
so that AH/HQ= ~ p , / p , ~ p .  AS seen from Fig. 2, this 
relation agrees with experiments. The contributions 
made to the polarization of the conduction electrons, 
and consequently the contributions from the nearest 
spheres in the AF,, AF,, and AF, structures a r e  ap- 
parently different. The quantity CZ is in fact the sum 
of the contribution from the coordination spheres with 
numbers n 2 3, the most substantial of which a r e  the 
contributions from the third and fourth spheres, and 
the res t  can be neglected. Therefore for most atoms 
c Z f  0 in the AF, and AF, structures, because of the 
large length of the SDW compared with the lattice peri- 
od. When this circumstance is taken into account, the 
values of AH/HAp for AF,, AF,, and AF, should be dif- 
ferent. The accuracies of our measurements, strictly 
speaking, a re  insufficient for the observation of these 
differences, nonetheless the tendency towards such a 
difference does apparently exist (see Fig. 2). 

Our experiments allow us therefore to draw the fol- 
lowing conclusions: 1) the hyperfine magnetic fields a t  
impurity iron atoms in chromium a r e  determined by 
the nearest neighboring chromium atoms, 2) the anom - 
alously large relative changes of the hyperfine fields at 
the 57Fe nuclei in C r  under pressure a r e  the conse- 
quence of changes of the magnetic moments of the chro- 
mium atoms. 

In conclusion the authors a r e  grateful to V. A. Mak- 
arov for kindly supplying the alloy samples and for dis- 
cussing the result, and V. P. Mar'in for help with the 
measurements. 
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The ~erezinskii diagram technique is used to calculate the density of states in a one-dimensional crystal 
with a strong degree of disorder. The character of the Dyson singularity at the center of the band is 
studied. The structure of the statedensity peaks produced at rational points of the band is investigated. 

PACS numbers: 63.90. + t 

1. INTRODUCTION 

In connection with the intensive experimental investi- 
gations of quasi-one-dimensional crystals with strong 
structural disorder,' theoretical investigations of the 
electron spectrum in one-dimensional disordered struc- 
tures have attracted great interest. The state density 
in such systems was investigated in many studies (see 
the review2). It was found that in one-dimensional 
problems the state density is very sensitive to the crys- 
tal structure. Great interest attaches therefore to al- 
lowance for  the periodicity of the initial crystal poten- 
tial. Among the most significant results in this field is 

the singularity observed by Dyson3 in the state density 
near the middle of the band. It was subsequently ob- 
served in a large number of  system^.^" All the cited 
studies dealt with the case  of weak disorder. 

The present paper deals with the density of the elec- 
tron states in a one-dimensional crystal with arbitrary 
disorder. It is shown that in this case the state-density 
peaks appear a t  all rational points of the band, and that 
the Dyson singularity a t  the center of the band i s  great- 
ly enhanced. These effects a r e  due to the strong Bragg 
scattering of the electrons in one-dimensional crystals 
and to the interference of the corresponding waves. 
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2. DERIVATION OF THE FUNDAMENTAL 
EQUATIONS 

We consider a one-dimensional systems of non-inter- 
acting electrons with a dispersion law ~ ( p ) ,  situated in 
the field of impurities that a r e  randomly scattered over 
the si tes of a lattice having a period a.  We assume that 
the concentrations of the impurities per si te c is small 
(c << l ) ,  and that the potential u ( x )  of a single impurity 
is arbitrary. To calculate the density p(&) of the elec- 
tron states we use the known formula 

p(e) =-n-' Im(G+(O Ole)), (1) 
where G+(nln2 I&) is the retarded Green's function of the 
electron, n, and n, are  the numbers of the sites, and 
the angle brackets denote averaging over the locations 
of the impurities. 

