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We investigate the role of piezoelectric and flexoelectric phenomena that occur in chiial smectic C liquid 
crystals (C). It is shown that the distortion of the helicoidal oreintational structure of C by an electric 
field is due to periodic perturbations of the distribution of both the azimuthal angle p(z) and the 
inclination angle 8 = 8, + 8,(z; E)  of the molecules relative to the nonnal to the smectic layers. The 
spatial distributions ofQ(z) and (Pl(z) in fields 0 < E < E, (E, is the untwisting field of the C helix) and 
the ensuing dependences of the macroscopic polarization <P) on the field were obtained by numerical 
means. It follows from the calculations that spatial modulation of the angle 8,(z) at E < E, together with 
the flexoelectric effect lead to appreciable changes of <P) compared with the mean value 
<coscg(z;E)).An attempt is made to estimate the principal material constants of the C phaw of the 
liquid crystal DOBAMBC (d-p-decyloxybenzilidine-p'-amino-2-methylbutyl-~nnrunate) from a 
comparison of the experimental and theoretical results on the behavior of the phase near its point of 
transition into the chiral smectic A phase. The influence of the boundary conditions on the properties of 
the C phase is considered. 

PACS numbers: 77.60. + v, 77.30. + d, 61.30.Gd 

1. INTRODUCTION 

It is known that an electric field produces in liquid 
crystals flexoelectric deformations that lead to the 
appearance of a macroscopic polarization due to the 
fact that molecules with anisotropic shape have a dipole 
m ~ m e n t . " ~  These properties a r e  possessed by nematic 
as well as smectic phases, _and in the case of the chiral 
smectic-C liquid crystals (C) the flexoeffect connected 
with the spontaneous orientational deformation drp/dz 
=q makes a definite contribution to the spontaneous 
polarization of the materiaL3 In th: absence of an elec- 
t r ic  field E the polarization in the Cphase, averaged 
over the volume, is zero. When an field E is applied a 
macroscopic polarization is produced in the plane of 
the smectic layer and is proportional to the applied 
field. The macroscopic polarization (P) in the C phase 
is due to distortions of the helicoidal orientational 
structure produced by both the piezoeffect and the flex- 
oeffect. A distinction must be  made here between two 
types of distortion. The f i r s t  is due to perturbation of 
the distribution of the azimuthal angle ~ ( z )  -vo(z)  
[q,(z) =q,z] a t  a uniform distribution of the angle of in- 
clination %, of the molecules relative to the crystal 
axis z. The second is due to the periodic perturbation 
B,(z) of the inclination angle 0 =  B0+%,(z) with the period 
(pitch) f i  = 27r/q unperturbed. Obviously, this distinction 
between the distortions is meaningful only if they a r e  
small. 

The contribution of the distortions of the f i rs t  type 
and of the corresponding piezoelectric effect to the di- 
electric susceptibility was considered in preceding 
 paper^.''^ We note that, owing to the piezoeffect, the 
deformations of the second type also contribute to the 
value of X in the phase. The flsxoeffect can cause 
macroscopic polarization of the C phase only if periodic 
deformations of the second type a r e  caused by the field. 

Physically the situation here is similar to the flexo- 
effect in a nematic crystal, where the modulated orien- 
tational structure contains two types of distortion: ~ ( z )  
and B(z).' In the present paper we investigate the roles 
of the piezo- and flexoeffects in the polarization phe- 
nomena that occur in chiral smectic liquid crystals, 
and attempt to estimate the fundamental parameters of 
these substances on the basis of a comparison of the 
theoretical results  and the experimental data on the be- 
havior of C near the point of the phase transition of C 
into the chiral smectic A phase 

2. BEHAVIOR OF HELICOIDAL STRUCTURE IN 
ELECTRIC FIELD 

The polarization properties of C near the phase tran- 
sition point a r e  described within the framework of the 
phenomenological theory of ferroelectricity of this 
phase in Refs. 3 and 4. According to this theory the 
density of the f ree  energy in an electric field E is 
given by 

where a =a f (T  - Td;  b>  0; K and g are  the elastic mod- 
uli; X is the dielectric susceptibility and is assumed 
here to be isotropic; p l  and p, a re  the piezoelectric 
moduli, and X is the chirality parameter, which is 
usually small and can also expressed a s  a ser ies  in 
powers of % 2 < < 1 : ~ = h o + ~ ' 8 2 + .  .. . 

