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The effect of doping on the excitation spectrum in Fermi-liquid systems of the excitonic dielectric type is 
considered. Doping leads to suppression of new oscillation modes in the low-frequency region @<A and 
k v a ,  to hybridization of the existing modes, and to a change in the region of stability relative to 
excitation of zero-sound waves. Analogous effects in nonequilibrium systems are also analyzed. 
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1. The spectrum of longitudinal excitations in an ex- 
citonic dielectric with one gap was already considered 
earlier in the high-density limit by Kozlov and Maxi- 
mov,' and in a two-gap Fermi liquid in our earlier 
paper.' We have assumed there that the doping, which 
is needed in principle for the coexistence of the singlet 
and triplet pairing, has little effect on the collective- 
excitation spectrum, and in Ref. 1 they did not con- 
sider doping at all. Yet it will be shown below that 
doping leads, even in a single-gap system, to the ap- 
pearance of new oscillation modes, and strong doping 
leads to hybridization of the excitations that exist in 
the normal (without pairing) and gap systems. ~opaev '  
has shown that no gap state is  possible a t  all a t  doping 
impurity concentrations ii exceeding k, = mp0~,/4n2 or,  
in energy units, na ~ d 2  (A, is the gap in the undoped 
dielectric). By strong doping we mean hereafter the 
limit 12n - A, 1 <<A,. 

We note that all the results apply also with practically 
no change to the dielectric phase of an electron-hole 
liquid in a semiconductor, the so-called c r d r ~ p ~ , " 4  in 
the presence of an additional metal-dielectric transition. 
Similar effects should take place also in equilibrium 
systems, of the excitonic dielectric type, which a re  
produced by laser background il l~mination.~ In this 
case, however, the role of the doping i s  assumed by 
disequilibrium effects that lead in the general case to 
inequality of the effective Fermi quasilevels of the elec- 
trons and holes, p,z pn. We a r e  interested in the pres- 
ent paper in the indicated group of questions connected 
with the influence of doping or inverted population on the 
spectrum of the collective excitations in the electron- 
hole Fermi liquid of a single- gap excitonic d i e l e c t r i ~ . ~  
We confine ourselves to homogeneous (i.e., commensu- 
rate) systems with constant order parameter. 

2. Consider a system with pairing in the region of low 
frequencies and small wave numbers, w << A and kv  << A. 
In this case the excitation spectrum is determined in 
fact by the poles of the correspondiigpolarization opera- 
tor, which coincide with the poles of the vertex func- 
t i o n ~ . ~ ' ~  

The system of equations for the vertex functions and 
for the gaps, which must be solved simultaneously, was 
derived earlier [see  Eqs. (12) and (19) of Ref. 21. In 
the general case the corresponding equations a r e  quite 

unwieldy. But in the case of isotropic interaction, which 
is assumed hereafter for simplicity, and in the absence 
of conditions for the coexistence of two types of pairing, 
the equations for the amplitudes of the interaction of the 
electron with the external field without (R) and with spin 
flip (a) a r e  uncoupled. 

Let, for example, A,#O and A, =0, where A, and A, 
a r e  the singlet and triplet gaps in the single-particle 
spectrum. This situation is possible in principle when 
A,,> A,,, or if there is no triplet pairing a t  all (A,,=O) 
because the coherent interaction constant in the triplet 
state i s  negative. In this case the amplitude i s  a vec- 
tor quantity proportional to the vector o. As  a result 
the system (19) of lief. 2 takes a somewhat different 
form, since such amplitudes have other properties with 
respect to space inversion: 

1 I 

R=Ra+f0" ~ [ L R + Y R ] ~ z ,  R=f,' [ N R + O R ] d z ,  
-1 -1 

Here RU and a r e  the renormalized bare amplitudes 
without and with spin flip, respectively, fo and go a r e  
the "zeroth* coefficients of the expansion of the Landau 
function in Legendre polynomials, and f; and g ;  a r e  
the singlet and triplet coherent- interaction constants. 
Rand & a r e  the amplitudes of the interaction with the 
field with production of electron-hole pairs from the 
vacuum, k v z  = k* v, and 

