasing v, the value of P(v) 
decreases: P ( l )  =0.2605, P(2) = 0.0382,P(3) = 0.0128, 
etc, 

5. It follows from (6.1) (with account taken of the ex- 
perimental shifts of the level Is) ,  that the probabilities 
of the dipole transitions from the 2P level to the atomic 
level 1s and to the quasinuclear level Qs a r e  com- 
parable. This follows also from a simple dimensional 
estimate of the ratio R =w (2p - Qs)/w (2p - Is), which 
was obtained by I. S. Shapiro and stimulated the exact 
calculations described above. The probability of the 
transition from the 2p state to the s state is 

Recognizing that at small distances we have $,,-r and 
JloS/Jlls - ((r>/aB)-sh, we obtain 

where W Q  and w, a r e  the frequencies of the transitions 
2p - Qs and 2P - Is, (r) is the average radius of the Qs 
state. At wo/dl - 10' and (?')/aB = 0.10-0.15 the value 
of R changes from 0.1 to 1. 

6. When v becomes an integer, the shift AE, van- 
ishes. Equation (6.1) becomes simpler and coincides 
with Gordon's formulaz5 for the transition probabilities 
in a hydrogenlike atom. We demonstrate this with 
v = 1 a s  an example. In this case the hypergeometric 
function in (6.2) becomes equal to unity, and the sum 
can be calculated explicitly: 

k+2 Z " - ~  
(1-s)k-2 = - 

(k -2 ) !  (n -k ) !  In-2) ! [ (n+2)z -  (n-2) I ,  
)I-2 

w h e r e x i ( % - l / n + l ) .  Hence 
128n (n-1) 

w (np+ Is) = 
9(n+1)2"+' Oat 

(6.11) 

FIG. 6 .  Dependence of the probability of the transition np - v s  on the position of the s level in the limit n >> v. 
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which coincides with the known r e s ~ l t ~ ~ ' ~ '  for the Lyman 
ser ies  in the hydrogen atom. 

57. CONCLUSION 

We make now a few concluding remarks. 

1. Equations (2.4) and (4.3) enable us, by measuring 
the shift of one of the s levels of the PP atom, to calcu- 
late the shifts of the remaining Coulomb levels, and 
also the scattering lengths a, and a,. From the calcu- 
lations described in Sec. 6, it follows that the probabili- 
ties of the radiative transitions from the 2p level to the 
levels I s  and Qs a r e  comparable in  magnitude (see Fig. 
4a). Therefore the conclusion that a quasinuclear level 
Q s  exists can be verified by direct experiment: we 
must seek in the gamma-ray spectrum a line with en- 
ergy -1 MeV having approximately the same intensity 
a s  for the 2p- I s  transition. 

2. We used everywhere above the single-channel 
approximation. At distances Y<Y,, however, the 
transition pfi- niz is possible, so  that the Coulomb 
spectrum of the pfi atom must be determined, strictly 
speaking, with account taken of both channels. Under 
certain assumptions concerning the NN-scattering 
lengths in the states with isospin I= 0 and I= 1, the 
binding energy of the Qs level decreases when account 
is taken of the niz channel, by an amount on the order of 
100-300 keV (private communication from B. 0. 
Kerbitov). This estimate, however, did not take into 
account the Coulomb interaction at r < Y,. Calculations 
of the two-channel problem with complete allowance 
for the Coulomb interaction and for the mass difference 
m, - m, a r e  presently in progress. 

3. The properties of the discrete spectrum in a Cou- 
lomb field distorted at short distances were first in- 
vestigated apparently by Zel'dovichZ7 (in connection with 
the question of the energy levels of an electron in an 
impurity semiconductor). In this case 

and the potential in the region Y <yo can differ quite 
strongly from the Coulomb potential. The electron de- 
tached from the donor moves at r >> Y, in the field of a 
positive ion in a medium with dielectric constant &. 

