
Renormalization group equations and thermodynamic 
anomalies near the tricritical point 

A. I. Sokobv 
Leningmd Electrotechnical Institute 
(Submitted 27 April 1979) 
Zh. Elrsp. Teor. Fi. 77, 1598-1614 (October 1979) 

The behavior of matter in the vicinity of the tricritical point is studied by the renormalization group 
technique. Independent varinbles and effective coupling constants appropriate for the given problem are 
found. Their evolution in the fluctuation region can be described by equations of the Gell-Mann-Low 
type. The equations are derived in the lowest order of perturbation theory and are solved in three sectors 
of the phase diagram corresponding to the tricritical, crossover, and critical regimes. The susceptibility 
and heat capacity of the system are found as function of experimentally controllable parameters, of 
distance to the line of second-order phase transitions, and of the distance from the tricritical point 
marsured along the line. The effect of higher nonrenormalized vertices on the critical thermodynamics of 
threedhensional systems is considered briefly. An equation of state valid in the vicinity of the tricritical 
point is presented. 

PACS numbem 05.70.a 

1. lNTRODUCTlON hand the corrections connected with the three-particle 
coupling constant X6 vanish asymptotically a s  the TCP 

The purpose of the present paper is to derive the re- is approached. 
normalization-group (RG) equations that describe the 

The cited papers have one common feature: the two- 
behavior of matter in the vicinity of a tricritical point particle interaction X4404, which usually plays the prin- 
(TCP) and t' the character of the of 

cipal role, is either completely neglected in or is re- 
the thermodynamic quantities in this region. garded as small enough for the leading term to become 

It i s  known that this is not the f i rs t  time that the ques- 
tion of the influence of fluctuations of the order param- 
eter on the thermodynamics of a system near the TCP 
has been raised. In 1970, Migdal has considered the 
phase transition in a system in which, owing to the ab- 
sence (screening) of paired forces, the principal role 
is played by three-particle interaction, i.e., a situation 
of the TCP type is realized.' He has summed for a six- 
point graph the graphs that contain the maximum num- 
ber, in each order, of triply logarithmic cross  sec- 
tions (parquet graph), and obtained the RG equation fo r  
the effective three-particle coupling constant. It has 
turned out that this equation has a zero-charge solution, 
and one could therefore expect to obtain in thermo- 
dynamics the multiplicative logarithmic corrections for 
the results of the Landau theory. In explicit form these 
were obtained by Wegner and ~ i e d e l ~  with the aid of the 
Wilson recursion relations. It was observed that really 
the logarithmic factors appeared only in the expression 
for the order parameter and in the equation for the line 
of the second-order phase transitions, while the sus- 
ceptibility, the heat capacity, the singular part of the 
entropy, etc. as functions of the reciprocal correlation 
radius x were exactly a s  predicted by the phenomeno- 
logical theory. Later Stephen, Abrahams, and straleyS 
attempted to find the thermodynamic characteristics of 
the system near the TCP as functions of the experi- 
mentally controllable quantities- the distance 7 to the 
phase-transition line and the distance 7 to the TCP 
measured along the tangent to this line. In Ref. 3 they 
obtained expressions for the susceptibility, heat ca- 
pacity, and entropy, from which it follows that the 
logarithmic corrections to these quantities ar ise  only 
a t  nonzero pair-interaction constant h,;  on the other 

the three-particle vertex (six-point graph) y,. The cor- 
responding limitation on the value of k,, given in Ref. 
3, neglecting the logarithmic factor, takes the form 

hr'lx'as.  (1 ) 

Since x=  0 on the phase- transition line, the theory can- 
not be used in the vicinity of this line. Actually, i ts  
results correspond to a regime wherein we approach 
the TCP along a normal to the phase-transition line or  
along a trajectory very close to this normal. Beyond 
the limits of the applicability of this theory, there re- 
mains a very important and interesting case k4- A,, to 
which there corresponds, in particular, the crossover 
of the system from the tricritical asymptotic form to 
the usual critical form u - 0. And it is precisely this 
case which is realized a s  a rule in experiment, since 
i t  i s  hardly possible to end up exactly in the TCP, even 
when moving strictly along a normal to the phase-sepa- 
ration boundary ." 

On the other hand, if we confine ourselves to small 
unrenormalized X4 and X6 the variant k4 - X6 should lend 
itself readily to a theoretical analysis in terms of the 
RG. The point is that here we do not encounter the 
traditional problem of phase transitions, namely the 
absence of a small parameter. In fact, the effective 
coupling constant kg, with a value X, << 1 far  from the 
TCP, decreases without limit as x - 0, by virtue of the 
zero-charge character of the theory, and the dimen- 
sionless quantity g4-Y6/u, even if i t  will be shown to 
increase with decreasing x, still remains small all the 
way to the region of the crossover, since the asymptotic 
form changes a t  g4- y6 << 1. This enables us  to obtain 
reliable quantitative results for a model with the physi- 
cal dimensionality of space d =  3, by operating in lowest 
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order of the renormalized perturbation theory. The 
problem reduces only to a derivation of the correspond- 
ing RG equations. 