I S P  ku L - - -  M = - ( * + I )  
S-z 2 '  2 8  

12) 
ze l - P  kv  N=ln-- - x2q - - ~ q ,  0 = - -[ ( s f z )  + ( s -z )  P ]  ( q + L ) ,  
A.o 4 A  

A 

where A,, << 5 << c F ,  P is the space-inversion operator, 

2x( l -xz) '"q=2 arc si i ix- 
m(1-x' ) '~*  m(1-9)" 

-arctg w / 2 + p t 2  + arctg 
0 /2-1".  ' 

(pkv)'(sz-e'z') - 4 ( ~ A ) ' + 4 ~ k v e  (zA) '  
kzA=ln 

( p k v ) g ( s ~ e ' z ' )  -4(xA)'-4pkve (xA)" 
x'=[wZ- (ku) ' ]  (2A)-' ,  sku=% pe= (pa-A')"', 

and p is the shift of the electron Fermi energy because 
of the doping. In addition, the condition for electro- 
neutrality of the system yields a connection between n 
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and p (Ref. 7): 
n = ( p z - ~ 2 ) ' ' *  . 

Since the vector amplitudes and 6 a r e  proportional to 
to the axial vector o, while the operator $ reverses 
their sign. In contrast, in Ref . 2 we introduced for a 
two-gap system the scalar amplitudes 9 and 9 propor- 
tional to o a  A,, invariant to the P-transformation, and 
having poles that described magnetoelastic waves in a 
ferromagnet. 

3. In the absence of doping, when x << 1 and cp = 1 a t  
p = 0 and & = 0, an analysis of Eqs. (1) shows that the 
only type of low-frequency excitation consists of 
ordinary acoustic oscillations corresponding to a pole 
of the amplitude R: 

It must be noted that the interband transitions dis- 
regarded by us  produce a threshold in the sound spec- 
trum of an equilibrium excitonic d i e l e c t r i ~ . l * ~  No such 
threshold appears in the dielectric phase of a non- 
equilibrium electron-hole liquid. 

The spin excitations have a threshold even if no ac- 
count i s  taken of the interband transitions, and appear 
in the region of frequencies on the order of 2A (Ref. 2; 
cf. Ref. 9): 

In the presence of doping, the situation changes 
radically. We consider first  the spin waves.- Inasmuch 
a s  in the case of isotropic interaction 9 and *do not 
depend on the angles, the system (1) for the spin ver- 
tices turns out to be algebraic, s o  that the dispersion 
equation of the spin excitations is obtained by setting 
the determinant of this system equal to zero: 

-L 
Ato o 

(7) 
In the derivation of (7) we made use  of the fact that cp 
i s  even and A i s  odd in z ,  and neglected terms small in 
the parameter x << 1. 

In the region of very weak doping 1 >> Ix I >>& >> 1% l 2  a t  
frequencies o -x2A << kv, Eq. (7) takes the form 

/&A'/$ a + l  I 
I--{ln--2antg-)=o, akv  a-I 

where 
-1 

a 2 = 2 0 A ( k v ) - 2 ,  h= [ I - ,  (,%+1)] Aro (I.*+ A:o 1 )  . 
It is easily seen that in the considered limit, if the 
constant h is positive, zero-sound excitations of the 
magnon type exist in the system, with a frequency 
proportional to the square of the wave vector: 

It follows from (9), that the condition for the existence 
of the obtained mode, besides the possibility of neg- 
lecting the collision dissipation w >> v, i s  that Eh be 
small enough. Recognizing that the parameter & is  
in fact bounded from below by the requirement that 

the impurity and ground bands overlap,' this condition 
imposes an upper bound on the constant h, &h << Ix 1 '. 
In addition, if the condition 

i s  violated, there i s  no singularity a t  all in the formula 
for cp at  w - (kv)'/2A, and this imposes a lower bound 
on the constant h. 