At & >> 1 the radius of the first  Bohr orbit increases, 
and the energy of the Coulonlb level decreases: 

(in atomic units). Here p =meff/m, m is the electron 
mass, meff is its effective mass in the lattice, and 
r, -A2/m$ = 1 is the radius of the ion. In a medium 
with a large c, the condition Y, <<a,, which is  similar 
to that used in the theory of the pF atom, is satisfied. 

Zel'dovichz7 obtained for the s-level shifts an equa- 
tion equivalent to (1.1), indicated the connection be- 
tween the shift and the scattering length a,, and showed 
that the well (Y <yo) can exert a substantial influence 
on the Coulomb levels only in the presence of a bound 
state (real o r  virtual) with low binding energy. He 
indicated that rearrangement of the atomic spectrum 
sets  in at the instant when a bound level appears in the 

well (in the absence of a Coulomb field), and estimated 
the width of the restructuring region a t  r,/a, -meff/m& 
<< 1. Thus, Zel'dovich's papeP7 anticipates some of 
the later  result^.^" It does not contain, however, 
equations such a s  (2.2) o r  (2.4), which describe the 
level spectrum at  a l l  values of the well depth (including 
the restructuring region). 

4. We wish to note finally that in a different physical 
situation5) Eq. (4.3) with Y,, = 0 was obtained by Nikishov 
and  itu us." They have qualitatively investigated the 
influence of a short-range potential on a system of 
Coulomb levels, but neglected the difference between 
the scattering lengths a, and a,, which can be sub- 
stantial at a low binding energy & (see Eq, (4.7) and 
Table XI above). 
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marks, a s  well a s  Ya. B. Zel'dovich and K. A. Ter- 
Martirosyan for a discussion of the results. We a r e  
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terest  and support, and also N. I. Borisova and 
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APPENDIX A 

Calculation of integrals with coulomb wave functions 

As seen from (2.1), the function W,,,,, h ( 2 ~ ~ )  with 
1 = 0 i s  finite a t  zero for any energy. Therefore the 
contribution of the region Y <yo is  small, and in the 
normalization and calculation of the matrix elements 
of the type (vslrlnp) we can use the approximation with 
a zero radius of the nuclear forces 

x,. ( r )  =rRv,(r) =e,W,, 11, (2hr) .  (A. 1) 

Determining the constant c, from the condition 

jxv.' ( r )  dr= i ,  
0 

we obtain . 

c,= [ ~ A I I  (v,  0) 1'" = ~ ' ~ , r ( ~ + i )  A (v) ' 

where v=A-',A(v) i s  given in (5.6), and 

To calculate this integral, assume that v<  1 (the re -  
sults for arbitrary v will be obtained by analytic con- 
tinuation). We replace in (A.3) each of the Whittaker 
functions by an integral representationz3 

after which the integral with respect to x is calculated 
in elementary fashion: 
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We make the change of variables t/(l +t) = x ,  ~ / ( 1  +T) 
= y; then 

l+t+r=(i-xy) /(I-x) ( l -y ) ,  

The matrix element is  represented as  a sum of in- 
tegrals of the type - 

e-'I"?+* w,;/, (2rIv) dr, 
0 

which can be expressed by using Eq, (7.62.1.3) from 
Ref. 23 in terms of the function 

The res t  of the integration is carried out with the aid 
of Eqs. (9.111) and (7.512.5) of the handbooka3 and 
yields J(v, q) in terms of a generalized hypergeometric 
serieszg: Converting the hypergeometric function from the argu- 

ment -z to the argument z/(l +z), we obtain 

With the aid of the identityas 
(n-2) ! (k+2) 1 * C t - ' ) '  

(n-k)! (k-2) II'(k+3-v) 
I-z 

(A. 12) 
where p = e +f - a  - b  - c, we obtain the final results for 
the integral (A.3): where z = (n - v)/(n + v). This leads directly to (6.1). 

