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The interaction produced by the deformation potential between a two-dimensional electron plasma and 
Rayleigh waves is investigated. The cases considered are a plasma layer on the surface of an isotropic 
dielectric and the inversion channel in a metal-insulator-semiconductor (MIS) structure. In the latter 
case, the amplitude of the hypersound wave emitted by the plasrnons is calculated. It is shown that the 
two-dimensional character of the plasma leads to significant singularities in the dispersion law and in the 
absorption of the coupled plasma-acoustic waves. The possibility of observing the considered effects in 
experiment is discussed. 

PACS numbers: 73.40.Qv, 71.45.Gm 

Coupled plasma-acoustic waves in piezoelectric crys- ission. In the second section we calculate the ampli- 
tals were considered in Ref. 1-3. The effect of a plas- tude of the hypersound wave emitted by the plasmons in 
ma layer on the characteristics of an elastic surface a typical experimental situation, viz., an MIS structure 
wave was considered and the feasibility of hypersound with an amorphous insulator on the (001) surface of a 
generation by two-dimensional plasmons was demon- cubic crystal. 
strated. The experiments reported to date495 on the 
observation of two-dimensional plasmons pertain to  1. TWO-DIMENSIONAL PLASMA ON THE SURFACE 
metal-insulator-semiconductor (MIS) structures on sil- OF AN ISOTROPIC ELASTIC MEDIUM 
icon, in which there is no piezoelectric effect. It i s  
therefore of interest to consider the analogous problem 
for the case when the plasma and acoustic oscillations 
a re  coupled via the deformation potential. We recall  in 
this connection that the deformation interaction, unlike 
the piezoelectric one, increases with frequency. Since 
we shall be dealing with the hypersound band, it is im- 
portant to determine the relative contributions of these 
two electron-phonon coupling mechanisms inthe partic- 
ular situation of "two-dimensional" electrons and a 
three-dimensional elastic continuum. 

It is known6 that coupling via a deformation potential 
leads in the homogeneous three-dimensional case both 
to a change of the sound dispersion in the short-wave 
region and to the onset of instability. This instability 
develops starting with a certain value of the wave num- 
ber (k > k,), but only if the deformation-potential con- 
stant A exceeds a critical value A, that depends on the 
electron concentration. In our problem, analogous 
changes occur in the Rayleigh wave, but the peculiar- 
ities of the Coulomb interaction in a two-dimensional 
system lead to a unique situation. On the one hand, 
there is no threshold for the coupling constant, i.e., 
instability sets in formally a t  any A if k >  k,. On the 
other, the numerical value of k, is of the order of the 
reciprocal-lattice vector in all  real  cases. In this r e -  
gion the macroscopic elasticity theory on which the 
entire analysis is based no longer holds. An instability 
of this type does not occur in a two-dimensional system 
(at least for a monopolar conductor). 

In the first  section of the article, the problem is con- 
sidered for the simple model of a plasma layer on the 
free surface of an elastically isotropic medium. We 
obtain also the plasmon damping due to hypersound em- 

We use the simplest isotropic variant of a deforma- 
tion potential. The force acting on the electron be- 
cause of the deformation is 

F=VAdivu, 

where u is the elastic-medium displacement vector. It 
can be assumed that A is independent of the electron 
momentum. Neglecting the relatively small change of 
the elastic properties near the surface, we assume A 
to be equal to  i t s  bulk value. 

When fluctuations of the electron density R set in, a 
force f, = VAC acts on a unit volume of the elastic medi- 
um. We assume the electrons to be two-dimensional in 
the sense that their density (at equilibrium and with the 
fluctuations taken into account) is proportional to 
/%(.z)(~,  where *(z) is the normalized wave function 
corresponding to the first  quantum level of the trans- 
verse motion (the z axis is perpendicular to the sur- 
face). In addition, the wavelengths of all the considered 
oscillations a re  assumed to be much larger than the 
thickness of the layer in which the electrons a re  con- 
centrated. Therefore, calculating the surface density 
of the force f applied to the elastic medium, and the 
force acting on the two-dimensional electrons, we shall 
average the values of F and f with weight 1 * ( ~ ) 1 ~  and 
take outside the integral with respect to z the slowly 
varying function au/8x,8u/az, etc. We then obtain 

R, is the nonequilibrium increment to the plasma sur- 
face density and depends only on the coordinates along 
the surface. 