With increasing density of the doping impurity, when 
1 >>&>> 1% 1, the dispersion equation takes the form 

where 

At relatively low densities o r  for  strong interaction, 
h>> E, the spin excitations acquire an acoustic charac- 
ter  

We have w << kv as before, but now in the region 1 >>&h 
>>I%[. 

Finally, in the case of strong doping, o r  more ac- 
curately a t  low values of the ratio h/&, Eq. (10) has a 
solution 

that differs from the known dispersion relation for spin 
zero sound in the normal phase (i.e., a t  &- 1, A - 0) of 
effective renormalization of the velocity of the quasi- 
particle excitations v - Ev and of the Fermi-liquid in- 
teraction constant. 

Using the known relations that connect the amplitude 
9 with the magnetic susceptibility of the system x (Ref. 
6), we can obtain an expression for x a s  a function of 
the frequency, of the wave vector, and of the parameter 
E. In particular, in the region where Eq. (10) is  valid, 
this expression takes the form (A,,# 0) 

Equation (13) is  a generalization of the known results to 
include the case of alternating fields and Fermi-liquid 
interaction. In fact, in the static limit s = O  this equa- 
tion leads at &- l, in particular, to an expression for 
the susceptibility of the normal system x = x,(l +g;)-l, 
and if liquid effects a r e  neglected Eq. (13) goes over a t  
s = O  into the corresponding equation derived by Volkov, 
Kopaev, and ~usinov': 

We note also that in the case of weak interaction at s = 0 
the denominator x coincides with the expression used in 
Ref. 10 a s  the criterion for ferromagnetic instability. 
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A simple analysis shows that in the region 

Eq. (10) has a pure imaginary solution. Thus, in this 
region the dielectric phase becomes unstable to spin 
zero-sound excitations-a transition takes place to a 
two-gap ferromagnetic state. In other words, the con- 
dition (15) is a generalized criterion for the ferromag- 
netic transition in a doped Fermi-liquid system with 
electron- hole pairing (we recall that we a r e  considering 
a commensurate phase). 

The situation is different in systems with A,, = 0. A 
transition to a two-gap system is impossible in princi- 
ple, so  that the amplitude 8 responsible for pairing in 
the triplet state vanishes identically, a s  follows direct- 
ly from the corresponding equation of the system (1). 
A detailed analysis of such systems is analogous to a 
considerable degree to the one given above for the case 
A,,+O. In particular, it i s  easy to show that in such a 
dielectric there propagate modes of the type (9), ( l l ) ,  
and (12) with the parameter change h -g;. The ex- 
pression for x now takes the form 

and leads to oscillations with a dispersion equation 

At positive values of g; Eq. (17) describes spin zero- 
sound oscillations of the type (12). In the regiong; < 
-& the solution of (17) is pure imaginary-the system 
becomes unstable. However, since there is  no two-gap 
phase in the considered case, a transition to a Stoner 
ferromagnet takes place, and the condition for such a 
transition is much less stringent than the Stoner ferro- 
magnetism criterion g; <- 1 for a normal system. 
Since & is in principle bounded from below only by the 
requirement that the ground and impurity bands over- 
lap,s such a system can be doped with causing re- 
structuring, only in a very narrow doping region, if at  
all. 

It is easy to verify that a dielectric with A, > A, has 
collective modes that differ by the substitution A, = A, 
from the excitations considered before. In fact, in this 
case the system of equations for the vertex spin func- 
tion takes the form 

-1 -1 

The substitution A,= A, changes the system (18) into 
the corresponding equations of the system (1). The sub- 
sequent analysis and its results agree, apart from the 
indicated substitution, with those given above. 

