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A weak-field approximation is constructed in the theory of pure supergravity. The gravitational 
supermultiplet combines small perturbations of an arbitrary background gravitational field (spin s = 2) 
and a weak fermion field $# (spin s = 3/2). In the lowest approximation, the gravitational perturbations 
and the $,, field do not have a dynamical influence on the background space-time. It is shown that the 
approximate theory is locally or globally supersymmetric depending on the assumptions made concerning 
the magnitude of the tl; field compared with the gravitational perturbations. The properties of the linear 
and nonlinear (supergravitational) equations for the particles of spin s = 3/2 under conformal scale 
transformations are investigated. It is shown that by using the freedom in the definition of the spinorial 
connection these equations can be made conformally invariant. The theory of weak supergravity is 
considered on a Friedmannian (conformally flat) background. Because of the conformal invariance of the 
equations, spin 3/2 particles are not produced, and the conformal noninvariance of the equations for the 
gravitons leads to the possibility of amplification of classical gravitational waves and the production of 
gravitons, as also occurs in Einstein's theory of gravitation. 

PACS numbers: 04.60. + n, 11.30.Pb 

Supergravity theories, which combine the gravita- 
tional field with one o r  several fermion and boson fields, 
attract interest through their mathematical elegance 
and some practical achievements, among which the most 
important is the reduction in the number of diver- 
gences. ' '  Although the physical reality of supersym- 
metric theories and, in particular, supergravity must 
still be demonstrated, the achievements of these the- 
ories a re  sufficient ground for attempting to extract 
from them physical consequences with a view to gaining 
a deeper understanding of the theories themselves and 
possibly verifying them. Among the supergravity the- 
ories, the one most fully developed i s  the simplest 
variant, namely, so  called pure supergravity, which 
combines the gravitational field (spin 2)  with one mass- 
less  fermion field (spin 3/2) (Refs. 2-4). The exact 
theory of pure supergravity couples the nonlinear grav- 
itational field to a nonlinear fermion field (we shall 
call i t  the 4, field) and presupposes that the source of 
the gravitational field is the energy-momentum tensor 
of the 11: field. 

From the point of view of the use of supergravity in 
applications (for example, in some astrophysical sit- 
uations), the deduction of comprehensible theoretical 
conclusions, and the comparison of them with the con- 
clusions of standard general relativity, i t  i s  necessary 
to give a formulation of the theory in which super- 
gravity acts on a curved gravitational background pro- 
duced by an external source, rather than the $@ field. 
Thus, we need to preserve the supersymmetry but 
represent the basic equations in the form of ser ies  in 
some small parameter that describes the deviation of 
the geometry from the background geometry. For  the 
background, one could use  the Schwarzschild metric, 
the metrics of cosmological models, etc. Truncating 
the obtained ser ies  (not necessarily at  the quadratic 
approximation in the Lagrangian, a s  in the present 
paper), one could obtain expressions amenable to prac- 
tical calculations and describing the investigated sys- 
tem with a certain degree of accuracy. In this con- 
nection, it must be recalled that many years elapsed 

after the creation of Einstein's theory of gravitation 
before fundamental physical consequences were drawn 
from it; these conclusions, which also relate to the 
experimental verification, were obtained in the main 
by means of approximate methods. We shall call pure 
supergravity acting on the background of an external 
classical gravitational field weak supergravity (by anal- 
ogy with the weak-field approximation in standard gen- 
e ra l  relativity). The present paper is devoted to the 
formulation of such an approximation and the deri- 
vation of certain conclusions. 

In Sec. I, by decomposing the gravitational variables 
into background and dynamical parts, we obtain an 
approximate supersymmetric Lagrangian and the equa- 
tions of motion. Conceptually, this procedure is sim- 
ple and reduces to the derivation of approximate equa- 
tions from the exact equations, but technically the 
finding and combining of terms of a given approximation 
with preservation of the supersymmetry is not so  easy. 
It turns out that the equations of motion of a given ap- 
proximation can be derived by taking an appropriately 
truncated Lagrangian, but verification of i ts  super- 
symmetry requires allowance for terms ignored by 
virture of their smallness in the verification of the 
supersymmetry of the Lagrangian of the preceding ap- 
proximation. 