We average over the impurity positions by the usual 
cross  technique. In the case of a weak impurity poten- 
tial i t  suffices to use the Born approximation for the 
scattering amplitude and to introduce into the diagrams 
pairwise connected crosses. The simplest diagram of 
this type, for the case when the electron energy is 
close to the middle of the band [ ~ ( & ) ~ * / 2 a ] ,  is shown 
in Fig. 1. The wavy lines correspond to the paired cor- 
relator of the impurity potential. In the case of a 
strong potential, further expansion in the Born param- 
e ter  

[v (c )  =d&/dp i s  the electron velocity and P(E) is i t s  mo- 
mentum] leads to binding of individual crystals into 
clusters. Next, in perfect analogy with our preceding 
paper, we can sum the within the framework of an 
individual cluster and separate i t  the total amplitudes 
f+ and f- for forward and backward scattering, respec- 
tively. The thin wavy lines on the diagrams a r e  then 
replaced by thick ones corresponding to the total scat- 
tering amplitudes. The thick wave lines a r e  bound into 
clusters, and this corresponds to multiple scattering of 
the electron by a single impurity. Depending on the type 
of vertex (straight o r  angled) i s  located a t  the end of the 
wave line, the latter corresponds to the backward (f-) 
o r  forward (f+) scattering amplitude (Fig. 2). 

We a r e  interested primarily in the character of the 
density of the electron states near the middle of the 
band. We consider therefore f i rs t  the case p (&)*n/2a. 
This corresponds to retaining in  the diagrams the slow- 
ly varying factors of the type 

FIG. 1. 

FIG. 2. 

and neglecting the diagrams containing rapidly oscillat- 
ing factors of the type exp(ipx). This sorting out of the 
diagrams i s  carried out in accord with the usual param- 
e ter  (p,l)-'-c <<l  (1 i s  the electron mean f ree  path). 

Cutting the diagram of Fig. 1 along the xx axis and 
then shifting the point x, we obtain in analogy with Refs. 
6 and 7 the following equation for the right part  of the 
diagram R,(x): 

where V, is the effective expression for a multiple- 
ended vertex that changes the number of line pairs 2m 
in the section xx by 2s. The substitution 

R,(z) ==R,(-i)"'eLi(P-&..I 

reduces Eq. (2) to the form 

where t = 4(p -po)l, 1 = l/cy, Y = If- l 2  is the coefficient 
of reflection from an individual impurity. Equation (4) 
must be solved with the boundary condition Ro= 1. 

The density p(&) of the electronic states is expressed 
in terms of the R, in  accord with the formula6 

where Po(&) = l /rv(&) i s  the state density in the absence 
of impurities. 

The complex scattering amplitudes f+ and f- a r e  con- 
nected by the unitarity relations, which in the one-di- 
mensional case and for a symmetrical potential u (r) 
=u(-x), with account taken of the additional factors i/v, 
takes the form7 

-(f++f+')=If+la+lf-l't (6) 

From (6) and from the definition of Y i t  follows that 

I i+f+ Ia=i-7. (8) 

We obtain similarly from (7) 

f-(i+f+') --f-'(l+f+). (9 

Using relations (8) and (9) and defining the phase qp 
and the amplitude 1 +f+ by the relation 1 +f+ = (1 
- ~ ) " ~ e ' * ,  we reduce Eq. (4) to the form 
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By solving (10) we obtain the function ~ ( t )  for different 
values of y and cp. 

3. SCATTERING AMPLITUDE 

Of greatest physical interest i s  the case (e, = 0. As 
will be shown below, a t  cp = 0 the Dyson instability of the 
state density p(&) lc ln3& 1-1 appears a t  the center of 
the band. A situation with zero forward-scattering 
phase occurs in a system with purely nondiagonal dis- 
order, as well a s  for a number of potentials considered 
in the present paper. Gor'kov and Dorokho? have 
shown that this property is possessed by the random 
potential produced by the structural disorder in TCNQ 
salts  with asymmetric cations. The case  of a purely 
nondiagonal disorder i s  of considerable interest, since 
one can reduce to i t  many problems connected with the 
calculation of the density of spin and phonon states in 
disordered  chain^.^ We shall show that scattering of 
quasiparticles in such systems corresponds to cp = 0. 