Thus, the violation, due to doping, of the symmetry 
of the electrons and holes leads to the appearance of 
low-frequency spin waves w <<A in a system with pair- 
ing. As indicated above, there a re  no such waves in the 
absence of doping. The physical meaning of this phe- 
nomenon is that the ground state of the carr iers  in such 

a system i s  a hybrid of the states of the gap and normal 
phases. The amount of doping determines the degree 
of presence of -normaln properties-with increasing & 

the properties of an excitonic dielectric approach those 
of an ordinary semiconductor o r  semimetal, reaching 
the normal phase in the limit E= 1 (2n2 A,). 

4. The spectrum of the zero-spin excitations is  de- 
termined by the poles of the amplitude R. The corre- 
sponding dispersion equation that follows from the first  
two equations of the system (1) takes the form: 

- 1 

fa- { jdz [ ~ ( ~ - . ) - . l  +2sz [ j d r p  12[ j d z ( s ~ - z z ) p l  1-0. 1 -- 
2  

-1 
s-z 

0 0 

In the region of very low concentrations of the doping 
impurity &<< 1% 1 << 1, in contrast to the case of spin 
waves, this equation has no low- f requency zero- sound 
solutions-only ordinary sound propagates in the system 
[see,  incidentally, the remark concerning Eq. (5)]. 

With increasing degree of doping, & increases and in 
the concentration region & >> 1% I the equation for zero- 
spin excitations can be written in the form 

Equation (20) describes bound oscillations of zero- 
sound and ordinary acoustic types. In fact, in contrast 
to the limit of strong doping ( ~ / n )  - 0 (i.e., & - I ) ,  when 
Eq. (20) goes over into the known equation for zero- 
sound oscillations in a normal system, we arrive in the 
absence of doping, E = 0, at  the acoustic solution de- 
scribed by the pole in Eq. (5). 

Thus, by varying the c~ncentration of the doping im- 
purity (and by the same token the parameter &) we can 
observe a continuous transition from the acoustic to the 
zero-sound oscillation regime. As already noted above 
in connection with the analysis of spin excitations, this 
behavior i s  quite natural, since an increase of E leads 
to an increase of the "normal" properties of the system. 

It should be noted that the effects indicated take place 
in the low-frequency region w <<A and kv  <<A, while the 
difference between the high-frequency collective modes 
and the corresponding oscillations in the undoped sys- 
tem is of little effect. 

For frequencies w -eke  Eq. (20) admits of a solution 
of the type 

which is  similar to the corresponding spin excitation 
(12). Equation (21) is valid only in the case of a large 
negative argument of the exponential, which reduces at  
I f ;  I < 1 to the inequality 

The condition (22) is satisfied only in the case of nega- 
tive parameters f f or  small f I; and 1 -&I 6 << 1. In the 
latter case Eq. (21) can be reduced to the form 
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The explicit form of the solution depends substantially 
on the relation between 6 and f;. If the doping is 
 weak," when 36 >> I f  r 1, the solution seems at  f irst  
glance not to depend at  all on the interaction. At small 
f ;, however, it must be borne in mind thatg f ,Y =- f!, 
and the usual connection holds between the gap and the 
interaction, A - exp(- l/f ', ), in which case 6-~ ' /2p '  
and is a function off ,Y < 0. For strong doping, when 
36 << If ,U 1, the oscillations actually correspond at  zero 
sound in the normal system, and the Landau parameter 
f ;  should naturally be positive. 

Thus, the argument of the exponential of Eqs. (21) and 
(23) contains in fact the liquid interaction renormalized 
by the effective interaction of the paired and unpaired 
electrons. The modes (21) and (23) describe zero-sound 
oscillations in a system which such an interaction. 
An experimental investigation of the excitation spectrum 
could yield information on the sign and magnitude of the 
liquid interaction constant f ,Y. 

The situation is different in systems with A,,# 0, 
A,, =O. As already indicated above in connection with 
the system (18), the dispersion equation for the collec- 
tive modes i s  obtained in this case from (20) by making 
the substitution A, - A,. In particular, Eq. (23) is valid, 
where 6 should now be taken to mean ~ : / 2 n ' .  Since the 
gap A, is connected with the triplet excitation, the mode 
(23) propagates also a t  f ; so .  

