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Allowance for the quantum nature of matter fields and weak gravitational waves on the background of 
the classical metric of a cosmological model leads to two main effects-vacuum polarization and particle 
production. The fmt of these effects can be taken into account qualitatively by the introduction into the 
Lagrangian density of the gravitational field of corrections of the type A + BR + CR 'lnJR/Rd; the 
second, by the speAication of a local rate of production of particles (gravitons) proportional to the 
square of the scalar curvature R '. It is shown that simultaneous allowance for the influence of these 
effects on the evolution of a homogeneous anisotropic metric of the first Bianchi type eliminates the 
Einstein singulanties. Asymptotic approach to the classical model, however, is attained-only if additional 
assumptions are made. In the contraction stage the solution is close to the anisotropic vacuum Kasner 
solution; in the expansion stage it tends to the isotropic Friedmann solution, in which matter is produced 
by the gravitational field. 

PAC3 numbers: 95.30.Sf 

5 1. INTRODUCTION 

The presence of a singularity in the general cosmo- 
logical solution1 indicates that in the framework of 
classical general relativity collapse is not halted. 
However, a t  t -t, [t, = (GA/c~)"~ is the Planck time], 
quantum effects must become important. A number of 
authorsz4 have shown that these can be manifested a t  
the threshold of the essentially quantum region of gra- 
vitation through the quantum nature of the matter fields 
and weak gravitational waves on the background of a 
classical metric. The most important effects a r e  the 
production of particles2 (see also Ref. 51, including 
gravitons,' and vacuum polarization. The influence of 
particle production on the evolution of the metric was 
investigated by various approaches in Refs. 7 and 8. 
The vacuum polarization can be taken into account 
qualitatively by the introduction into the Lagrangian 
density of the gravitational field of corrections quad- 
ratic in the curvature. Consideration of different 
quantum fields leads to the following pairs of correc- 
tions: RZ and R,RU (or R2 and c,,,C*'") and certain 
coefficients of these terms, which, in general, depend 
logarithmically on the c u r ~ a t u r e ? . ~  The correspond- 
ing field equations a r e  of fourth order in the compo- 
nents g, of the metric. It was conjectured in Refs. 9 
and 10 that the corresponding theory could admit cos- 
mological solutions without singularity. In such a 
model, the maximal value of the curvature would never 
be significantly greater than liz = cS/GA, i. e., the 
bounce (regular replacement of contraction by expan- 
sion) would not lead to the essentially quantum region 
of gravitation. 

The investigation of this problem for an isotropic 
universe with correction AL, =BRZ to the Lagrangian 
density showed" that a bounce exists for a definite sign 
of B. However, a s  It 1 -* we have R2--*, i. e,, a 
singularity of non-Einstein type ar ises  because of the 
rapid expansion. In this case, we already have R2 >> 12 
at  finite t, which renders the semiclassical theory in- 
valid. Choice of the opposite sign of B ensures a pow- 
er-law asymptotic behavior of the scale factor r(t) a s  

t-*, but i t  does not eliminate the singularity a t  t = 0. 
Consideration of the other types of correction indicated 
above for an anisotropic metric leads to an appreciable 
complication of the field e q u a t i ~ n s ' ~ " ~  and results that 
agree qualitatively with those of Ref. 11. It was shown 
subsequently" that for the isotropic model one can find 
a class of solutions without Einstein singularities for 
a l l  t. The possibility of constructing such models is 
based on two factors. As was shown in Refs. 3, 5, and 
9, the coefficients of the quadratic corrections contain 
factors of the form In1 R/R, I. In the region RZ > R: this 
ensures a bounce, and for R2 < R: i t  gives a power-law 
asymptotic behavior of the scale factor. Such an 
asymptotic behavior can be obtained in the limit t-* 
only with allowance for the production of matter, which 
was simulated in Ref. 14, a s  in Ref. 8, by the inclu- 
sion of bulk viscosity, though in accordance with Ref. 
15 the coefficient of viscosity is assumed to depend on 
RZ . 

This problem requires further investigation in two 
directions. First ,  in the contraction stage the isotro- 
pic solution is unstable, which results in a transition 
to an anisotropic "vacuum" stage before the onset of 
quantum effects. Second, i t  is not known whether rig- 
orous allowance for matter production will halt the 
growth of R2 after a bounce and ensure transition to a 
power-law asymptotic behavior of the background met- 
ric. 

In the present paper, we therefore consider a homo- 
geneous cosmological model of the f i rs t  Bianchi type in 
a modified theory of gravitation with action prescribed 
by Eq. (1) below and with self-consistent allowance for 
the production of particles, the local rate for the in- 
crement in their number density being mR2. 