APPENDIX B 
At q = 0, 1, 2,. . . the hypergeometric function contained 
in this expression reduces to simpler special functions. 
For example, at q = 0 

Dipole-transition matrix element as n + m 

We obtain an integral representation for the matrix 
element of the electric dipole transition 

Differentiating the equation 

Replacing the Whittaker function by means of Eq. (8.4), 
we integrate with respect to Y using the equality 

with respect to the parameters H and A, and putting 
x = - v a n d X = l - v ,  weget 

and obtain 

(vslrlnp) n-0 

whence 

sin' nv 
J ( V , O ) = Z [ ~ ( V + ~ ) ] ~ [ ~  --[*I(~)-- n2 "" 2v2 I] . (A.8) 

The change of variable x =  (1 +2t)-' leads to the sought 
representation Similarly a t  q= 1 

C, i - z  -" ( i - v ~ / n ) ~ - '  
(vslrlnp) =- 

v ( 1  (i+uzin)*+* ( z  - )  2 (B.4) 

which contains only elementary functions. From this 
we obtain a s  n - - This yields Eq. (5.5) for the average radius of the state 

us. 
lim <vrlrlnp)-p(v) n-*, 
*..- In the calculation of the magnetic element of the elec- 

t r ic  dipole transition, we take into account the fact 
thatT5 

(A. 10) (the dependence of the matrix element on the numbers 
n and v factors out). Since we used (A.4) in the deriva- 
tion, this integral converges only at v < 1. An analytic 
continuation to the region Rev> 1 can be obtained by ex- 
panding the exponential in (B.6) in a se r i e s  an inte- 
grating term by term with account taken of the formula 

Here n = 2,3,. . . , s o  that the confluent hypergeometric 
function reduces to a polynomial: 

As a result we get 
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Since w (np - u s )  = cysp2(v)/18vens a s  n- m,  we obtain 
from this equation (6 .7) .  From (B.9)  follows the expansion (6.3), in which 

Equation (B.7)  yields an analytic continuation of the 32(n2-1) 8 4 
An=- function P ( v )  to the entire complex v plane. Indeed, as  

3n5 , B, =-(nz-I) (nP-4), C - -B.. (B.10) 
312' "-15 

k - m we have 

Therefore a k-th term of the ser ies  behaves like 
(-2v)kk"'4/k! and the ser ies  (B07)  converges absolutely spectrum of which is much richer than the bound-state 
at al l  values of I vl . Thus, the restriction Rev < 1 can . s p c t r u m  of the NN system (where there is only one bound 
be disregarded in the final formulas. state-the deuteron). The reason is that the attraction be- 

We present the explicit form of the constants Ci con- 
tained in the equations of this appendix: 

where A ( v )  was defined in (5.6). 

The integral representation (B .4 )  is  convenient in the 
limiting case v - 0 ,  which corresponds to a deep s 
level. Substituting the expansions 

1-2 4 (= ) =1+2vt+2vzt2 + -vat3+ . . . , t = Arth x, 
3 

in the integral of (B .4 ) ,  we get 

[K+LY+M.rZ+N.vS+ . . .I, (vsIrlnp>- -- 
r(i-V) 

where 

The subsequent coefficients already depend on n and 
have a rather unwieldy form, but the most complicated 
integrals cancel out in the differences M, - and 
N ,  - N,. We obtain 

In this calculation we used the value of the integral 

tween N and 2P i s  stronger than between two nucleons at  ap- 
proximately the same effective radius of the nuclear  force^.^ 
'We use in this article the Coulomb units ti = m = e = 1. For the 
pji system the energy unit i s  E,= me4/$ =25.O keV, the unit 
of length is the Bohr radius a~ =ti2/me2 = 57.6, where m 
=M,/2 is the reduced mass. 