Let the elastic medium fill the half-space z S 0, and 
let the plasmon propagate along the x axis with wave 
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number k. Since the problem is obviously homogeneous 
in y, only the components u, and u, differ from zero. 
The solution of the equations of motion of the elastic 
medium jointly with the Poisson equation is then writ- 
ten in the form 

u==kB exp (x l z )+x lA  exp ( x t z ) ,  u.=-ixlB exp(xlz)  -ikA exp ( x l z ) ,  

cp-Cek', z<0; cp=De-", x>0; 

~l'-k~-o'/c,' ,  xI2-k2-o'/cI', (1) 

where c, and c, a r e  the velocities of the longitudinal 
and transverse shear waves, cp is the electrostatic po- 
tential, A ,  B , C, and D a re  arbitrary constants, and 
the factor exp (ikx - iwt) was left out. 

The boundary conditions at z = O  take the form 

Here T,, is the s t r e s s  tensor, E is the dielectric con- 
stant, and e is the electron charge. 

The value of E, is obtained from the kinetic equation 

acp a 1 a f  f - f  -+ ! ( U S -  1 1 -  ( a 2  e - + - ~ & v u ) - - = - - .  az 
m av (3) 

where f is the distribution function, m and v are  the 
effective mass and velocity of the electron, r is the 
relaxation time, and the superior bar denotes averag- 
ing over the momenta. 

From (3) we get (ti=l): 

&----- - dp. 

Here C( is the chemical potential, E =p2/2m is the elec- 
tron energy, and f, is the equilibrium distribution func- 
tion. 

Substituting (1) and (2) and using (4), we obtain the 
dispersion equation for the coupled plasma-acoustic 
waves: 

where p is the density of the elastic medium. 

We investigate first  the frequency region typical of 
acoustic waves, for which we can put w << kv. In the 
limiting case of strong scattering we have at kvr << 1 

where r, is the screening radius of the Coulomb inter- 
action in the two-dimensional system, N, is the equi- 
librium concentration of the surface charges, and T is 
the temperature in energy units. The initial section of 
the sound branch is of the form w =sk, where s is the 
velocity of the Rayleigh wave. The small dispersion 
corrections to the function w(k) a re  proportional to k3 
at kr, << 1 and to k2 at kr, >> 1. The sound damping by 

the electrons w" = - Im o will be reduced (in the case 
most accessible to experiment, o >>s, kr, << 1) to  the 
form 

If the spatial dispersion is strong ( k v ~  >> 1)  the damp- 
ing is described by the equations 

The experiment is easier in case (7a), which is char- 
acterized by a very strong frequency dependence (- w5) 
of the damping. 

An investigation of Eq. (5) with (6) taken into account 
shows that a t  sufficiently large k the dispersion law is 
greatly distorted and a region of anomalously frequen- 
cy is produced. Assuming that w << c,k, we expand the 
second factor of (5) in powers of w2/c;,, k2 and reduce 
the dispersion equation to the form 

where w, 4mk/(c + I )  is the Maxwellian frequency in 
the two-dimensional case. As is seen from (a), the 
positive root of the equation 1 +kro =k2/Q2 determines 
the point k, in which w(k) vanishes. At the same point, 
an anomaly occurs in the second solution of the disper- 
sion equation (5), a solution closely connected with the 
plasma degrees of freedom. At small k this solution 
describes the Maxwellian relaxation of the charge fluc- 
uation. Near the point k, where w <<c,,k,, the following 
equation holds: 