The ferroelectric phase is characterized by a finite 
inclination of the director by an angle 8 to the crystal 
z axis and by a helicoidal twisting of the polarization P 
around the z a d s ,  corresponding to an inhomogeneous 
distribution of the components of the transition param- 
eter 
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EI='/z sin 20 cos cp, EZ='12 sin 20 sin cp. 

At E=O it follows from ( 1 )  that the minimum free ener- 
gy corresponds to  the distributions 0 ( z )  = const, r p  ( z )  
= rpo(z )=qo(z ) ,  where 2n/q0 is the pitch of the helicoid 
and depends in general on the temperature: 

q.=q.+qle=+qtlel+ ..., q . = - ( ) c o + x p l p l ) ~ ~ .  
(2 )  

K - K - ~ p t l  

The phase-transition point T, corresponds to vanishing 
of the coefficient 

of the angle 0 ,  and of the polarization P. 

At E f  0 we have rp ( z ) f rp , ( z )  and B ( z ) f c o n s t ,  if the 
modulus g + Assuming that the electric field E is 
parallel to the y axis, we obtain by minimizing P with 
respect to P, and P ,  

Sbstituting (4) in (1)  and minimizing P with respect to 
rp(z) and € J ( z ) ,  we arrive at the following system of 
equations for yl and 0: 

8'9 Re2  - + 2E (p,0. sin p-l* 
az2 

where 
8-00+8,, 2E+4b00Z=0, 18.1 

Since the value of the untwisting field of the helicoid 
[rp(z)=const] i s  of the order of E , - K 0 , q f l j ~ ~ ,  we get 
at E a E ,  the value Bl-lfq:Od [ii I in the C phase. There- 
fore if the inequality 

is satisfied we can write Eqs. (5) ,  at  all fields up to E 
= E ,  in the simplified form: 

aacp K002- + ~ E p , e ~  sin p=O, a z2 

aze, a cp 
&e1+r- az - X E ( P . - ~ ~ ~ )  map-o. 

At E <<Em Eqs. (6)  are  valid a t  all values of the pararn- 
eters. 

The f i rs t  equation of (6) describes the distortion of 
the helicoid in the electric field, with rp(z)  =cpo(z) at 
E = O .  This problem is similar to that of the deforma- 
tion of the cholesteric helix.' Using the known solution, 
we get 

The intermediate distributions of cp  ( z )  at  O< E< 
were obtained in the present study numerically. Sub- 
stituting the function r p  ( z )  obtained in this manner in 
the second equation of (6) we can find the particular 
solution 0 , ( z )  in the form 

1 
0,  ( z )  =; ( - $ ) I h  X~ (lLl-p2d:) cos .h 2 (- f )I* (z-u) du, (8 )  

0 

where ii <O at  T <  T,. To obtain a periodic solution 0 , ( z )  
having the period of the inhomogeneous pa r t  of the sec- 
ond equation of (6)  we must add to (8) the corresponding 
solutions of the homogeneous part  of this equation, i.e., 
the functions 

C, exp [*2 (-E/g)"z]. 

At E << E, the periodic solution 8 , ( z )  takes the form 

and the function rp(z)  is given by1 

With the aid of (4) ,  (9 ) ,  and (10)  we obtain the macro- 
scopic mean polarizations ( P , )  at  T < T,: 

We note that a t  T>T, the value of BX is3 

At Em E, i t  is convenient to seek the solution @ ( z )  in 
the form 

0 = 8 0 ( T ) [ l + q ( z ;  E ) ] ,  Iq l - l01 /00 laI .  

The function d z ;  E )  is the periodic solution of the equa- 
tion 

f l r l  xE + g7+Aq - - cos p, A--4E. 
d t  00 dz (13) 

Changing to  the dimensionless variables 

X=Z/JI,  r=g/K, Sz=4n2~2Algqoz>0, 
(14) 

h=p2qo/p,, C=n'k2x21f12 ( k )  r 

and taking into account the relations 

where a change of the electric field E from E=O to E 
=Em corresponds to a change of the parameter k from 
k = 0 to k = 1,  and F , (k )  and F, (k )  a r e  elliptic integrals 
of the f i rs t  and second kind, we obtain from (13) 

d2q/dz2-Sq=CF ( z )  , (15) 

where 

is a periodic function with unity period. 