We consider to this end the usual Hamiltonian of the 
motion of a quasiparticle over a one-dimensional lat- 
tice in the tight-binding approximation: 

The Schrijdinger equation for the wave function u, takes 
in the discrete representation the form 

M,,u,=en,, 

where & is the quasiparticle energy. 

We consider the case when the hopping matrix ele- 
ments differ from zero only for the nearest neighbors, 
and assume that they a r e  constant along the entire 
chain with the exception of the transition between the 
zeroth and f i rs t  sites. In this case 

where M +I¶ is the overlap integral between the zeroth 
and f i rs t  sites, and M i s  the overlap integral between 
the remaining sites. Substituting in  (13) u, in the form 

we get 
2iM sin ka+p (ez'"- I )  

A=-p 
(2iM sin ka+peiL")' - p f  ' 
2iM sin ka+p(eik"-i) 

B=-p 
(2iM sin ka+peiL")? - $' ' 

Near the center of the band we can put in (16) and (17) 
ka =a/2, a s  a result of which the expression for the 
amplitude of the transmitted wave takes the form 

It follows therefore that in  the case of a purely nondiag- 
onal disorder the amplitude l+ f+  remains a real  quan- 
tity and consequently the phase cp = 0. We note that in 
this case the amplitude f- is real: 

This caused by the asymmetrical character of the non- 
diagonal disorder. It changes nothing in the results, 

for  in this case the initial equation (4) with V,, from 
(3) is again transformed into Eq. (10) with cp = O  by the 
substitution R, = (-l)"~,, which leaves unchanged Eq. 
(5) for the state density. We note that this substitution 
leads to Eq. (10) with cp = 0 also in the case when cp 
= a/2. Therefore the condition for the appearance of the 
Dyson singularity is cp = 0, n/2, n . 

A zero forward-scattering phase is possessed also by 
potentials of the form 

where U ( x )  is a smooth function with a characteristic 
radius b >>p;'. It i s  shown in the Appendix that in this 
case 

We shall not use hereafter the explicit expressions for 
y and solve Eqs. (10) a t  qp = O  and arbitrary 0 s  y s  1. 

4. SINGULARITY AT THE MIDDLE OF THE BAND 

To determine the character of the singularity in the 
middle of the band, i t  is necessary to investigate in 
greater detail Eq. (10) a t  cp = 0. In the case of a weak 
potential, when y <<I, Eq. (10) goes over into (see Ref. 
6) 

-itmR,=2rn'(R,+,+R,.-t-2RR) +m(Rm+,--Rm-l) .  (21) 

It is easily seen that near the middle of the band, i.e., 
a t  t <<I, the major contribution is made in (21) by large 
m - l / t  >> 1. In this limit we can therefore change from 
the discrete variable to the continuous p = -itm, and in 
the sums of (5) we can change from summation to inte- 
gration. As a result, Eq. (21) takes the form 

This equation must be solved with the boundary condi- 
tions R (0) = 1 and R(m) = 0. It is easily seen that the 
solutions of (22) that decrease a t  infinity a r e  of the 
form 

R ( p )  =ClKo( (2p) '") .  

At small  p <<I we have 

K 0 ( ( 2 p )  ") =-'Ir lnp. 
TherePore in the principal logarithmic approximation, 
with account taken of the boundary condition R (0) = 1, 
which must now be imposed a t p  - (-it), we have 

c,=-2/ ln(- i t ) .  (24) 

Substituting (23) in (5) and replacing the summation by 
integration we obtain in the principal logarithmic ap- 
proximation 

The character of the singularity of (25) coincides with 
Dyson's result for the phonon state density in a one- 
dimensional disordered chain.= 