The additional terms in the gravitational equations 
considered in the present paper a r e  simplified expres- 
sions for some of the single-loop quantum corrections 
in an external classical gravitational field [except for 
the phenomenological term prescribed below by Eq. 
(271, which can evidently ar ise  only in the following 
approximations]. For  simplicity, in the present paper 
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we do not consider the other single-loop corrections 
which have a similar structure but contain the Weyl 
tensor Cp,,. However, these corrections a re  small 
for small anisotropy. The region of applicability of the 
single-loop approximation is restricted by a condition 
of the form 

it is not necessary for the metric of space-time to be 
close to the Minkowski metric. 

It is to be expected that the obtained equations can 
still be used qualitatively a t  the limit of applicability 
of the approximation, i. e., when the two sides of the 
inequality a re  of the same order. Therefore, the solu- 
tions of these equations for which a t  all  t (-m < t 

can be regarded as having physical meaning. We shall 
show that such solutions exist and a r e  fairly general. 
On the other hand, i f  for some solution this last in- 
equality ceases to be satisfied after some t = to, then 
for t - ,to our semiclassical theory ceases to be valid 
and nothing can be said concerning the further evolu- 
tion of the model. 

52. BASIC EQUATIONS OF THE GRAVITATIONAL 
FIELD 

In accordance with what we have said above, to 
obtain the field equations we shall consider an action 
of the form (here and below c = R =  1) 

For  scalar uncharged nonconformal particles in an iso- 
tropic universe C =1$/144r (see Appendix I). The 
choice of A and B, which admit a certain freedom, will 
be specified below. 

The metric of space-time is specified in the form 

where the components of the metric tensor can be con- 
veniently written in the form 

a-rg,, b=rg2, c=rg,, abc=rs, 

Withthisnotation, for the components $ we have 

In accordance with the value of C given above, we in- 
troduce a new characteristic length and dimensionless 
Ricci tensor: 

1,-1,112 (2n)  " 4 p / 3 0 ,  pl=l,LR:, (5) 

by means of which the correction to the Lagrangian 
density in (1) can be written in the form 1,'2f(p), where 
f b )  i s  a dimensionless function. Variation of (1) 
gives14 

from which i t  follows that <;k = 0. The system (6) to- 
gether with (3) and (4) makes it possible to obtain an 
equation containing only the scale factor r(t) and i ts  
derivatives. Forming for this the differences of Eqs. 
(6) with a, P = l ,2,3,  we have 

It is assumed that T: has isotropic spatial components. 
With allowance for the relation 

and the expressions (4) and (7), we obtain 

It follows that Q, =C,/?(l +f,), which gives 

The last condition follows from (3). Equations (10) de- - 

termine the g, responsible for the anisotropy of the 
metric (2): 

Using ( l l ) ,  we can express the components $ (4) sole- 
ly in terms of r(t): 

Here, and in what follows, the dot denotes the deriva- 
tives with respect to the dimensionless time 8. The 
last relation specifies p implicitly a s  a function of r, j ,  
and r. 

As basis for the investigation we choose (6) with T!, 
which in the new variables 

y ( r )  = ( i r )  ', E=SnGl,'er'/3, 

K dv+- (13) 
-P-I;T;dr P('+fp)" 

takes the form 

Note that the solution of the Einstein equations fo r  the 
isotropic F riedmann model (c = 3p, p = K  = f = f, = 0) 

and the vacuum anisotropic Kasner solution (e =p  = f 
= f, = 0) 

y=K/6?, K='/$, r=0" (16) 

a r e  singular solutions of (14). 

The coefficients C, introduced in (10) a r e  related to  
the usually employed parameters of the Kasner solu- 
tion16 by 
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from which, using 
Cc.-o , 

we obtain 

As was shown in Sec. 1, for C = 0 there is an a s y m p  
totic tending to the Friedmannian solution only for B 
< 0. In this connection, we represent the coefficient 
B and the correction to the Lagrangian density (1) in 
the form 

B=-'12C l d p .  ( l & )  f (p) =paln(p/~.)'. 

In the limit p-0, this expression leads to an infrared 
divergence (see Appendix I for a discussion). To avoid 
this divergence, we modify f(P) to make it analytic at  
the point p = 0: 

For  I p  1 > p,, the correction is positive and close to 
B R ~  with B > 0, which ensures a bounce, i. e., a regu- 
lar  minimum of r ( ~ e f .  11). In the region IpI <PC, the 
sign of f(p) changes and gives an asymptotic behavior 
with decreasing value of p2. In the case p2 << X, the 
correction is close to a constant value (cosmological 
term) and can be compensated with necessary accuracy 
by the choice of A in (1). As was noted in Refs. 2 and 
3, the validity of the obtained polarization corrections 
and the expressions for the production rate of particles 
in the external gravitational field is restricted to the 
region << 1. It follows that for the investigation of 
the neighborhood of the singularity, where the curva- 
ture invariants diverge, Eq. (14) is inapplicable. Nev- 
ertheless, it is of interest to consider the singularities 
permitted by this equation. 