In Sec. 2 we investigate a variant in which we require 
the approximate Lagrangian to satisfy more exacting 
requirements, by virtue of which supersymmetry must 
be manifested when a smaller  number of terms is re- 
tained in the Lagrangian L S l 2  of the $,, field. In this 
variant, we ar r ive  only at  a globally supersymmetric 
theory which couples on a flat background f ree  grav- 
itational waves (two degrees of freedom) and f ree  $,, 
waves (two degrees of freedom). The gauge conditions 
that distinguish the physical degrees of freedom of these 
fields also remain superinvariant. In Sec. 3 ,  the at- 
tempt is made to include the Lagrangian L ,  of matter 
a s  well in the total Lagrangian L2 + L B I I .  The purpose 
of this term is to produce a non-vacuum external 
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background on which weak supergravity can act. This 
could be achieved with complete preservation of super- 
symmetry in a variant of extended supergravity that 
combines not only the 2 and 3/2 spin fields but also 
fields of other spins. These fields could then provide 
a model of the energy-momentum tensor of al l  the 
matter producing the background curvature. However, 
we consider a simplified variant, accepting in advance 
that not all the properties of supersymmetric theories 
will be satisfied. In our variant, it is assumed that 
L, depends on certain fields which do not participate 
in the supersymmetry, and on a tetrad field ( x ) ,  
which does participate in the symmetry. As an example 
of such a L,, we can take the Lagrangian of a hydro- 
dynamic fluid. Of course, in such a scheme the vari- 
ation of the action with respect to supertransfor- 
mations does not vanish identically, and i t s  vanishing 
requires additional constraints: T,,V I,V' = 0, where 
T,, is the energy-momentum tensor of the matter. 
However, these conditions themselves a r e  not in- 
variant under supertransformations, and, in general, 
the second variation of the action does not vanish. 

In Sec. 4, we consider the conformal invariance 
properties of the equations fo r  the lli, field. The con- 
clusions obtained in this section a r e  of interest both 
in their own right and in connection with the subsequent 
study (in Sec. 5) of weak supergravity in the linear 
approximation on the background of isotropic metrics. 
The point is that, a s  i s  well known, the equations for 
weak gravitational waves a r e  not conformally in- 
~ a r i a n t . ~  Because of this, i t  is possible to have ef- 
fects that amplify classical gravitational waves and 
create gravitons even in the simplest geometries, 
i.e., conformally flat nonstationary geometries, i.e., 
in situations when analogous effects a r e  absent for al l  
the remaining massless fields.".' On the other hand, 
the equations for massless particles of spin 3/2 (which 
a r e  sometimes called gravitinos), which were con- 
sidered in the literature before the creation of super- 
gravity, a r e  conformally invariant but a r e  not com- 
pletely integrable in a non-vacuum curved universe. 

In supergravity, the inconsistency of the equations 
for the gravitino is eliminated by a modification d the 
equations. At the f irst  glance, this modification would 
seem to change their property of conformal invariance, 
but we shall show that these equations can be made con- 
formally invariant by exploiting the freedom in the def- 
inition of the spinorial connection. Thus, in a single 
supermultiplet one can combine gravitons described by 
conformally noninvariant equations and gravitinos de- 
scribed by conformally invariant equations2'. 

In Sec. 5, the theory of weak supergravity is con- 
structed on the background of an isotropic cosmological 
model. It is shown that the equation for weak gravi- 
tational fields contains a source in the form of the 
operator of the energy-momentum tensor of the  $, 
field. It is natural to take the vacuum state a s  initial 
state. Then gravitinos a r e  not created, whilegravitons 
a r e  created in complete agreement with Einstein's 
theory considered in the same approximation. Thus, 
the conclusions concerning the production of gravitons 

near the cosmological singularity a r e  not affected by the 
replacement of ordinary gravity by supergravity. 

1. CONSTRUCTION OF WEAK SUPERGRAVITY 

The exact theory of pure supergravity developed in 
Refs. 2, 3, and 4 combines in a supermultiplet the 
gravitational field and the spin 3/2 field. The gravi- 
tational part  is represented in the tetrad formalism, 
and the independent variables of the gravitational field 
a r e  the field of tetrad vectors F.m, and the tetrad con- 
nection a,,,. The spin 3/2 field i s  described by a 
Majorana spinor (f), =c$:) with anticommutation prop- 
erties. The action is the sum of the ordinary gravi- 
tational action and the generalized Rarita-Schwinger 
action: 

where R(V ,9 )  is the scalar curvature. Our notation 
and definitions basically follow Ref. 4: 

R,*= (apWb+~;sz . . , )  - (P-v), 
R,-V"R,-, R=PURw, V-det Vua, 

y,y,+y,y,=2gw, Va,P.=g,,, yr=ly0y'y'y', 
~ V ~ = = ' / , ( y " y ~ - y ~ y ~ ) ,  g,,-(+, -, -, -), e0"'- - 1 .  

We retain the notation D,, for the derivative taking 
into account only spinor indices, 

in which r,, is the spinorial connection: 

rv=-1/2Qwb~d. 