To determine the character of the singularity of p(t)  
at  arbitrary y it is necessary to investigate in greater 
detail the solution of Eq. (10) in the region of large 
m - l / t  >> 1. This can be done by the method developed 
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in a preceding paper.' It will be shown below that the 
sums over s in  (10) converge rapidly and only values 
s - 1 are  significant in them. At large m we can repre- 
sent R,, in the form 

Writing for (1 - Y ) ~ ~ - ~  

d 

introducing the variable n = k + s +d, and representing 
sY in the form 

d " 
( a )  a8I.-1, 

we obtain for R, the equation 

1%-L-YI d '  v.(m) - Z C ~ ~ C ~ ; - - ~ - I C ~ - ~ ( - ~ ) ~ + ~  r* ( az )  c ~ I ~ , .  (29) 
k.".d 

Representing C~;~"_"2P,-, in the form 

where the integration is over a circle of radius p <  1 
around zero, we get 

At large m 

It follows therefore that the equation for R,  at large m 
contains as before only terms of the type mV@/dm)"R,. 
Therefore, making the substitution p = -itm and f i rs t  
summing over n and then integrating with respect to z ,  
we obtain for R (p) the equation 

It is easily seen that R(p)eA lnp at small p <c 1. 
Therefore, taking into account the boundary condition 
R(0) = 1, which must now be imposed at p - (-it), we 
have A = l/ln(-it). From this, in particular, i t  follows 
that near the middle of the band the state density p(t)  
has a singularity of the Dyson type 

where 
- 

B ( y ) = j  RB'(P)~P, (35) 
* 

and R,(p) is the solution of (33) with the boundary con- 
dition R,(p) = lnp as p - 0. 

In the general case the solution of (33) can be repre- 
sented a s  ser ies  in powers of p: 

The coefficients a, and b, a r e  represented by the recur- 
sion relations 

2(z-l)ab.-l=(z+l)z[ (rn+z-"-2) b,+ln ~(r"-z-~)a, , ] ,  (3 8) 
z==(l+y"s)/(l -y"z). 

The quantities a, a r e  determined completely by the 
boundary condition a,= 1. The quantity b ,  is determined 
by the condition that R(p) decrease at infinity (in partic- 
ular, at y << 1 the coefficient b,= 2C-ln2, where C 
= 0.577. . . is the Euler constant). 

It is easily seen that the function R(p) defined by ex- 
pansion (36) and by the recursion relations (37) and (38) 
satisfies the functional equation 

It follows from (39), in particular, that R(p) decreases 
quite rapidly a t  large p . In fact, substituting in (39) 
R(p) =e'C'P' we get atp >> 1, in the principal logarithmic 
approximation, 

t (p) 4 n 2  p/2 In z. (40) 

Equation (39) can be easily solved by the method de- 
veloped in Ref. 10. A plot of B(y) is shown in Fig. 3. 
It is seen from this plot that when y increases from 0 
to 1 the coefficient B(Y) increases quite rapidly and be- 
comes infinite as y- 1. 

By using numerical methods i t  is also easy to solve 
Eqs. (10). To this end i t  is necessary to use the rapid 
convergence of the sums over m and terminate the sys- 
tem of equation a t  a large M >> 1, setting all  the R, with 
m > M  equal to zero. The resultant system of linear 
equation is easy to solve numerically. Plots of p(t)  at 
q = 0  and y equal to 0.01, 0.7, and 0.99 a r e  shown in 
Fig. 4. We note that with increasing Y the enhancement 
of the singularity at the center of the band i s  preceded 
by a minimum of the state density. The reason is that 
the total number of states in the chain remains un- 
changed and 

j ~ ( ~ 1  -PO) -0. (41) 
-- 

With the aid of this condition we easily find the asymp- 
totic form of B(y) a s  Y- 1. 

FIG. 3. Dependence of the coefficient of the Dyson singularity 
on y .  
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FIG. 4. Distribution of state density at the center of the band 
at cp = O  and y =0.01 (solid line), y '0.7 (dashed), and y =0,99 
(dash-dot line). 