The periodic solution of (15) was obtained by two 
methods corresponding to the asymptotic relations S2 
<< 1 and S2 >> 1.  In the case S2 << 1 i t  is convenient to re- 
write the periodic solution (15) in the form 

ii = 4f F cU)s.h s ( ~ - ~ ) ~ ~ + c ,  sh x z + ~ z  ch X r .  (16) 
0 

where 
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If S2>> 1, a numerical calculation in accord with (15) 
entails great difficulties and an asymptotic expansion in 
powers of 1/S2 must be used: 

The obtained value of the &a1 perturbation is the start-  
ing point for the determination of the average polariza- 
tion (P)  of the smectic layer: 

where (. . . ) denotes averaging over the helicoid period 
o c x c  1. 

The polarization was determined numerically from 
(18) in the following manner. Given tlfe electric field 
0 s  E s  E, we determined the induced helix pitch and the 
azimuthal distribution p (x )  satisfying the relation 

Depending on the value of the parameter S2, the value of 
cp(x) was substituted in (16) and (17) to determine the 
axial perturbation 9 (x) (Fig. 1). 

The polarization (P) was determined from (18) by 
numerical integration with respect to x from x = 0 to 
x = 1. At E = E ,  the values of 19 I and (P) a r e  of the or-  
der  of 

Figures 2 and 3 show the dependences of the relative 
polarization (P)/xc(,~,  on the field E, calculated by the 
method described above. A characteristic feature of 
these dependences i s  the nonmonotonic character of the , 

curves near E = E, a s  T - Tc. It is seen that a t  a ratio 
g/I? >> 1 there is a pronounced maximum near E =  E,, 
which decreases with decreasing temperature, and on 
the (P )  (E)  curve there a r e  produced in succession a 
minimum and a flex that goes over inJo a monotonic de- 
pendence a t  T, - T =  15 - 20 K. ~t g/K= 1 the (P)  (E) 
curves remain nomonotonic, but the indicated maximum 
is weakly pronounced. 

We emphasize that the contribution of the distortion 
8,(z) to (P )  (E) is particularly significant a s  T - Tc and 
corresponds to an anomalous increase of the suscepti- 
bility in the vicinity of the phase-transition point. We 
note also that the slopes of the indicated curves on 

ZIP 
FIG. 1. Spatial modulation of the relative angle Bi/O, in the e 
phase: E/E,= 0.98, g / ~  = 25, Tc-T= 0.5"C. 

FIG. 2. Dependence of the relative macroscopic polarization 
(P) /x&Bo in the C phase on the ratio E / E ,  at the temperatures 
Tc-T°C: 1) 11; 2) 12; 3) 4; 4 )  1.0; 5) 0.7; 6) 0.5 (g/d= 25, 
k q d &  = 14, a' = 2.5. lo2; the dashed line corresponds to the 
field dependence of (cos cpk; E/E,)) . 

Figs. 2 and 3 a re  proportional a s  E -  0 to the suscepti- 
bility correction calculated analytically from Eq. (11). 

3. COMPARISON WITH EXPERIMENT 

We compare f i rs t  the expressions (11) and (12) for the 
dielectric susceptibility with the measured dielectric 
constant E of the chiral smectic liquid crystal d-p- 
decyloxybenzilidene-p'-amino-2-methybutyl-cinnamate 
(DOBAIVIBC).~*~ The dependences of & on the tempera- 
ture and on the frequency of the measuring field were 
obtained with rather thick C samples @ =  50-150 km) 
in a planar orientation (the helicoid z axis is in the 
electrode plane). In the experiment we determined the 
dielectric-tensor component &, = E,, connected with the 
polarization P, produced along the y axis under the in- 
fluence of the field Ey 

E,=E,+~~P,/E, ,  (21) 

where &,is the dielectric constant due to displacements 
of the induced dipoles in the measuring field. 

FIG. 3. Dependence of the relative macroscopic polarization 
(P)/x&O, in the 2 phase on the ratio E / E ,  at the temperatures 
Tc-T°C: 1) 22; 2) 9; 3)4; 4 )  1.6; 5) 1.2 (g/l= 1, kg,/&= 5, 
a' = 2 . lo2; the dashed line i s  a plot of (cos q(z; E/E, ) ) .  
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The investigations were made in weak measuring 
fields E, [EJED(T= T,) =lo-'],  i.e., in  precisely the 
region where the analytic expression (9)-(11) a re  valid. 
The expression for  the static dielectric constant &, can 
be written with the aid of (11) in the form 