The action (1.1) is invariant under the following 
supersymmetry transformations with coordinate-de- 
pendent parameter3 ' c k ) :  

The tetrad connection can be represented in the form 
(this follows from the equations g,,:, = 0, V,,: ,, = 0) 

where 

Q,,(S=O) = = ' / I [  v o ~ ( a ~ v ~ ~ - a ~ V ~ . )  +vaOvbo(a,v,,) v,] - [ a -  b ]  

is the connection in the absence of torsion and, 'by 
definition, 

K,,=-s,,+s ,,, -s ,,,, s , . ~ = ~ / ,  ( r,tvo-r.:). 

The equation of motion obtained by varying the action 
with respect to a,,, gives for the torsion the expres- 
sion 

Variation of the action with respect to the variables 
Vu and $, leads, respectively, to the equations of 
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motion 

R.w-'/2V.LR=-kaV-'-'eb~Ay,y99$P, ( 1 . 3 ~ )  

e ' + * P ( ~ ~ ; r p p - ' l a S w a ~ a ~ )  =O. (1.3d) 
Since the torsion satisfies algebraic equations, and 

not propagation equations, i t  can be eliminated from 
the remaining equations (1.312) and (1.3d), the last  
term in (1.3d) then vanishing by virtue of the identities 

where Q is any one of the 16 matrices 1, 9, 9, i y 5  f , 
and iu"", and (1.3d) can be reduced to the form 

This equation contains the torsion only through the 
connection. 

Note that in the exact theory of supergravity the ge- 
ometry (nonvacuum) is produced by the JI, field. For  
JI, = 0, the system (1.3) degenerates into Einstein's 
vacuum equations. 

We now turn directly to the construction of weak 
supergravity. 

Expansion of the total Lagrangian 

We represent the gravitational variables in the form 
of the sum of a principal (background) term and a small  
(dynamical) correction4 ': 

The superscripts 0 and 1 indicate the order of magni- 
tude. The expansions (1.6) can be regarded, not a s  
approximate, but a s  exact in the sense that in the ex- 
pansion of V,, and a,,, in powers of a small parameter 
all the corrections to v:!' and a r e  assumed to be 
summed and represented in the form v::' and S?:::. 
When no confusion is possible, we shall omlt the super- 
script  0 of the background variables and denote v,':' 
=vow , and Ct::; = w,,, and perform all operations of 
raising and lowering of indices by means of the back- 
ground V,  and g,, and the operation of differentiation 
with respect to the background connections a,,,. In- 
finite expansions necessarily a r i se  in P' and V, and, 
a s  a consequence, in the other quantities: 

(the symbol - means that in the expansion the quantity 
on the left goes over into the quantity on the right). 

The Riemann and Ricci tensors go over into the 
expansions 

R, .~=R~~~\+R: ,~~+R,! ,?~+ . . . , R , = R ~ ' + R ~ ' + R ~ : '  + . . . , 
( 0 ) b  (21 - R ~ ~ ~ - ~ ~ ~ , ~ - O ~ ; . + ~ S , , ~  om$, R,~-odo,.b-o.,"o,,s,  

R ~ ) = P R , ~ - ~ * ~ R ! , : : ~ ,  

~ , l ~ ' )  = v " R , I , ' ~ ~ - v ~ ~ R ~ ~ ~ + ~ u ~ ~ R : " & .  

Substitution of the above se r i e s  in the gravitational 

Lagrangian L2 enables u s  to write i t  in the form of the 
se r i e s  

L2=~10' +L:~'+L?'~)  + . . . , 
where in particular 

We a r e  now justified in regarding v,, and w,,, a s  
field variables, and therefore we can vary with res-  
pect to them. We then obtain 

Substitution of the decompositions (1.6) in the Lagran- 
gian LS12 reduces it to a sum of three terms: L::: 
+ L::: + L:?!. For our purposes, i t  is sufficient to 
write out the f i rs t  two terms, i, e. ,  the zeroth and 
f i r s t  order in the gravitational variables, since we 
shall in what follows regard the $, field itself asweak: 

The variation of the sum L$; + ~ ( s : ) ~  with respect  to 
$, contains terms that can be combined in a total diver- 
gence. Separating divergence terms in different ways, 
we can form two expressions for the variation of the 
Lagrangian, one of which is convenient for verifying 
the superinvariance of the total action and the other 
for deriving the equations of motion. In each of the 
expressions, the total divergence i s  omitted, since i t  
affects neither the verification of the invariance of the 
action nor the derivation of the equations of motion. 
To verify the invariance, i t  is convenient to use  the 
expression (here, we denote by s:th =sE, the small  
correction to the torsion) 

6, (LC' +L;,*') =ebvp[ (D .~$A)  7s (y,+~",~.)'p~-'l,8~~y~a"o~~~$~ 

-'/26$ryr (S,~!"~.+S::'" ~ , " r ~ + s ~ ~ " r ~ )  'pol, (1.15) 

and to derive the equations of motion the expression 

In deriving the relations (1.15) and (1.161, we have 
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made essential use of the identity 

D.(y.v",.) -D,(y.u",) -2s: v."y.-2sV~y.+o~.y.-o,',y.-0, 

which is the linear part in the expansion of the exact 
identity 

The variations of the approximate Lagrangian L3/2 
with respect to the gravitational variables v, and 
w,,, can be readily obtained from (1.14). 