First, (14) admits singularities of Einstein type, 
since the Friedmann (15) and Kasner (16) solutions sat- 
isfy this equation. Second, (14) admits singularities of 
non-Einstein type. One of them was indicated earlier 
for the isotropic case (K = 0). For p2 > p:, the correc- 
tion (17) is close to BR', which gives p2-00 a s  Y-00 

(Ref. 11). In the anisotropic case, there is a singu- 
larity for p =pa= const, where pa is determined by the 
equation f,ba) =-1 [see (1211. At the same time 6-0, 
Y =  @, where 0 < b < $ and for the coefficients deter- 
mining the anisotropy of the metric we have 

We introduce the notation 

by means of which, under the conditions (see Appendix 
n) 

it follows from (14) and (17) that 
(21) 

d~ -= y'. 
r dr 

In this approximation, the equation is close to the iso- 
tropic case," and the contribution of the anisotropy can 
be regarded a s  admixture of a gas with maximally hard 
equation of state. Indeed, in accordance with (13), 

E - e f ,  e=3p-n't~-r-', 

which gives E = const. If E =p -n2 -ye, then E -f2. 
Before we investigate the complete class of solutions, 
we consider solutions with power-law asymptotic be- 
havior of the background metric. 

83. INVESTIGATION OF OSCILLATION REGIME 

As will be shown below, Eq. (21) admits solutions 
with p- 0. To investigate them, we set x>> p2, with 

q-ln (Alp.'? =-cpo, qoW1.  (22) 

With this notation, Eq. (21) can be written a s  

We investigate f i r s t  small oscillations on the back- 
ground of the Friedmann solution y = E = const. Setting 
y = E  + $, where 1 $1 << E, we obtain from (23) for 5 >> 1 

As r-00, we have 7-1' inaccordance with (13), which 
justifies the assumption (22). - 

Note, however, that p2 occurs in (14) together with 
c -r4. It can be seen from this that with increasing r 
the contribution of p2 will be decisive in the dependence 
r(6). Allowance for nonlinearity does not halt the 
growth in the amplitude of the oscillations (see Sec. 4). 

To establish the cause of the growth of the oscilla- 
tions, we return to the basic equation (61, whose con- 
traction in dimensional form gives 

For  the case (22), we have f = - q o o l ~ ~ 2 ,  and it then fol- 
lows from (25) that 

which agrees with (24). AS was shown above, the oscil- 
lations of R a r e  damped too slowly a s  Y-*. This is 
evidently due to the fact that we have ignored terms of 
the type (d lnr/dt)(dR/dt) in the expectation value ( ~ 3  
of the energy-momentum tensor of the quantum field in 
the ground state. To eliminate this shortcoming, we 
introduce phenomenologically in (6) the term 

This quantity is written down by analogy with bulk vis- 
cosity of matter. It follows from (27) that 

r, dR T:'" ~'=0, T:") =-gD - - 
r dt' 

(28) 

Using the relations we have obtained, we write Eq. (26) 
in the form 

whose solution is 

R=R.r-"+*" sin[ (0+00)1(@.) "I. (30) 

The value of Y must be calculated from the exact the- 
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ory; we shall regard i t  a s  an arbitrary parameter. 
For  asymptotic disappearance of the influence of oscil- 
lations, it is necessary to take Y> 1, R' Sr4. 

The presence of (27) does not change the form of Eq. 
(21), since T?)= 0. However, we now have E # const, 
since (27) changes the equation of state for the relati- 
vistic gas with T:'". We now have 

T; ;~)U~=-T , ! ; '  u', (31) 

from which, using the relations 

we find that for u" = 0, uOuo = 1 

(7'8) ,=-9D(r1r)'R,. (33) 

Hence, using the adiabaticity of the variation of the 
background metric and (23), we obtain 

Substitution of this expression in (21) gives 

where 5 is determined in (23). Saturation of the ampli- 
tude of the solutions of (35) is attained for Y =  1, which 
agrees with the investigation of the linear equation. 
The results derived below a r e  obtained for arbitrary 
Y, and some of the consequences do not depend on i ts  
value. 

54. NONLINEAR OSCILLATIONS 

A picture of the oscillations in the nonlinear regime 
can be obtained by analogy with the investigation of a 
nonlinear oscillator with slowly varying parameters 
(see, for example, Ref. 17). Introduction of the new 
variables 

reduces (35) to the form 

The "Hamilton function" of this equation i s  

1 1 
H ( q c ,  q ;  5 ) =  q t ' + - ( E q - " ' + q " ' ) = e P ( t ) .  