In concluding this section it should be noted that be- 
sides the spinless excitations considered above, plas- 
ma oscillations can propagate in the system. In the 
absence of doping these oscillations, naturally, have 
high f requencies."' Doping, however, makes possible 
oscillations of the density of the unpaired electrons with 
a frequency 

Obviously in the case of weaker doping, C << 1, these 
modes a r e  of low frequency, E << A. 

5. We consider now nonequilibrium excitonic dielec- 
trics. As already noted above, a detailed analysis of 
such system was carried out by Kapaev and ~ o p a e v . ~  
They have shown that in nonequilibrium systems the 
role of doping is assumed by the presence of excess 
electrons above the dielectric gap, a s  a result of which 
no additional doping i s  necessary for the coexistence of 
the singlet and triplet pairings. On the other hand, the 
resultant state is not, generally speaking, ferromag- 
netic. In addition, unlike in superconductors, the gap 
i s  determined by the Coulomb interaction of the elec- 
trons and holes, as a result of which the nonequilibrium 
electrons have a Fermi d i s t r ibu t i~n .~  

The equations for the vertex functions R, a, @ and & 
a r e  of the same form a s  in the equilibrium case, but 
since the Green's functions of the_ nonequilibrium elec- 
trons is different, the functions cp and will also be 
different. The connection of these operators 4 and 5 
in the nonequilibrium case with the corresponding op- 
erators in an equilibrium excitonic dielectric cp and X 
is of the form 

To determine the collective excitations in such a sys- 
tem it is  necessary to solve the system (1) jointly with 
the equation for the gap. This equation, say for the 
case A, =0, can be written in the form (see Ref. 5) 

where, a s  before, & = (p2 - A')"'~. It must be noted 
that the role of the increment to the chemical potential 
p is played by the Fermi quasi-level of the nonequilib- 
rium electrons. Since the solution of this system of 
equations is perfectly analogous to the one given above 
for the equilibrium case, we shall dwell only on the re- 
sults. 

The dispersion equation of the spin excitation is of the 
same form a s  in a doped dielectric, apart from the sub- 
stitution (24) [cf. (?)]. In particular, in the region & 

<< 1% I there exists a magnon-type mode analogous to 
(9): 

At the parameter values 1 >> &>> 1% 1 the solution takes 
the acoustic form 

w = (2eh/3) "kv. (27) 

The two indicated solutions differ from the correspond- 
ing solution in the equilibrium system by the substitu- 
tion h - 2h, where h coincides with equilibrium value 
[ see  (8)]. The appearance of the factor 2 is  natural, 
since the effective state density in the nonequilibrium 
case is twice as large because of the simultaneous 
change of the chemical potentials of both the electrons 
and holes. 

Finally, a t  C - 1  there appears a solution analogous to 
the zero-sound mode (12): 

where 

A a o  
-1 ) ;](ln"+1-2e). X= [a* (ln-+ 1-2e -i+e 

Aro Azo 

In this case must satisfy all the conditions that a r e  
imposed on h. 

In the region c >> k v / 2 ~  in the case of attraction f : 
> 0 the magnetic susceptibility of the system i s  given 
by 

This expression differs from the corresponding equilib- 
rium function (13) because of the already indicated sub- 
stitution (24). We note that in the limit as  A -- 0 the 
susceptibility 5 does not have the Stoner form, since 
the system is in disequilibrium. 

In the range of parameters were the inequality 

holds there appears an instability to formation of a 
tripletgap, and a transition to the magnetic phase takes 
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place. The condition, (30), neglecting the Fermi- liquid 
interaction g;, goes over into the previously obtained 
magnetic-ordering ~ r i t e r i o n . ~  

The dispersion equation for zero-spin excitation is 
similar to (20) and of the form 

Proceeding to an analysis of (31), we must recall that 
in system with inverted population the pairing a t  low 
pump levels takes place in the case of attraction ft > O ,  
and at high pumps [when & = 11 i t  takes place for repul- 
sion f : < 0 [ see  (25)] . 