Invariance of the approximate Lagrangian under 
supertransformations 

If we were to use (1.6), assuming v,, , w,,,, and $, 
to be connected by supersymmetric transformations 
and were to take into account all the terms in the ex- 
pansion of the Lagrangian L2 + L312 and the transfor- 
mations (1. 2), we would recover a supersymmetric 
theory in the form of the successive approximations. 
Since we shall use an approximate Lagrangian, we write 
the transformation (1.2) in an approximate form a s  
well; 

where b r  = P' euwPy5y,Jl, $,, and in the expression for 
bw,,, we have omitted small  terms whose order can be 
written as O(;Dv) and o($w!. 

Invariance of the sum L,' + L::'~ (with divergence 
omitted) holds to terms of order o ( $ ~ ) ,  which must be 
taken into account in verifying the invariance of the 
Lagrangian L:" + Liz' + L:% + L$\. To verify the super- 
invariance of this Lagrangian, we use the expressions 
(1. l l ) ,  (1.12), and (1.15) and the identities 

which a r e  the linear part of the cyclic identities for the 
Riemann tensor in a space with torsion. The invari- 
ance of this Lagrangian is satisfied up to terms of 
order 0(@), which must be taken into account in the 
following step, etc. 

Approximate equations of motion 

To verify the invariance of the action, we naturally 
do not use the equations of motion. We now derive the 
equations of motion themselves, assuming that the ;D, 
field is not the source for  the background geometry (we 
actually assume that L : O / ~ ,  which is quadratic in I),, is 
a quantity of the same order a s  the term L:', which is 
linear in v,, and w,,, which we write formally a s  
;D2 - V ,  $* - 0). Then from L:'+ L& we obtain the equa- 
tions for the background geometry and the f r ee  $, field 
(see (1.9) and (2.10)): 

In the following approximation, which i s  what inter- 
e s t s  us, we obtain from (1.11), (1.121, (1.161, and the 
variations of L$: + L:!: with respect to v,, and w,, 
the required equations of motion 

The connection between s,,, and w,, is determined 
by the equations 

The las t  term in (1.18) vanishes after  the substitution 
of (1.20) and allowance for  the identity (1.4). Elimi- 
nation of w,, f rom (1.18) reduces i t  to a nonlinear 
equation for  $, . 
2. GLOBALLY SUPERSYMMETRIC THEORY ON A 
FLAT BACKGROUND 

We require invariance of the action constructed from 
the Lagrangian truncated a t  Liz' and (this is anal- 
ogous to the assumption $-  v, $-  w). We shall assume 
that the background equations of motion R::= 0, and 
s$: = 0 a r e  satisfied; then the total Lagrangian can be 
written in the form 

To solve the posed problem, i t  is convenient to use 
the so-called second-order f o r r n a l i ~ m , ~  in which 
a,, a r e  not regarded a s  independent variables but 
expressed in terms of V,. In our approximation, we 
assume 

In addition, we present our exposition in terms of the 
metric theory and do not use tetrad vectors. We use 
the fact that the matrix of a small  rotation of a tetrad 
is antisymmetriciO: 

Using a transformation of this kind, we can make the 
antisymmetric part of v,, vanish; vc,,, = 0. Then the 
f i rs t  correction to the metric tensor, which, a s  usual, 
we denote by h,,, has the form 

~ , . = V , ~ + V , = ~ V , ,  

Thus, the Lagrangian (2.1) can be written in the 
metric form 

where 

The supertransformations a r e  written in the form 

Note that this approach is equivalent to linearization of 
the f i rs t  imperfect variant of supergravity without con- 
tact interaction and with absent invariance in the t e rms  
cubic in the ;D, field (Ref. 2). 