25' 
(38) 

and the momentum is determined by the expression 

The extremal values of the coordinate q and the values 
averaged over the oscillations have the form 

(q").rf =8j%[ (&C"'-E(j) I"', & = & ( f )  fd .  (40) 

For  the oscillation period T and the dependence $ ( 5 )  we 
have 

The solution of the last equation i s  

Here, we assume adiabatic variation of E(5) due to  the 

inclusion in E of an anisotropic correction or  allowance 
for particle production (see Sec. 5). 

We investigate in more detail oscillations with Y =  O(6 
=$). From (42), 

where we have introduced a new constant 6, formed 
from C. The new constant determines the value of f 
at  which the oscillations go over into the essentially 
nonlinear regime. In the case 6<< 6,, we obtain from 
(40)-(43) 

In accordance with (361, this last equation means that 
the oscillations take place around the Friedmann solu- 
tion with p = E /3, whence, u&ng (23) for the back- 
ground metric, we have F =  f2I3 = [ ~ 0 ~ / 6 p ~ ] ' / ~ .  Substi- 
tution of this expression in T, on the transition to the 
variable gives the period Ta = which 
agrees with (30). The law of growth of the oscillation 
amplitude is given in (24). 

If 5>>Lb,, it follows from (40) and (43) that 

where =EL:'". The mean value q now increases with 
increasing &. Transition to the variables y and 7 in 
accordance with (23) and (36) gives 

i. e., the background metric expands like a Friedmann 
model with p << E, although the expansion is determined 
by fluctuations of the curvature. The oscillation period 
To remains the same a s  in the linear oscillations. For  
the extremal values of the amplitude, we obtain y,, 
= 4y and y,,, = E2/4Y from (40). Thus, a t  the minimum 
of each oscillation the expansion almost stops, and a t  
the points of maximum the rate of expansion is twice 
the rate averaged over a period. 

We now consider oscillations for Y = 1(6 = 0). From 
(40)-(42), 

In the case Y 1, 6 < 0, and E = const 

i. e. , the oscillations tend to the Friedmann solution 
y =E.  

Note also that the term (27) leads to the absence of 
other power singularities in r and g, at  finite t apart 
from the Kasner singulari and (only for K =  0) Fried- 
mann singularity with r= ( 7 t 1)1120 AS .-0 in the Kas- 
ner asymptotic behavior, the value of I R I is bounded. 

55. INVESTIGATION OF SOLUTIONS WITH 
REGULAR MINIMUM 

We'investigate qualitatively the solutions in the re- 
gion of the minimum, where y o  = (roro)2 = 0. The basic 
equation (21) gives, with allowance for the conditions 
~ / d  << 1 p 1 << 1 in the lowest approximation in ( r -  ro)/ro, 
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The indicated inequalities lead to an equation in which 
the highest derivative has a small parameter; to inves- 
tigate it, we introduce the deformed coordinate 

Series expansion of the solution (49) in the neighbor- 
hood of x = 0 gives 

This last is possible if p(ro) > 1, which in accordance 
with (19) holds for P: > ep$ [the sign of the correction 
(17) is positive]. The general solution of Eqs. (6) with 

from (27) and TYm' in the class of metrics (2) de- 
pends on four physical constants. The other four con- 
stants determine the scales with respect to the three 
spatial coordinates and the t origin. The regular solu- 
tion (51) depends on the four physical constants do, C1, 
C2, E (or r,) and, thus, is the general solution. 

Equation (49) with (50) takes the form 

whose general solution is 

v ( p )  ='/,p2[ln(plp.)t-ll  =y+E-2Cy5, (53) 

where C is a constant of integration. The dependence 
y(x) is specified in the parametric form 

It follows from (54) that our condition x<< 6 is satisfied 
if the inequalities (20) a r e  true. The phase diagram 
for (52) is sh_own in Fig. 1. The point of regular mini- 
mum *(&,) = E is a node. Comparison of the expan- 
sions (51) and (53) near p = P o  gives 

i. e., for given C two branches of the solution leave the 
point of minimum. For  the solutions of type 2 and 3, 
increase i n p  leads to growth of x until the condition 

FIG. 1. Phase trajectories of Eq. (52): 1) separatrix with 
c2 = .@ +pi,&; 2) solutions for which E < C: CC:; 3) solution with 
c:=k?; 4) solutions with C: >c:. The direction of the arrows 
corresponds to i>  0 and is reversed when the sign of the de- 
rivative changes. 

x << 6 is violated. Their further evolution will be indi- 
cated below. 