In fact, in the region t +  0 i t  is easy to solve Eq. (10) 
as Y- 1. Retaining in i t  only the terms of lowest order 
in 1 - y < < l ,  we get 

R,=(l-itm)-'. (42) 

Substituting (42) in (5) we get at t # O  

This solution is valid only a t  t +  0. In fact, for any 
finite 1 -y  the solution (42) is not valid in  the region 
It 1 s (1 - y)'I2. There is consequently a &-function peak 
a t  the center of the band. The coefficient 2n of the 6 
function is determined from the condition (41). There- 
fore at y = 1 

The onset of the &-function peak as Y- 1 i s  quite obvi- 
ous, for if the electron is solidly locked-in its spectrum 
becomes strictly discrete, and only states with momen- 
tum p =n/2a a r e  left near the center of the band. Since 
the integral of the singular term equals 2n as Y- 1, i ts  
estimated value at logarithmic accuracy i s  

- 1. 
Therefore as y- 1 

We note that as y- 1 the expression (44) for  the state 
density is universal and does not depend on the phase cp. 
This is easily seen from Eq. (4) by recognizing that as 
y - 1 we have f-- (-1). The last  circumstance i s  
brought about by the fact that for infinitely strong scat- 
t e re r s  the wave function is $(x) =Asinpx and therefore 
f_ = -1. Since the function p(t) has a 6-function singu- 
larity a t  the center of the band a t  y = 1, the center of the 
band has a t  finite values of the parameter 1 - Y  and a t  
arbitrary phases a state-density peak whose height 
tends to infinity as y- 1. By way of example, Fig. 5 
shows the structure of the peak for a &-function poten- 
tial u ( x )  (sincp = yl/ ') a t  y = 0.5, 0.9, and 0.99. We note 
that the structure of p(t)  is in  this quite complicated 

FIG. 5. Distribution of the state density at the center of the 
band in the case of a I-function potential (shcp =+I2) at y =0.5 
(dashed line), y = 0.9. (dash-dot line), and y = 0.99 (solid). 

and has several local maxima and minima. It must be 
emphasized that the state density reaches relatively 
slowly i t s  limiting distribution (44) as y- 1. At certain 
values of Y, as seen from Fig. 5, there is a noticeable 
dip of the state density near the middle of the band. 

5. STATE-DENSITY PEAKS AT RATIONAL 
POINTS OF THE BAND 

In the limit of infinitely strong scatterers,  6 function 
peaks of the state density occur a t  all rational points of 
the band. This is due to the strictly discrete character 
of the spectrum in wells with infinite walls, which 
cause the state density to differ from zero only a t  the 
rational points of the band. Inasmuch as at  y- 1 the 
height of the peaks a t  the rational points becomes infi- 
nite, one can expect this height to be quite large at a 
finite but small  value of 1 - y. 

The equations for the quantities R,, which determine 
in accord with (5) the state-density change due to the 
disorder, a r e  obtained in complete analogy with expres- 
sion (2). It must only be recognized here that a t  Po 
= nM/an ( 1 s  M n - 1, n =2,3,4. .  . ) the change of the 
number of line pai rs  in the c ross  section must be a 
multiple of n. As a result we obtain readily 

W". v, = 2 Cnmb c"m+",-,y-)"+~~(l+f+)'~m-". (48) 
L 

The substitution R,(x) =R,e2inm'PPo'x and the use of re- 
lations (6)-(9) for f+  and f- reduces (47) to the form 
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In the limit as y- 1 Eqs. (49) can be solved exactly 
and lead to Eq. (44). This is easily seen from (47) by 
recognizing that as y- 1 we have f-- (-1). In the limit 
of small  y - 1 Eqs. (49) result in only small corrections 
on the order of y""-' to the state density p,. At y-1 i t  
is easy to solve Eqs. (49) numerically. The plots of 
p(t) obtained in this manner f o r  n = 4, p = 0, and Y = 0.5, 
0.7, and 0.9 a r e  shown in Fig. 6. We note that although 
the state-density peaks have a finite height in this case, 
they a r e  strong enough to lead to  significant effects. 