At k =k, the sign of W" is reversed, i.e., instability 
se ts  in. An instability of this type was investigated in 
detail for the three-dimensional case in Refs. 6 and 7. 
It is shown there that at A>A,  the short-wave fluctua- 
tions of the carr ier  density upset the homogeneous state 
of the system. A thermodynamically more favored 
structure is one with a periodic dependence of the car-  
r i e r  density and of the lattice deformation on the coor- 
dinate. The threshold value of k at which instability be- 
gins to evolve is (in the three-dimensional problem! ) 

ko=rD-'(AIL-4) -", 

where r, is the "three-dimensional" Debye radius. At 
sufficiently high temperature and low electron density, 
k, can be small enough to land in the region where the 
macroscopic theory does not hold. 

In contrast to the three-dimensional case, in our 
problem there is no need for a threshold condition on A. 
It is easy to estimate, however, that in any rea l  case 
we have Qr, 2 1. For the smallest possible k, (at T =O) 
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we then obtain a value that does not depend on the 
charge surface density and is determined only by the 
parameters of the material: 

The ratio of this quantity and the reciprocal-lattice 
vector is 0.4 for Si and 0.2 for Ge. An increase of the 
screening radius r, only increases k,, in contrast to 
the three-dimensional situation. Thus, the instability 
of the two-dimensional sound-charge waves in the mon- 
opolar case could be observed only in substances with 
anomalously small elastic moduli and with a large de- 
formation potential. We shall not analyze here this hy- 
pothetical case. 

In the region w > ku, wt >> 1 the considered solution 
corresponds to a plasma wave. The two-dimensional 
plasmon is damped by the electron scattering and in 
accord with the Landau mechanism. Just a s  in the case 
of piezoelectric coupling,' additional damping is pro- 
duced by the emission of volume sound waves. In the 
case of Fermi statistics this damping is obtained from 
the expression 

The order of magnitude of w"/w can be estimated a s  
(k/Q)'c,k/w << 1. Thus, in the case of coupling via the 
deformation potential, the obtained damping is much 
less than in the analogous problem with piezoelectric 
coupling (see Ref. 1). We note that in the considered 
frequency region the sound wave emitted by the plasma 
is almost a shear wave: the longitudinal component of 
the displacement is smaller than the transverse one in 
a ratio c$/w. The sound wave propagation is practi- 
cally perpendicular to  the surface here. 

2. SOUND-WAVE EMISSION BY TWO-DIMENSIONAL 
PLASMONS IN AN MIS STRUCTURE 

In this section we consider a situation typical of ex- 
periments with silicon MIS  structure^.^ An amorphous 
SiO, insulator film of thickness A is deposited on the 
(001) surface of silicon filling the half-space z 6 0. Let 
the plasmon propagate in the [loo] direction (the x ax- 
is). We shall now write down the obvious system of 
equations, and give only the form of the boundary con- 
ditions: 

where c1 and c2 a re  the dielectric constants of the 
semiconductor and of the insulator, respectively. 

The reasoning of the end of the preceding section r e -  
mains in force in the present problem: the radiation 
consists almost completely of shear waves in a direc- 
tion that makes a small angle with the normal to the 
surface, in view of the smallness of the parameter 
ck/w, where c is a quantity on the order of the speed 
of sound in the insulator and in the semiconductor 

The complete solution of this problem entails very 
cumbersome calculations. We confine ourselves there - 

fore to a qualitative analysis of the results. The a-  
coustic damping of the plasmon is described by an 
equation similar to  (lo), which contains a factor of the 
order of unity dependent on the densities and elastic 
moduli of the insulator and of the semiconductor. In 
addition, a +1 is replaced by &, +&, coth kA. Thus, in 
contrast to (lo), a t  kA << 1 the plasmon damping be- 
comes proportional to k2. We assume here and below 
satisfaction of the condition 

cth k A a  (olck) e2pc'/Azkz, 

which is always satisfied in the present experiments 
with two-dimensional plasmons. 