For  p <p*, the solutions have an oscillatory regime 
of type 2. They correspond to  the nonlinear oscilla- 
tions investigated in detail in Secs. 3 and 4. The tran- 
sition of the model to  the oscillation regime is the 
necessary condition of asymptotic transition to the 
classical cosmological models. For  transition from 
the region of the regular minimum to the oscillation 
region i t  is necessary that there be an intersection of 
the dashed line p =p, (p(p,) = 01, i. e., vanishing of the 
factor multiplying the highest derivative in (21) and 
(49). In accordance with Fig. 1, this is possible for 
curves of the type 1 and 4. The separatrices 1, which 
form a saddle in the neighborhood of p,, a r e  the only 
solutions that can be analytically continued into the 
oscillation region. Allowance for the small correc- 
tions to (49) may lead to a reduction of C and pulling 
of the given solution into the oscillation region. As can 
be seen from the direction of the arrows in Fig. 1, the 
solutions of type 4 lead to a singularity. To establish 
the nature of this singularity, we expand the solution 
in a series near the point x = x,, y = y ,, p =p, : 

Y ( 2 )  -Y.+P* ( A z )  
+d. (Ax)'+O [ (Ax)  ' I ,  

where the value of the parameter d, is determined by 
the choice of C in the solution (53): 

As is in:icated in Fig. 1, the separatrix corresponds 
to y, = E  +p1/4, I C  1 .yif2, d, = 0. For  trajectories of the 
type 4, d, * 0, which leads to the dependence 

r ( t )  -rre,(t) +const] t-t. I"', (57) 

where const-d,, and invariants of the type RU;,RU" 
-(t - t,)" diverge, although all  the invariants without 
derivatives a r e  finite. This is the singularity mention- 
ed above. 

$6. SOLUTIONS OF TYPES 2 AND 3 AND THE 
INFLUENCE OF PARTICLE PRODUCTION 

Numerical analysis of these solutions reveals an in- 
crease in / p 1 (Ref. 14). The explicit form of the 
asymptotic behavior can be obtained from the original 
equation (21) (see below): 

y-r' ssp ln'hr, rwr,.  (58) 

The corresponding law of increase of I p 1 follows from 
(13): 

However, this asymptotic behavior cannot be continued 
to  rzm.  In accordance with (591, we arrive sooner or  
later a t  p=pa, f,(pa) =-1 [see (la)], a t  which the aniso- 
tropy of the metric again becomes important. 

We now investigate the influence of particle produc- 
tion on the expansion stage. We note f i rs t  that the ful- 
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fillment of the inequalities given in Sec. 5 has the con- 
sequence that the contribution of anisotropy is small 
in the complete region in which the effects of vacuum 
polarization and particle production a r e  important. 
This justifies the calculation of the corrections in the 
Lagrangian of the field and the particle production in 
accordance with the isotropic model. In accordance 
with Ref. 15, the rate of increase in the number den- 
sity of ultrarelativistic particles can be written in the 
form 

We restrict ourselves to spontaneous production and 
do not take into account induced production, since the 
population numbers nk in the modes in which signifi- 
cant production [with frequency w - (lnr),] occurs a r e  of 
order unity. The coefficient is determined by the par- 
ticle species; for nonconformal scalar particles 11= 1/ 
576r, and for gravitons II is twice a s  large. 

From this there follows approximately an expression 
for the rate of increase of the energy density additional 
to (33) due to the production of real particles: 

d(er') i -=n1 J T I  R'. r'dt 

where 111 - II. Using (13), we write the last expression 
in the form (i > 0) 

Allowance for (61) changes the expression for T: =-p, 
wherep is now a functional of c(t) and t. For  i t s  de- 
termination, in accordance with the rigorous equation 
( ~ 2 ; ~  = O  for the expectation value of the energy-mo- 
mentum tensor of the quantized field, we require T:::) 
= 0 [see (3211. Hence, for the determination of p we 
have 

d(r'e) d l n r  
1- = (E-3p)  -, 

r4dt dt 

where the left-hand side is determined by Eq. (61). 

We note first  that the system of equations (21) and 
(62) [because the asymptotic behavior (59) is indepen- 
dent of Y, we restrict ourselves to the case Y=O] for - 
II > $ and with neglect of the anisotropic correction ad- 
mits the solution 

The value of the parameter m is determined by substi- 
tuting (63) in (21); m-' = 12(35 - 2). Note that this rela- 
tion does not contain cp,. The condition of applicability 
of the semiclassical theory (20) requires m<< 1. Set- 
ting m = 0.01, we obtain ~ 3 . 4 4  and I l l  ~ 4 . 5  x lo4. 
This last result agrees with the order of magnitude of 
this coefficient found above. 

We now investigate the stability of the solutions (631, 
setting for this 

where Ihl <<l. Using (64), for the perturbations 6E we 
find from (62) 

It follows from (21) for h that 

We calculate f i rs t  the sign of the parameter in the 
round brackets. From (63) and (651, 

Setting further I cp, 1 - 1 and using the condition m << 1, 
we obtain from (66) 

The solution of this equation is 

h-, { ho sin[ (In r ) / p + q o l ,  cp,,,>O, 
h~ exp[ (In r)/p]-horil", cpm<O. (69) 

Thus, the solution (63) is stable for (12m)~ > p i  and un- 
stable otherwise. 