6. CONCLUSION 
We note in conclusion that the state density p(&=) a t  

the Fermi level and its dependence on E near &, influ- 
ence substantially the magnitude and the temperature 
dependence of the magnetic susceptibility X, which is 
described by the formula 

where /.L, is the Bohr magneton. 

The state-density peaks on the Fermi level increase 
the susceptibility at low temperatures. In TCNQ salts 
with strong structural disorder such an increase was 
in fact observed.' The degree of filling of the electron 
band in these salts is either 1/2(NMP-TCNQ) o r  
1/4[Qn(~cNQ),, Ad(TCNQ),]. Recent estimates of the 
random potential u in these substances" show that u 
z0.34 eV in Qn(TCNQ), and un0.17 eV in Ad(TCNQ),. 
The half-width M of the band in these substances is 
approximately 0.15 eV.12 Therefore the parameter a 
that determines the strength of the interaction between 
the electron and the impurity according to the formula 
a =ua/vF is -1.5 in Ad(TCNQ1, and -3 in Qn(TCNQ),. 
This points to a strong character of the electron scat- 
tering in the TCNQ salts  with asymmetrical cations, 
and is in good agreement with estimates of the mean 

f ree  path of the electron in these substances, made on 
the basis of the dielectric ~ o n s t a n t . ~  The strong scat- 
tering of the electrons should result in a strong peak of 
the state density with height -lop, and width -5 K near 
1/4 of the band and explains in principle the growth of 
x(T). It is difficult a t  present, in view of the insuffi- 
cient data on the random potential, to compare in detail 
the theoretical and experimental x(T) dependences, 
since the lack of data does not make i t  possible to de- 
termine the connection between a and the reflection co- 
efficient y, whose value influences very strongly the 
p(&) dependence. 

The distribution of the electronic state density was 
investigated by a computer simulation m e t h ~ d . ' ~ - ' ~  
This a singularity of the state density near 
the band center in systems with purely nondiagonal dis- 
order. Investigations were made1"15 of systems with 
diagonal disorder, and the presence of state-density 
peaks near 1/6 and 1/4 of the band was observed. 

In conclusion, the author thanks L. P. Gor'kov, 
0. N. Dorokhov, V. I. Mel'nikov, and E. I. Rashba for 
a useful discussion of the results. 

APPENDIX 

To find expressions for the amplitudes f+ and f- we 
use a diagram expansion in terms of the impurity poten- 
tial. In the coordinate representation, one of the f i rs t  
diagrams for f+ and f, is shown in Fig. 7. The charac- 
teristic scale of integration with respect to x, is (x, 
- x,) - b  >>pi1. Therefore integration of cos2pox over a 
scale larger than pi1 but smaller than b causes vanish- 
ing of the Born zero-angle scattering amplitudes. The 
integrals of u(x) sin2pox vanish similarly. A s  a result 
we obtain for the amplitudes f+ and f-, with allowance 
for the conditions x,<x,,,, x,,<x,+, the expressions 

where 

FIG. 6. State-density distribution near a of the band at cp = O  
and y = 0.5 (dashed line), y ~ 0 . 7  (dash-dot line), and y =0.9 
(solid). FIG. 7. 
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Introducing the function 

-- 
and integrating (A.2) the required number of times by 
parts, with allowance for the boundary conditions 

= 0, +(+a) =ia we get the following recursion r e -  
lations for @,: 

I (ia) '" (D,,=C (D ?,-?. (-I)"+'- 
(2n)! ' ( k 3 )  

n-t 

"-1 

These equations must be solved with the boundary con- 
dition @,= 1. Summing (A.3) and (A.4) over k,  we ob- 
tain for f+ the equation 

ea 
(ia) '" 

"-1 

from which it follows that 

i 
l+f+ -- - f- = i th a, 

cha ' 
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