To obtain the amplitude of the sound wave emitted in 
the interior of the crystal, we solve the homogeneous 
problem in which the kinetic equation (3) includes the 
external electric field E exp (i kx - i wt), Ellk, that acts 
on the plasma. Assuming that the dominant damping 
mechanismis the electron scattering," the sought 
amplitude A is given by 

EAk(s,+ez cth kA) op2/o' 
A-i 4neo (p,c,-ip&: tg w~A/cr) [ ( )  (12) 

where w i  =4re2NSk/(&, +&, coth kA)m,p, and p2 a re  the 
respective densities of the semiconductor and of the 
insulator, c, is the transverse sound velocity in the 
insulator, and c, is the velocity of the shear wave in 
the [loo] direction of the cubic crystal. 

The quantity A in (12) is the amplitude of the x com- 
ponent of that part of the displacement whose divergence 
is equal to  zero. The corresponding wave propagation 
velocity is c,. Outside the vicinities of the acoustic 
resonances Eq. (12) determines the principal part of the 
displacement in the radiated sound wave. In addition, 
we have the z component of the displacement and that 
part of the x component whose curl  is equal to  zero. 
Their contributions to  the total displacement a re  pro- 
portional respectively to Ack/w and A ( c k / ~ ) ~ .  We shall 
not carry out here the cumbersome investigation of the 
vicinities of the acoustic resonances, and note only that 
the radiated sound energy decreases noticeably when 
wA/c, is close to (n ++)r, where n is an integer. 

From a comparison of (12) with the analogous expres- 
sion for the amplitude of the emitted sound in the case 
of piezoelectric coupling (see Ref. 3) i t  is seen that the 
order of magnitude of the effect can be estimated by 
replacing the piezoelectric modulus /3 by the expression 

Ak(e:+ez cth kA)/4ne. 

If the electromagnetic wave acting on the plasma has 
an intensity of the order of 1 W/cm2, the intensity of the 
hypersound wave is of the order of 104 W/cm2. To ob- 
tain this estimate we used the parameters of a silicon 
MIS structure and assumed Ns- 1012 cm", k~ 2 104 cm", 
A, 2 .  10-5cm,w~-10. 

The presented estimate of the sound-wave intensity i s  
smaller by approximately four decades than in the case 
of piezoelectric coupling (see Ref. 3), but i s  still within 
the capabilities of contemporary experimental tech- 
niques. We noted that this low ultrasound intensity is 
still larger by four decades than that given by the elec- 
trostriction effect even for the best ferroelectrics. In 
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the considered case of a silicon MIS structure, the 
difference amounts to 12 decades (the electrostriction 
constant is of the order of 10'14 cgs esu). 

The authors thank I. A. ~ i l i n s k i i  and M. V. intin for 
a helpful discussion and M. L. Tsvibel'klops for help 
with the preparation of the manuscript. 

an his is precisely the case realized in the experiments re- 
ported in Refs. 4 and 5. 

'M. V. Krasheninnikov and A. V. Chaplik, Zh. Eksp. Teor. Fiz. 

75, 1907 (1978) [Sov. Phys. JETP 48, 960 (1978)l. 
'A. V. Chaplik and M. V. Krasheninnikov, Solid State Commun. 

27, 1297 (1978). 
'M. V. Krasheninnikov and A. V. Chaplik. Zh. Eksp. Teor. Fiz. 
76, 1812 (1979) [Sov. Phys. JETP 49, 921 (1979)l. 

's. J. Allen, Jr., D. C. Tsui, and R. A. Logan, Phys. Rev. 
Lett. 88, 980 (1977). 

'T. N. Theis, J. P. Kotthaus, and P. J. Stiles, Solid State 
Commun. 24, 273 (1977). 
's. I. Pekar. V. I. Pipa, and V. N. Piskovo~, Pis'ma Zh. Eksp. 
Teor. Fiz. 12, 338 (1970) DETP Lett. 12, 230 (1970)j. 