We now investigate the branches of the solutions of 
(21) that leave the point of the regular minimum y(r,) 
= 0 with increasing value of p (see Fig. 1). We choose 
the only parameter that is a s  yet undetermined, p, (or 
p,), on the basis of the condition Ip, I > 12m(qo,< 0). 
To attain a regular minimum at  YO, it is necessary in 
accordance with Sec. 5 to have pi > e p i ,  i. e., the deri- 
vative y f ( r )  a t  this point is greater than the correspond- 
ing value in the solution (63). This then leads to a rap- 
id increase of y(r)  compared with (63) but to an even 
more rapid increase in E(r). This can be seen by sub- 
stituting y =m#* with v > 0 in (62). In this case E 
= const Y"~", and this last leads to a change in sign of 
the round bracket in (21) and a decrease of y'(r), and 
with i t  p2. One can also show that if fi > $ then i t  is 
impossible to have a regime of growth y =f(~)#,  where 
f ( r )  is a monotonically increasing function that increas- 
e s  slower than any power of Y. We note for complete- 
ness that when II < $ such a growth regime is possible, 
and 

f(r) =constexp[ [ ( I -3n/2) lnr ]"] ,  RtY,, 
Inr 2 

f ( r ) - -  R=-. 481n ( ln r )  ' 3 

Indeed, we seek a solution of (21) in the form y 
= # f ( ~ ) ,  where f ( r )  i s  a slowly varying function of Y, 

I rf' 1 <<f, f > 0; in this case, p z-12f. Substituting y (r) 
in (21), in which we take into account the change in E 
due to the particle production (621, and ignoring the 
terms containingf", we obtain the equation 

For  fi > f, the particular solution has the form (631, 
and if fI < 9, the asymptotic behavior of the general 
solution in the limit r - m ,  f-m is described by (70). 
Thus, when Tf > 9 allowance for the matter production 
(62) eliminates the asymptotic behavior (59) leading to 
violation of tlie conditions (20). 

In the case Ip, I < 12m, cp,> 0 this decrease of p would 
lead to a tending of y ( r )  to the stable solution (631, i. e., 
to a stationary cosmological model in which the particle 
production (61) plays the part of the hypothetical C 
field. For  this choice of p, with cp,< 0, the curvature 
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will continue to decrease, and the solution will ap- 
proach p, (in Fig. 1 this is p,) in accordance with type 
1. 

Qualitatively, this last result follows from the fact 
that, in accordance with (511, an increase in E leads to 
a displacement of the point a0 =Po in Fig. 1 to the right, 
and the solution, which is initially to the right of this 

I;K* q* 
0 1- 0 t 

point, moves to the left of i t  with increasing r (or x ) .  FIG. 2. Regular cosmological solution on the phase plane and 
the physical plane (continuous curves); the dashed line is  the 

$7. CONCLUSiONS Friedmann solution for E =  const; the chain curves represent 
the "vacuum" Kasner solution: 1 and 3 are the points of van- 

Thus, allowance for  the polarization corrections and ishing of cp in (21); 2-3 is the of significant 
particle production branches leaving the regular of the ~roduced particles on the evolution of the model. 
minimum leads (except in the case of the separatrix) to 
the above weak singularity in the invariant R@;,R*;* 
[see (5711. In the considered approximation, i t  i s  not 
possible to find a unique continuation of the solution 
beyond the dashed line in Fig. 1. According to the 
classification of singularities proposed in Ref. 18, 
such singularities a r e  of the Newtonian type. There- 
fore, near them the true quantum-gravitational effects 
a r e  not large. The occurrence of such singularities is 
related to the poor model of T: near p-P,, and the 
finding of the correct continuation of the solution re- 
quires study here of a more exact nonlocal energy-mo- 
mentum tensor (see Appendix I), which leads to inte- 
grodifferential equations whose solutions do not contain 
singularities of the type (57). 

the isotropic Friedmann solution y =E, the value of E 
having been accumulated in the preceding stages. In 
the oscillations, the particle production rapidly ceases, 
since p2-0. This picture exists for arbitrary Y > ,  1, 
and the value of Y determines only the law of approach 
of the oscillations to the corresponding solutions of the 
Einstein equations in the limit Y-*. In the R, t plane, 
the solution has the form of a soliton with oscillating 
"tails." The crown of the soliton is at  the point rl 2 YO. 