Substituting the transformations (2.3) in the varia- 
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hon of the Lagrangian (2.21, we see that there remain satisfy the eight conditions 
terms that prevent the invariance: 

( ~ ' r p , )  I ,-o=o, (ups,) l ,-o=O, 

We shall require the vanishing of these terms without 
the imposition of any restrictions on the field variables 
$, and h,,; for this, the two terms in (2.4) must vanish 
separately. For the vanishing of the f i rs t  term, we 
must require E;,= 0. These differential equations have 
the integrability conditions R,"V'& u *c = 0. Using col- 
lective indices p v - A  (Ref. 11) and writing down these 
equations in the canonical orthogonal frame for each 
of the Petrov types, we find that for & * 0 the a r e  sat- 
isfied only on a flat background, i. e. , for R i d  = 0. 
In this case, the second term in (2.4) also vanishes, 
and we therefore obtain an action on a flat background 
that is invariant under global supersymmetry transfor- 
mations: 

We note that the invariance will be exact in the sense 
that terms of higher order which need to be omitted do 
not appear. From the Lagrangian (2.2) there follow the 
field equations 

It is well known that in flat space, using the arbi- 
trariness in the definition of h,,, 

S.'-L+Eh v + t v .  m 

we can reduce the number of degrees of freedom by 
imposing the gauge conditionst2 

of which only eight a r e  independent. Thus, the condi- 
tions (2.8) and (2.9) leave only two independent com- 
ponents of h,,, these corresponding to the two inde- 
pendent polarization states. 

We show that similar conditions can be imposed on 
the spin 3/2 field. From the fact that on a flat back- 
ground the quantities @, can be subjected to the gauge 
(not small) transformations13 

Ip*legp+a, , 
(a is an arbitrary spinor), which leave the equations 
invariant, i t  follows that we can achieve fulfillment of 
the condition 

After this, transformations which do not violate (2.10) 
must satisfy the differential equations @:, = 0. The 
remaining gauge freedom consists of specifying the 
eight functions 

a1 t -o=a(zi ,  zZ,  za), a, ,I , ,~=a. ,(z i ,  2'. 2') 

on the initial hypersurface, and these can be made to 

where u' is some vector. Equations (2.7) with these 
initial data ensure fulfillment of these conditions for 
each instant of time, i. e. ,  

y,v=o, (2.11) 

if u" satisfies the system of differential equations 

Such a vector always exists on a flat background (see 
Sec. 4). 

The conditions (2. lo),  (2.111, and (2.12) leave one 
four-component quantity (for example, I),) indepen- 
dent. As in the case of the neutrino field, one can 
reduce the description to a two-component quantity 
having two independent solutions corresponding to two 
independent helicity states. l4 

We consider how the gauge conditions for the fields 
h,, and $, transform under the supertransformations 
(2.5). We show that the se t  of conditions (2.8), (2.101, 
and (2.11) is preserved. Indeed, 

8hp:,=ike (y,$".v+yv9p,.) =0, 

6h=Zike(~"$,) =0, 

1 1 
8 (yp$,) = G(hlu.v-huv.r) yUohe - k(h,v-h'v,p) yVe=O. 

Thus, the supertransformations do not violate them. 

The other set  of gauge conditions (2.9) and (2.12) can 
also be preserved under supertransformations. We 
have 

although 

But if we require that after the supertransformations 
there be preserved the condition v ~ , , ~  = 0, i. e. , 
6(vI, , , )  = 0, which can be achieved by a new twisting 
of the tetrad V*, then 

The physical meaning of the gauge conditions given 
above i s  that they distinguish pure spin states (in the 
sense of eliminating lower spins); the supersymmetry 
does not disturb these states. 

We note finally that i t  is possible to localize global 
supertransformations on a flat background, for which 
the introduction of additional fields is required. In- 
variance of the action with minimal number of fields 
that close the algebra of supertransformations i r re-  
spective of fulfillment of the equations of motion has 
been established. 

3. WEAK SUPERGRAVITY ON NONVACUUM 
BACKGROUND 

We begin by considering the matter Lagrangian L, 
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in general form. We shall assume that among the 
gravitational variables only V t  occurs in it. As an 
example of such a Lagrangian we can take the Lagran- 
gian of a hydrodynamic fluid in tetrad variables: 

Am-'I~ (p+p) I ~ u ~ V ~ V ~ < ' / ~  (p-p) . (3.2) 

By the definition of the energy-momentum tensor, 

Using (3.3), we obtain for T,, the usual expression 

We can add L ,  to the exact Lagrangians for the spin 
2 and 3/2 fields, assuming that only V t  in this Lagran- 
gian a r e  subjected to supertransformations. In the 
exact theory, the addition of L, to Lz + LSIZ leads to 
noninvariance of the action. The nonvanishing vari- 
ation of the Lagrangian is expressed by the term 

where T,, is defined in accordance with (3.3). 

Leaving aside the question of the fulfillment of the 
conditions ~ , ,y"v=O in the general case, we consider 
approximate supergravity with allowance for the terms 
that follow from L,. The fulfillment of the conditions 
T, ,Q v = 0 will be considered in Sec. 5 in the special 
case of an isotropic background metric. 

We expand A, up to quadratic terms: 

We substitute the expansion (1.7) and (3.5) in  (3.1). 
The first-order terms L:' in v,, a r e  combined with 
the first-order terms L:' from the gravitational La- 
grangian, and as coefficients of them we have the back- 
ground equations 

R~'-~I ,V . , ,R(V'= .~T;) .  