)A brief exposition of the results of this section was published 
earlier .i3 

4'We note that at the instant when the level is produced (i. e .  , 
g=go,  a,=-), a substantial change takes place in the asymp- 
totic form of the zero-energy wave function rp,(r,g) a s  r-Q. 
To emphasize this, we have designated rp, (r.go) by X, (r). 
Since xZ -r-1 a s  r-m, this function is  normalized if 1 3 1  
(the rapid de cream of X, a t  infinity is due to the centrifugd 
barrier). At 1 = 0 it satisfies the boundary condition (2.6a). 
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Contribution to the statistics of an ensemble of nonlinear 
quantum oscillators excited by an external periodic force 

V. N. Sazonov 
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Zh. Eksp. Teor. Fiz. 77, 1751-1755 (November 1979) 

The level population of an ensemble of oscillators is considered in the case when the resonant quantum 
number n, determined from the condition Enr+, - En, Z%UI, is satisfied (a, is the frequency of the external 
force). It is shown that on levels with n >n,  there can appear an excess population that can be relatively 
large even if the relaxation time is much shorter than the time of excitation by the external force. It is 
noted that laser radiation can exert an appreciable stimulating action on chemical reactions with large 
activation energy, whereas reactions with low activation energy are not subject to this influence. 

PACS numbers: 03.65.Ca, 82.20.Db 

1. Experiments1-5 have shown that even relatively 
weak laser radiation acting continuously on a dense gas 
mixture1* or on a solid5 is capable of exciting the 
above-thermal impurity resonant molecules contained 
in the medium, and consequently stimulate chemical 
reactions in which these molecules participate. A the- 
oretical interpretation of these experiments calls for 
the study of the statistics of an ensemble of particles 
excited by an external force (i. e., by a laser radiation) 
and located in a thermostat (i. e., in an ambient of non- 
resonant molecules). 

Similar problems were considered recently in a num- 
be r  of studies:* The present note deals with an en- 
semble of nonlinear one-dimensional oscillators. After 
simplifying the initial equations by the averaging meth- 
od (sec. 2), we obtain their solution in the case of os- 
cillators with rapidly relaxing phase (Sec. 3). The last 
model admits of a simple analytic solution and at the 
same time contains enough physical substance for  nu- 
merical estimates (Sec. 4) and some qualitative con- 
clusions (Sec. 5). 

2. The initial equation for the density matrix p of a 
linear oscillator can be assumed in the 

hv 
ihb- [H-F( t )x ,  p]= --( ( 1 f N )  (2apa+-a+ap-pa+a) 

2 
+N (&+pa-aa+p-paa+)) , 

(1) 

where H is the Hamiltonian, with H In) = En In) and 

w,  is the natural frequency, F(t)  is the external force, 

is the thermal quantum number, T is the temperature 
of the thermostat, and v-' is the characteristic relaxa- 
tion time of the oscillator in the thermostat. Equation 
(1) admits under conditions (2)-(5) of an exact solu- 
tion?' 

Proceeding to consideration of a nonlinear oscillator, 
we confine ourselves to a harmonic external force F(t)  
= F  cos w,t and to the resonant case 

Expressions (1) and (3)-(5) can then be left unchanged, 
apart  from the substitution w,- w, in (3) and in (5). 
Thus, the nonlinearity of the oscillator manifests itself 
only in that its energy spectrum E n  differs from (2). 
That this approximation is admissible was proved in 
Ref. 12. 

We introduce the matrix P :  
pmn=pn. exp [ - io ,  (m-n)  t 1. 

The matrix P varies little over the period of the exter- 
nal force; now, discarding the rapidly oscillating 
terms,  we get from (1) 

- - 
)mn+if3mn1 (Em-En)/h-w,(m-n) I +  '12i(p,,-ln'"f - p m - ,  ,m'"f 

+ ~ m n + t ( n + l ) ' " f - p l + l  , ,(m+I)"f') 

= v ~ ( m n ) ' / . p , - ,  . - ,+v ( I fN)  [ ( m + l )  ( n f l )  ] ' * p m + l  ,,+, 
-v[ (m+n) (N+' lz )  +Nlpmn, (7) 
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