The maximal value of the curvature a t  the point ~1 is 
such that we remain in the region of applicability of the 
semiclassical theory, which takes into account only the 
single-loop quantum-gravitational corrections. The . 
magnitude of the corrections in the Lagrangian density 

If we remain in the framework of differential equa- remains smaller than that of the main term. 
tions, an acceptable hypothesis would consist of re- 
placing fb) in (6) in the neighborhood of p, in such a 
way a s  to  make the saddle in Fig. 1 become a compli- 
cated state of equilibrium of saddle-node type.'' Then 
the solutions of type 4 in Fig. 1 will for c2 > cZs enter 
a sector of node type and have a unique continuation into 
the region p <p,. The solutions given a t  the end of the 
preceding section will then enter the oscillation regime. 
The rapid decrease of p2 leads to elimination of the 
particle production process and to oscillations around 
the value of E accumulated in the preceding stages. 
For  7)- 1, the oscillations tend to the Friedmann solu- 
tion y = E, r= (2~ '~8)" ,  and in accordance with (11) 

Here 2. =ga(e,), and 0, is the time of arrival a t  the 
oscillation regime. For  8 >> e,, we have ga -const, 
which indicates a tending to the isotropic model. 

We indicate the qualitative solution of the model if 
the solutions a r e  matched in the neighborhood of p =p, 
in accordance with the type of the separtrix (see Fig. 
2). The solution that begins with anisotropic vacuum 
stage oscillates around the Kasner solution y = ~ / 6 2 .  
Decrease of r during contraction leads to increase of 
p2 in the oscillations and a change in the form of the 
solution a t  p = p,, after which y (r) decreases monoton- 
ically to y (7,) = 0. The influence of the growth of E due 
to the particle production is not important in this stage, 
since it does not halt the growth of p2. After the 
bounce (y = O), i. e., the transition through the regular 
minimum r=ro, the growth of E slows down the growth 
of the curvature and leads to p2 < pl  . Again an oscilla- 
tion regime commences, but y(r)  now oscillates around 

Investigation of the homogeneous anisotropic regular 
model (which is more general than the isotropic model 
considered in Ref. 14) makes i t  possible to elucidate 
the part played by the different additional tefms in the 
gravitational equations. The bounce (replacement of 
contraction by expansion) is due to the polarization 
correction in (1). The particle production (60) leads to 
a halting of the growth of the curvature and rapid iso- 
tropization of the model during the expansion stage af- 
t e r  the bounce. Note that particle production cannot 
isotropize the model during the contraction stage. The 
term (27) does not influence the bounce and the isotro- 
pization, but it ensures damping of the oscillations - - 
around the classical power-law asymptotic behaviors 
a s  t - 9 .  

It i s  interesting to note that in the expansion stage 
between the bounce and the transition to  the YC tlR re- 
gime the model spends a long time (at >> 1,) near the 
de Sitter solution (63) with constant curvature. This 
could be important for analyzing observational conse- 
quences, in particular, the spectrum of relic gravita- 
tional waves. 

Note also that we can put matter with inhomogeneous- 
ly distributed baryon charge into the constructed regu- 
l a r  homogeneous model during the stage of anisotropic 
contraction, and this will not have an appreciable in- 
fluence on the metric. Since the matter produced by 
the gravitational field is charge symmetric and i t s  
energy density appreciably exceeds that of the charge- 
asymmetric matter, during the expansion stage we may 
have entropy perturbations of any magnitude with very 
small adiabatic perturbations. The spectrum of the 
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entropy perturbations is determined by the distribution 
of the baryon charge during the contraction stage. The 
occurrence of entropy perturbations is a typical feature 
of models with regular replacement of anisotropic con- 
traction by isotropic expansion. 

We thank Ya. B. Zel'dovich for  his constant interest 
in the work and valuable advice. 

APPENDIX I 

The coefficient C =1$/144r for a real nonconformal 
massless scalar field was obtained in Ref. 4 in the 
case when space-time has constant negative curvature 
(the anti-de Sitter metric). Below, we shall indicate 
how C is obtained in the case of the homogeneous and 
time-dependent metric (2). We consider the more gen- 
eral  case when the scalar field has mass m. The 
method of calculation and the regularization is entirely 
equivalent to that used in Ref. 2 in the case of scalar 
field with conformal coupling. The regularized result 
is 

1 ~=<T~O)=-I d'k oh[sh-s:"-s:"] 
(2nr) a 

with similar results for the other diagonal components 
of ( ~ 3 ;  all  the nondiagonal components of ( T 3  a r e  
zero. In (1.1) 

further, sk(t) = 1 &(t) 1 ', where Pk(t) and 4 ( t )  a r e  solu- 
tions of the system of linear differential equations 

with initial conditions uh = 1, fik = 0 for t =-00. The 
quantities and 4 a r e  related by 

The renormalization terms siL'(t) and si4'(l) a r e  local, 
i. e., they depend on the metric coefficients only a t  the 
time t, and they have the form (for simplicity, the sub- 
script k is omitted) 

In the special isotropic case ( a - b  - c ) ,  these terms 
agree with the ones obtained in Ref. 20. They a r e  an- 
alyzed in detail in the isotropic case in Ref. 21. 