The quadratic terms have the form 

I + -Am(v'-UP.vw) . 
2 I 

The variation with respect to the gravitational vari- 
ables i s  

Here, T::" is defined a s  

and i s  equal to the linear term in the expansion of T ,  
in the gravitational variables v, . 

invariance of the total Lagrangian, is achieved when 
the following additional conditions a r e  satisfied: 

The f i r s t  of these equations a r i se s  from the condition of 
invariance of L:'+ L::: + L:), and the second from the 
invariance of the Lagrangian of the next approximation, 
i. e. , including L?', L',':,, and Liz'. Naturally, (3.7) is 
the zeroth and (3.8) the linear term in the expansion of 
the equation T, y "  = 0 with respect to the gravitational 
variables. 

The linearized Einstein equation now takes the form 

Equations (1.8), (1.20), and (1.21) for w, ,, and $, 
remain formally unchanged. We shall investigate the 
fulfillment of (3.7) and (3.8) and the equations of motion 
in Sec. 5, in which we use the Friedmann solutions a s  
background metric. 

4. CONFORMAL INVARIANCE OF THE EQUATIONS 
FOR THE GRAVlTlNO 

The equations for the $, field on a flat background 
were derived in Sec. 2. The generalization of these 
equations in curved space entails difficulties, and one 
of the achievements of supergravity is their elimination. 
We consider f i rs t  the properties of the equations of the 
$, field in ordinary gravitational theory. 

The simplest generalization of Eqs. (2.7) to a nonflat 
background (without torsion) is obtained by the replace- 
ment in them of the ordinary divergence by the co- 
variant divergence: 

However, Eqs. (4.1) now in general become incon- 
sistent. Their conditions of integrability have the form 

and a r e  satisfied identically only fo r  R, ,= 0. 

In the general case, Eqs. (4.1) a r e  also not in- 
variant under the gauge transformation 

Invariance holds if R,, yua  = 0, which for  ar * 0 i s  sat- 
isfied only in vacuum (R,, =O) .  Thus, i t  is only in 
vacuum that one can use (4.3) to achieve fulfillment of 
the equations = 0, and by means of the remaining 
arbitrariness ensure also fulfillment of 

The wave equation that follows from (4.1) with allowance 
for the condition (4.4) has the form 

Vanishing of the f i rs t  variation of the action, i. e., 
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Note that in the presence of (4.4) the consistency 
conditions (4.2) a r e  satisfied identically in Einstein 
spaces (R,, = kg,,) (Ref. 16). 

Although the system (4.1) is not completely integrable 
on a nonvacuum background, i t  does admit a restricted 
class of solutions for  the JI, field [solutions satisfying 
the conditions (4.211. I t  is therefore meaningful to 
investigate the property of conformal invariance of Eqs. 
(4.1) [or rather of the solutions satisfying (4.2)] with- 
out assuming that we necessarily have a vacuum back- 
ground. 

Under conformal transformations of the metric, we 
have by definition 2," =nag,,, and t, = Q Va, . The 
spinor fields must transform in accordance with the 
spin of the field, In spinor form, the transformation 
law has the form" 

(here, the capital let ters a r e  spinor indices). If we 
combine wherever possible spinor indices into vector 
indices, we obtain for  integral spins 

Bos . .  .r=9'-rqap,,. . . q, s=O, 1, 2,. . . , 
and for half-integral spins 

( P a b . .  . v ~ = Q * - ~ : ~ . z p . .  . m, ~-'/r, ' / a , .  . . , 
where s i s  the spin of the field. In accordance with this 
law, we must set 

Nontrivial is the question of the conformal transfor- 
mation of the spinorial connection. The general expres- 
sion for the connection, which satisfies the condition 
y,, ;v = 0, ist8 

where I is the identity matrix and A is an arbitrary 
scalar. The addition of a gradient term to the spinorial 
connection does not affect the alternation of the second 
derivatives of the spinors. 

In a space without torsion, the transformation law fo r  
a,,, is determined by the transformation law for V,,. 
Under a conformal transformation of A we can assume 
that A =A + Inn, and then 

If Eqs. (4.1) a r e  to be conformally invariant, i t  is 
necessary and sufficient for the conditions (4.4) to be 
satisfied and 

(In 61) .,w=O. (4.7) 

The condition (4.7) ensures the conformal invariance 
of the equation $',, =O. Fo r  given #,, (4.7)restrictsthe 
the choice of the conformaltransformations under which 
the solutions of the equations a r e  conformally trans- 
formed. 