We consider the case of attraction f: > 0. At small 
E Eq. (31) leads to the usual acoustic solution [ s e e  (5)]. 
As & approaches 0.5, the character of the solution 
changes: 

The value &= 0.5 i s  critical, since near &= 0.5 the solu- 
tion of (31) turns out to be pure imaginary (s2 < O), and 
the system becomes unstable. To understand the physi- 
cal meaning of this instability it must be borne in mind 
that at n = n, = ho/3 and in the case of attraction the 
gap with value A = ~ , / 3  vanishes j ~ m p w i s e . ~  At this 
point (&/ah) =0, and with further increase of the pump 
we find ourselves in the region of the metastable phase 
(&/an) = 0. It i s  easily seen that at n =n, and at  the 
corresponding value &= 0.5 the instability obtained 
above describes the jump of the system to the normal 
state (A = 0). 

In the case of repulsion f: <O, Eq. (31) has a zero- 
sound solution in the region & = 1. If the inequality 

is satisfied this solution can be written in the form 

Recognizing that in the case of pairing with repulsion 
f: <O the parameter E should be close to unity [ s e e  
(25)], the inequality (33) can be satisfied only a t  small 
positive values of the Fermi-liquid constant f f. Thus, 
zero sound propagates only in the case of repulsion. 
This i s  natural, since the already noted connection 
f E: - f (0 holds at small f :. 

Generalization to the case A, = 0, A, # 0 entails no 
difficulty because it reduces obviously, as in the equi- 
librium case, to the substitution A, = Ato. 

6. Thus, doping and disequilibrium alter substantial- 
ly the collective properties of an excitonic dielectric. 
In particular, the spin-wave spectrum acquires low- 
frequency magnon and acoustic modes. The stability of 
the system to these modes, just a s  in the normal sys- 
tem, is connected with the stability to the formation of 
the ferromagnetic phase. As seen from (13), there a re  
two possibilities for the formation of this phase: either 
a transition to the excitonic-ferromagnet phase, or a 

Stoner transition. Since an excitonic ferromagnet is in 
fact either a ferromagnet o r  an incompletely compen- 
sated antiferrornagnet, it follows that, depending on the 
degree of doping and on the ratio of the constants g: 
and g,W of the coherent and incoherent interactions, 
the system goes in accord with (15) either into 
the Stoner criterion 1 +gl; < 0, in our case  we get the 
inequality & +gl; < 0, where & < 1, and a s  a result the 
transition takes place a t  Fermi-liquid interaction con- 
stants gl; of much smaller absolute value. This fact, 
a s  already noted, is due to the change of the carr ier  
density on the Fermi surface because of pairing and 
doping, and agrees in general with the fact that fo r  
many metals the transition to the ferromagnetic place 
occurs at low interaction constants. Analogous results 
were obtained also for nonequilibrium systems. 

In the case of zero-spin excitations, greatest interest 
attaches to the system with pumping (32). It is  precise- 
ly the instability to this mode which causes the collapse 
of the steady-state regime of electron and hole pairing 
due to their attraction, and the transition to the pairing 
state in the case of a coherent repulsion interaction. 

Finally, notice should be taken of one more feature of 
doped and nonequilibrium systems-the existence, de- 
pending on the degree of doping or  inversion, of zero- 
sound spin and spinless excitations in the case of 
Fermi-liquid attraction a s  well a s  repulsion. By the 
same token, in contrast to normal o r  undoped systems, 
i t  is possible in principle, by varying the degree of 
pumping o r  the degree of doping, to observe acoustic, 
zero-sound, or  magnon mode and assess the sign and 
magnitude of the corresponding interaction. 

In conclusion, we thank B. A. Volkov and Yu. V. 
Kopaev for a discussion of the results and helpful re- 
marks. 
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