Analysis of the Einstein equations with (T" from (1.4) 
shows that in the framework of these equations the un- 
physical singularities of the form (57) described in Sec. 
5 do not arise. 

We consider the asymptotic behavior of (T:) near the 
singularity, when r and g, vary in accordance with 
power laws (this is the case for 1 t 1 >> tp). Suppose, in 

addition, m << I i-/r 1 . To obtain the polarization cor- 
rection to the Lagrangian density, which, of course, is 
only part of the total value of (T:), we must retain in 
(1.1) only the local terms sf' and si4)4'. The integration 
must be performed over the region wi < (;/Y)~, since a t  
higher frequencies the entire integrand in (1.1) tends 
rapidly to zero and i t s  contribution to the integral is 
small. Making the necessary calculations, we obtain 
for the considered part of (T:) (which we denote by 

here 

and C*,, is the conformal Weyl tensor, In the power- 
law regime 

(TI") at-' ln It 1 m. 

The f i rs t  term in (1.6) was also obtained in the recent 
paper Ref. 22 in the isotropic case. Using 1 R I t'2 we 
see that the f i rs t  term in (1.5) can be regarded approxi- 
mately a s  deriving from the variation of the following 
correction to the Lagrangian density: 

where C =1$/144r. 

Note that in the case of a weak but rapidly varying 
gravitational field (ge = Vc + h a ,  where qa is the Min- 
kowski metric, and I h e  I << 1) T: in the Fourier repre- 
sentation has the form 

for 1 g2 1 >> m2(q2 = gigi). The relationship between this 
expression and the effective Lagrangian density (1.7) in 
the case of strong but slowly varying gravitational 
fields is analogous to  the situation in quantum electro- 
dynamics, for which in weak rapidly varying external 
electromagnetic fields the photon polarization operator 
satisfies 

II(q1)  aq2 In q2, I q 7  Bm, 

and in a quasihomogeneous magnetic (or electric) field 
we have the Euler-Heisenberg correction to  the La- 
grangian density 

A L a P  ln H .  

On the other hand, analysis of the total value of ( ~ 2  
for 1 R 1 <<m2 shows that ( ~ 2  is analytic with respect 
to R a t  R = 0. We simulate this property by including 
the constant A in (17). In the case m + 0, it is natural 
to  assume A=m4, and for  massless fields, when an in- 
frared divergence a r i ses  in the limit wk40 (which 
leads to  the necessity to retain in ( ~ 2  a fictitious mass 
p + O), A may be chosen arbitrarily. 

APPENDIX II 

For  the polarization correction (17), we have 
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By v i r t u e  of t h e  inequality (171, t h e  secoqd term i n  f, 
can b e  ignored. Indeed, i n  t h e  case p2 >> it is smal l .  
For p2 S X, t h i s  t e r m  is of o r d e r  unity, but then by vir- 
tue of X<< pt,  I (pi [ >> 1 d e t e r m i n e s  t h e  value of f,,. Sub- 
sti tution of (11.1) in  (14) gives  

then f r o m  (11.2) and (II.1) w e  have  

Hence, a f t e r  regrouping and introduction of p, ins tead 
of p, we obtain (21). 
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The Cavendish experiment at large distances 
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Zh. Eksp. Teor. Fiz. 77, 1701-1707 (November 1979) 

The ratio of the gravitational constants G is measured for masses interacting at distances r,  and ro or r, 
and ro (ro-0.4 m, r,-0.3 m, r2=10 m )  for the purpose of verifying the hypothesis that G depends on 
distance. The measurements were made with a highly sensitive torsion balance and an electronic 
indicating system. The values obtained are G(r,)/G(r,) = 1.003f 0.006 and G(r2)/G(ro) = 0.998k0.013 
(the limits correspond to the level of one standard deviation). These results do not confirm the 
experimental data of D. I. Long [Nature 260, 417 (197611, according to which spatial variations of G do 
exist. The possible imitating effects are analyzed and prospects for other procedures of experimentally 
verifying the indicated hypothesis are discussed. 

PACS numbers: 06.20.Jr 

but also spa t i a l  va r i a t ions  of t h e  gravitational constant 
1. INTRODUCTION G4g5 is being d i scussed  of late. T h e  dependence of G on 

T h e  possible  ex i s t ence  of not only t e m p o r a l  (in accor- the  d i s t ance  follows, i n  p a r t i c u l a r ,  f r o m  t h e  scalar- 
dance  with the  well-known hypothesis of D i r a c  et a1.l") tensor variants of gravi ta t ion theory6-" if one a d d s  to 
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