'v. I. Pipa and V. N. Piskovor, Fiz. Tverd. Tela (Leningrad) 
14, 2286 (1972) [Sov. Phys. Solid State 14, 1979 (1972)l. 

Translated by J. G. Adashko 

Effect of pressure on the hyperfine magnetic fields at the 
nuclei of iron impurity atoms in antiferromagnetic 
chromium 

I. N. Nikolaev and I. Yu. ~ezotosnyi 

Moscow Engineering Physics Institute 
(Submitted 18 May 1979) 
Zh. Eksp. Teor. Fiz. 77, 1643-1648 (October 1979) 

The pressure dependences of the hyperfie magnetic fields H  at ' '~e  nuclei in alloys of chromium with 
alloys were measured by the M6ssbauer gamma-spectroscopy method. Values A H / H A p  
= ( - 1.2-&0.5)X lo-' and ( - 2-&0.5)X lo-' kbar-' were obtained for alloys with concentrations 1.5 and 
3.5 at.% Fe, respectively. The values of A H / H A p  are anomalously large and agree approximately with 
the relative changes of the magnetic moments of the Cr atoms under pressure A p ~ ~ 4 p .  Doubts are 
expressed concerning the model of H  described in the paper of Herbert et al. [J. Phys. Chem. Solids 33, 
979 (197211. An alternate mechanism for the onset of H  is proposed, based on concepts concerning the 
nature of the field at nuclei of nonmagnetic atoms dissolved in a magnetic host. 

PACS numbers: 75.30.Hx, 75.50.E~ 76.80. + y 

Hyperfine magnetic fields at nuclei of impurity mag- 
netic atoms in magnets are  determined by the values of 
the magnetic moments of the impurity atoms, the host 
atoms, and the impurity-host interaction. Accordingly, 
the resultant hyperfine field H  should consist of several 
contributions. The values and the signs of the individual 
contributions to H cannot be predicted beforehand, since 
the mechanism of the transport of the spin density from 
the atoms of the magnetic host to the nuclei of the im- 
purity atoms is not yet clear. Important information on 
the role of the individual contributions to H is made by 
experiments on the influence of the pressure on the hy - 
perfine interaction in magnets with different types of 
magnetic ordering. So far, however, the pressure de- 
pendences of the hyperfine field H(p) at the impurity 
magnetic atoms in monatomic antiferromagnets (con- 
sisting of atoms of the same species) have not been in- 
vestigated. The present study fills this gap in part. We 
have investigated the H(p) dependences at 57Fe nuclei in 
three diluted alloys of chromium with iron. 

Metallic chromium can have an unusual variety of 
magnetic structures, depending on the temperature, 

species, and concentration of the impurities.' Below 
the N6el temperature T, =311 K, the magnetic moments 
of C r  form spin-density waves that can be represented 
in the form 

P (2) -P,n cos QZ, (1) 

where P(x) is the spin-polarization vector, n i s  a unit 
vector along the polarization vector, Q i s  the wave vec- 
tor and i s  parallel to one of the (100) directions in a bcc 
lattice, and z is the coordinate. The SDW are polarized 
transversely (n .Q =O), in the temperature interval 
T ,  > T > T,,, where T S F  M 122 K, and longitudinaly 
(n.Q=q) in the region T <T,,.  At T < 70 K we have 
Q =0.95162~r/d (d i s  the lattice parameter) and in the 
interval 70 K < T < T ,  the value of Q increases to 
0.9626 .27r/d; the SDW length is then of the order of 
20d and is not commensurate with d. 

Introduction of the Fe impurity influences strongly 
the magnetic properties of the chromium: T, decreases 
by approximately 20 K per at.% Fe, T , ,  decreases to 
zero at 1.5 at.% Fe, and Q becomes equal to 2n/d at a 
concentration higher than 2.5 at.% Fe. The Fe im- 
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