Figure 4 shows the temperature dependence of the 
value of E' = E,, - E,, previously obtained6 by extra- 
polating the plots of ct ( f ;  T - T,) into the frequency 
region f = O .  Using the data of Fig. 4 and the known 
temperature dependence of the helix pitch p,(T - T,) in 
DOBAIVIBC,~*~ we can estimate the quantities that enter 
in (14). We note that a value that agrees with experi- 
ment can be  obtained for the anomaly E'(T - T,) from 
(14) provided that the flexoelectric effect makes a sub- 
stantial contribution to the onset of the macroscopic 
polarization ( y 2 q 0 2  p,). In the opposite case ( p 2 q ,  
<< pl)  one should expect the relations &'(T - Tc)-p;(T 
- T J ,  and E'(T~JT,)/E'(T <<T,)=4, whereas it follows 
from Fig. 4 that the last mentioned ratio is close to 
two. 

Starting from the relationg ak between the elastic 
constants of DOBAMBC and putting - 5 lo4- 
2.5 *10-5,8 we obtain the region of permissible values 
of a' and g in which (14) describes best the temperature 
dependence of E': 

a'/g42.10T, 6=at(T-T.). 

Figure 4 shows plots of ct(T - T,) based on (14) for 
certain p e r ~ i s s i b l e  se ts  of values of the parameters 
a', g ,  and K and of the ratio p z q d p I .  The best agree- 
ment between the experimental and theoretical E'(T 
- TJ  is reached in those cases when the quantities p, 
and p2qo a re  of the same order ( p Z q d p 1 = l - 5 ) .  Some 
discrepancies between the experimental and theoretical 
curves can be due to the weak_ temperature dependences 
of the material constants X, K, and g near the point of 
the A*-- C phase transition. 

In accord with (12), the anomaly of the dielectric con- 

FIG. 4. Temperature dependences of the static dielectric con- 
stant &' = e~ at E << ED, & = 4.810.2; points-experimental 
value for the chiral smectic crystal DOBAMBC.~'~  Theoretical 
calculations by Eq. (11): dashed-a' = 1.6. lo2, k= lod, g 
= lo5, kqo/&x4; solid-a'= 1.6. lo2, 8= 5.1d6, g= lo5, 
&q,,/&* 5; dash-dot-a#= 2 .  lo2, g= 5 .  g =  2.5. lo3, 

UP,,/&= 8. 

stant in the A* phase a t  T = T ,  is determined mainly by 
the value of the elastic energy kg:. Comparing the ex- 
pressions for &' in the phase C(e6)  in the region of the 
monotonic increase of the helicoid with &'  in the phase 
A* a t  T =  T,(E;) we get 

The numerical estimates for various ratios g/k, p 2 q d  
pl, and q d q 0  yield for (23) values &;/&A = l o  - lo2 ,  
which agree with the experimental results.% 

We note that Garoff and g eyer' obtained for a' an 
estimate much higher than ours (a'=102 - lo3) .  This 
may be due to the fact that they estimated a' from the 
relaxation time T of the angle @ in the A* phase. The 
value of T is calculated, strictly speaking, from the 
formula 

r=y,/ (aa+Rq.'), 

where y ,  is the viscosity. Garoff and M e ~ e r , ~  however, 
do not take into account the term Kq: in the expression 
for 5 ,  thus incurring an appreciable e r r o r  due to the 
strong increase of q ,  a t  IT - T ,  I < l o .  

Starting from the experimental data, we estimate 
from the temperature dependences5" of cLo(T), @(T) ,  
P,(T),  q,(T),  E,(T) the principal material parameters 
of DOBAMBC: 

~p~=P,/0~=i5-25 ecgs eSU R=~-Xp2z=i0-5 dyn 

%=(em-1)/4n-0.2-0.3, a'=2t5.102 cgs esu/deg 

pzqo/p,=l-5, 1 p, 1x75-90 cgs esu I PZ I -10-'cGesu 
(24) 

Ihl<l~p,p:I-O.I cgsesu 

The condition @,/@,< 1, as shown by calculations, is 
violated at T ,  - T = l O .  An estimate of 8 ,  by the formula 

which is valid for the A* phase,3 yields a t  T = T ,  the 
value 8 , ~ 0 . 5 - 1 . 0 " ~ / c m ,  a n d p , = ( l - 2 )  x10-4 cm. A 
qualitative plot of @ ( T )  at  constant E i s  shown in Fig. 5.  