The question of the class of allowed conformal fac- 
tors  S2 arises.  Solutions satisfying the conditions 

where w, = (lnfi),, , transform conformally. A sufficient 
condition for Eqs. (4.1) to admit solutions satisfying 
(4.8) is the existence of a vector uj" satisfying the sys- 
tem of equations 

where & and b are,  respectively, an  arbitrary vector 
and an arbitrary scalar. Spaces in which the vector 
w' exists have been investigated earl ier .  '' Briefly, 
the result is a s  follows: 1) if w u  is isotropic, then the 
metric of space belongs to the Petrov types 0, N, and 
111, the vector w" in N and 111 spaces coinciding with a 
multiple principal null direction; 2) if w' is not iso- 
tropic, then i t  exists in type 0 and in the c lass  of 
metrics called equidistant. 20 

Applying these conclusions to the solutions $, of Eqs. 
(4.1) in conformally flat universes [G! =a(??)] 

we see  that the solutions in which we a r e  interested 
satisfying the conditions (4.8) a r e  identical with the 
solutions in  a flat universe. 

Note that we have chosen the simplest law of trans- 
formation of the spinorial connection; however, i t  fol- 
lows from the fact that i t  is not defined uniquely that 
i t s  transformation law may also not be unique. If we 
assume A =A + (n + 1/2) lnSZ, where n is any rea l  num- 
ber, then 

and this affects the transformation law of fields of 
half-integral spins. I t  is necessary to assume 

q*p...,r-Wn+'-v' (pup b . 1 ~  
" 

and, in particular, +,, = an$, for  s = 3/2, for  (4.1) to be 
conformally invariant if (4.4) and (4.7) a r e  satisfied. 
In the special case n = -  1/2, one can avoid introducing 
the additional sca lar  field A. 

We now turn to the investigation of the conformal in- 
variance of Eqs. (1.5) forthe $, fieldin supergravity. In 
supergravity the simplest expression is chosen for the 
spinorial connection r, with gradient t e rm omitted. HOW- 
ever, we intend to retain the expression (4.6) and as- 
sume that the scalar A does not participate in the 
supertransformations (bA = 0); i t s  presence will then 
have no influence on the superinvariance of the action 
(1.1). 

We can now assume that the conformal image of the 
spinorial connection has the form 

r,=r,+t/,yp(ln 9 )  .,y.+e,, - 
where E, = 1/2(K,, - K,,,)uab a r e  the differences be- 
tween the torsions of, the original and transformed 
spaces; in Eq. (1.5), because of (I. 3b), these terms 
give a cubic nonlinearity. Since we have adopted the 
transformation law (4.5) for the JI, field, E, =0, and 
in this case torsion does not prevent conformal in- 
variance of the equations. Thus, the equations of the 
completely integrable system (1.5) a r e  conformally 
invariant i f  (4.4) and (4.7) a r e  satisfied. 
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Of course, the conformal invariance of the equations 
achieved by the introduction of the additional field is not 
unconditional (in the sense that the conformal invari- 
ance of the equations of electrodynamics is), but the 
possibility of achieving it in the present case through 
the freedom in the definition of the spinorial connection 
appears to us interesting. If we had not introduced the 
scalar A and had transformed only nu,,, to have com- 
pensated the terms linear in th_e $, field in (1.5) we 
should have had to have taken $, = a-'I2$,, and then the 
cubic nonlinearity would have made a contribution 
violating the conformal invariance of the equations. 

5. SUPERGRAVITY ON THE BACKGROUND OF 
HOMOGENEOUS ISOTROPIC COSMOLOGICAL 
MODELS 

We now consider the theory constructed in the f i rs t  
section on the background of Friedmannian models. 
The system of equations (3.9) can be simplified by 
substituting the expression for small torsion from 
(1.20). Then the antisymmetric parts of the linearized 
Einstein equations (3.9) cancel each other, a s  in the 
exact theory. The symmetric parts give equations for 
the gravitational perturbations with source on the right- 
hand side containing a term corresponding to the gra- 
vitational perturbation of the matter, and also the en- 
ergy-momentum tensor of the $u field and t e rms  trans- 
ferred from the left-hand side derivingfromthetorsion. 
Taken all together, the terms corresponding to the 
field form the energy-momentum tensor in the second- 
order formalism. 

We go over to the metric representation (setting V C ~ , , ~  

=0), and then the symmetric part of Eq. (3.9) takes 
the form 

where 

We shall solve Eq. (1.18) for the $, field by succes- 
sive approximation. We set  

Then in the principal approximation 

Equations (5.2) on a Friedmamian background admit 
solutions satisfying the conditions (4.8) if a s  wu we 
take the vector uu = !l/a, 0, 0, 0). Since the vector uu 
is collinear to the vector (Inn). ., the equations a r e  
conformally invariant under transform&ons with 52 
=a(q), and the corresponding solutions a r e  identical 
with the solutions in a flat universe, in  which Eqs. 
(5.2) admit solutions in the form of plane waves. We 
emphasize that the conformal invariance of Eqs. (5.2) 
also holds without introduction of the field A if the 
transformation law $, =W1''+,, is adopted. 

where, a s  usual, a; and a, a r e  the operators of creation 
and annihilation of a particle with momentum k (we have 
here taken into account the Majorana property), these 
operators satisfying anticommutation relations; p, 
is a normalized spinor. From the gauge conditions 
(4.81, there follow 

We can now calculate the operatory ,  on the right- 
hand side of Eqs. (5.1). The left-hand side of the equa- 
tions can be interpreted either a s  an operator expres- 
sion, and then the operators for the gravitons a r e  
coupled to the operators for the gravitinos, o r  a s  a c- 
number expression, and i t  is then assumed that on the 
right-hand side we have the expectation value of the en- 
ergy-momentum tensor of the $, field with respect to 
some state. 

Since we have established that the equations for the 
$, field a r e  conformally invariant, gravitinos a r e  not 
created, and if they were absent initially they do not 
appear. Then the expectation value of?, with respect 
to the vacuum state vanishes5': 

<OlT,.lO>=O, 

and therefore the source associated with the $, field 
vanishes in Eqs. (5.1). They reduce to the ordinary 
equations for gravitational perturbations on a Fried- 
mamian background: 

An expression for T:"'~ can be obtained either from 
(3.6) o r  directly from (3.4) under the assumption 
6p = 6p = hi = 0. On a Friedmannian background, we 
can, because of the gauge freedom, make h,, satisfy 
the gauge conditions 

Then T:~~"'= 0 (with mixed indices), and we arrive a t  
the ordinary equations for free gravitational waves. 
Therefore, all the conclusions about superadiabatic 
amplification of gravitational waves and the production 
of gravitons remain valid on a Friedmannian background 
(Ref. 6). 

We now verify whether the obtained solutions a re  
consistent with the requirements of superinvariance. 
For  the hydrodynamic tensor, the condition T,,yu$" 
= 0 is formulated a s  

The conditions (3.7) and (3.8) are,  respectively, the 
principal and following terms in the expansion of this 
equation. Equations (5.4) a r e  satisfied if yF$, = O  and 
uu$, = 0. We assume that the condition yU$, = O  is 
necessary for the selection of solutions describing pure 
s =3/2 spin states, and we assume that i t  is satisfied. 
The condition uu $J, = 0 has the form (u" ' + 6u')Jt = 0 

We now take into account the fact  that the qU variables and is also satisfied since uU$, = 0 on a. Friedmannian 
a r e  operators and not c-number functions. Then background, and also h' = 0 for gravitational-wave 

cpz- (atcp,(k) exp (-tk&) +a.+cp,(k) exp ( i k d )  1, 
k 

perturbations. Thus, in the considered approximation 
(5.4) is satisfied. 

842 Sov. Phys. JETP 50(5), Nov. 1979 L. P. Grishchuk and A. D. Popova 842 



In conclusion, i t  should be noted that in (5.1) we have 
used the $, field of the lowest approximation, i. e. , we 
have taken into account terms $, - $>I2'- hi/'. Terms 
of the following approximation ($:Iz '- h3") can be found 
from Eq. (1.5), in which the geometry i s  represented 
in the form of a sum of the Friedmannian metric and 
small  gravitational-wave corrections, and allowance 
is also made for a small  torsion (s - 1 ~ 1 ~  - h). In this 
approximation, the metric is not conformally flat. In 
Eq. (5.1), there appears the sourceP#  -hZ, but i t  is 
of the same order a s  the terms describing the non- 
linear interaction of the gravitational waves themselves. 
These effects require a special treatment. 

We thank Ya. B. Zel'dovich and I. D. Novikov for their 
interest in the work and P. van Nieuwenhuizen for dis- 
cussion. 

')A review of papers devoted to supersymmetries, the first 
attempts to include gravitation in the supersymmetry scheme, 
and the further development of this theory can be found in 
Ref. 1. 

')It is interesting to note that attempts have been made to find 
generalized (non/Einstein) theories of gravitation giving 
conformally invariant equations for weak gravitational waves. 
It is found that under the not particularly restrictive and 
fairly reasonable requirements that a re  imposed on these 
theories such theories do not exist.8 

3 ) ~ h e  semicolon a s  a subscript denotes the total covariant 
derivative with allowance for  coordinate, tetrad, and spinor 
indices. If the differentiated quantity does not have indices 
of a particular kind, the corresponding connection is absent 
in the derivative. 

4, Such constructions a r e  called the "background-field 
method." 

5)A possible conformal anomaly of the trace of the energy- 
momentum transfer has a dynamical influence on the back- 
ground metric but not on transverse gravitational pertur- 
bations. 
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