Since @,(E)  P 0 ,  the temperature dependences of the 
molecule inclination angle and of the spontaneous polar- 
ization P ,  measured in a field E = E,  differ slightly from 
the functions @,(TI and P,-XC(,@,. This leads to a cer-  
tain renormalization of the critical exponent B calcu- 
lated from the functions @ ( T ,  E,) and P,(T,  E,) compared 
with the exponent for the modulus of the order param- 
eter 8,- (T,  - TIB. However, since the increment con- 
nected with @, is comparable with the e r r o r s  of the mea- 
surements of @ and P,  at T =  Tc,596 the changes of the 

FIG. 5. Qualitative temperature dependences of the inclina- 
tion angle of the molecules in the C and A*  phases. Solid 
line-8= Oo(T) at E = 0, dashed line-8= Oo(T)+ Oi(T) at con- 
stant E.  
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critical exponent, a s  shown by calculations, do not ex- 
ceed the j3 confidence interval. 

The foregoing numerical calculation of the field de- 
pendence of (P )  has shown that a small  spatial modula- 
tion of the angle 8, at E <E,, joingly with the flexoelec- 
t r ic  effect, leads to appreciable changes of the macro- 
scopic polarization ( P )  compared (Po) = ~ p ~ ~ ~ ( c o s ~ )  
(Figs. 2 and 3). This effect can be observed if the mea- 
sured values of P, in the field E < E ,  corresponds to - 
rigorously defined states of the helical structure of C 
deformed by the electric field. Let u s  examine the ex- 
tent to which the capabilities of a rea l  experiment cor- 
respond to this condition. 

The measurements of P, in the 6 phase were made 
mainly by a repolarization methc~d~* '~- '~  that makes i t  
possible to obtain a repolarization oscillogram in which 
the amplitude of the vertical deflection is proportional 
to P, and the linear components of the conductivity and 
capacitance of the samples a r e  compensated for. The 
repolarization frequency f is chosen such that the time 
of one cycle is too short f o r  leakage due to the conduct- 
ance of the samples to occur14 l/f s 7, (typical time 
constants of 6 samples a r e  7,= lo-' - lo-' s ec  and deter- 
mine the minimal repolarization frequency, f > 10 Hz). 
The oscillogram of the repolarization of C takes the 
form of a hysteresis curve with saturation in the field 
region E 2 E,. The values of the macroscopic polariza- 
tion in the saturation region correspond to a complete- 
ly untwisted state of the helical structure of C. The in- 
termediate sections of the oscillogram (E/E,< I), how- 
ever, do not correspond to the polarization of a partial- 
ly deformed helicoid, because of the large (1 - 2 sec) 
times 7 of relaxation from the homogeneous to the heli- 
coidal state (7 >> l/f). For the same reason, and also 
because sample-texture defects, the P,(E) plot exhibits 
hysteresis even though fpr the continuous symmetry 
group of the helicoidal C this should be  a rev_ersible 
function. In the ideal case of nonconducting C at  slow 
reorientation, P,(E) is apparently fully reversible. 
Other methods of measuring P, (pulsed15 and pyroelec- 
tricl') also yield value? of P, corresponding to the 
homogeneous state of C (E 3 E,). 

We discuss now the influence of the boundary condi- 
tions on the considered properties of the C phase. As- 
sume that the C layer is bounded along the y axis, has 
a thickness d, and the molecules a r e  rigidly pinned to 
the solid surface, where 8 = 0. In this case it is neces- 
sary to add to (1) the term 

g!, (ae/ay)', 
which corresponds to the energy of the elastic distor- 
tions in the surface layer. With increasing distance 
from the solid surface, the value of O(y) tends to the 
value of 0, in a sufficiently thick layer. In the absence 
of a field, the minimum of F corresponds to the function 
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CP (2) =qz a t  al l  y and to the function 8 (y) that satisfies 
the equation 

with boundary conditions e(0) = 8 (d) = 0. The value of the 
angle 0 a t  the center of the layer a t  y =d/2 is  

if g,, << (ii Id'. 

Thus, the foregoing results a r e  valid for sufficiently 
thick samples and for temperatures not too close to the 
transition poi$. Substituting in (27) the material con- 
stants of the C phase of DOBAMBC, g,,% lo-', ii =al(T 
- T,), a t =  2 *lo2, we find that the deviations of 8(d/2) 
from 8, become significant for samples of thickness 
d z 5 0  pm a t  I T  -Tl<O.lO, but for samples wi thds10  
pm already a t  TT,- T [ < l o .  
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