We consider a theory of the type X 4 q 4  + A ~ ( P " ~  the 
present article also for another purpose. We have in 
mind the study of the influence of multiparticle interac- 
tions (higher unrenormalized vertices kg, X8, . . . ) on 
the critical thermodynamics of three-dimensional sys- 
tems. The RG equations derived below will enable us  to 
obtain definite information also on this question. It 
should be noted that the RG equations for the vertices 
X, and Xg have already been derived in Ref. 4. That 
paper, unfortunately, i s  not f ree  of e r ro r s  of both 
principle and computational character. We therefore 
consider this question here anew. Our results will 
differ quite substantially from the results obtained in 
Ref. 4. 

The plan of the article i s  the following. In Sec. 2 we 
discuss graphic expansions for the four-point and six- 
point diagrams, introduce independent variables that 
a re  appropriate for this problem, a s  well a s  effective 
constants, and also derive the RG equations. Section 3 
is devoted to a solution of these equations. Besides the 
general case, we consider here limiting regimes cor- 
responding to three regions: tricritical, crossover, 
and critical. In Sec. 4 we investigate the behavior of 
the susceptibility x of the system and of the singular 
part of i ts  heat capacity C in the three regions indicated 
above. It i s  shown here, in particular, that fluctuations 
of the order parameter lead to the appearance of addi- 
tive corrections, containing logarithmic factors, to x 
and C in the tricritical region. These corrections 
differ from zero only a t  X4#0, but have a somewhat dif- 
ferent form than those obtained in Ref. 3. Finally Sec. 
5 i s  devoted to an analysis of the influence of the upper 
vertices on the thermodynamics of the three-dimen- 
sional system near the critical point and to a discussion 
of the form of the equation of state in the vicinity of 
TCP. 

2. ULTRAVIOLET GRAPHS, AUXILIARY 
SIX-POINT DIAGRAM, AND RG EQUATIONS 

Thus, we consider a system with an effective fluctua- 
tion Hamiltonian of the form 

1 xo' 5" hs HE jdl{-(V9a)2+-rpaz+$(9m2)2+-(9a2)3]. 
2 2 48 

Here cp,(x) i s  the n-component field of fluctuations of - 
the order parameter, and xi, X4, and A, a re  assumed 
to be linear functions of the temperature T and, say, 
of the pressure P. The thermodynamics of our system 
i s  determined in the fluctuation region by the character 
of the dependences on T and P of the total l-irreducible 
vertices I' ,,,, (q, ql, q") and I'a6r6,,v(q, . . . , qff"), taken 
a t  zero momenta. For these vertices we can write the 
standard graphic expansions: 

where the internal lines correspond to exact Green's 
functions G,,(q) = ( cpa(q)cpe(- q)). Since the anomalous 
dimensionality of the field of the fluctuations q in the 
problem with the Hamiltonian (2) is small, we shall 
assume henceforth that G,, (q) is  given by the simple 
pole equation: 

We note that in the lowest-order and the following ap- 
proximations in the physical charges this formula is 
valid also a t  values of the index q which a r e  not small. 

The evolution of the vertices in the course of a varia- 
tion of T and P is described by the RG equations. The 
technique of their derivation for problems in which 
there is one essential vertex o r  several vertices of one 
and the same dimensionality is described in detail in 
Refs. 5-8. Near the TCP, however, two vertices with 
different scale dimensionalities a r e  essential, s o  that 
a direct application of the methods of Refs. 5-8 does 
not yield in our case the desired results. To obtain an 
idea of the character of the difficulties that ar ise  here, 
let us consider, fo r  example, that term which is gen- 
erated in the expansion of the Gell-Mann- Low (GML) 
function for the four-point diagram, after suitable re- 
normalizations by the sixth graph in (3). It is easy to 
show that2' 

where A i s  the cutoff momentum. If we now change 
over, a s  is usually done, to dimensionless vertices, 
then the first  factor in (6) vanishes, but ln(A/x) re- 
mains, and the GML function turns out to be dependent 
not only on the dimensionless physical charges g4 and 
g,, but also on the renormalization-group variable t 
= -Inn. This case is not unique and it is possible to 
point out other skeleton graphs in the expansions of 
GML functions, which contain 6cextra" logarithms. 

The second problem consists in the following. We 
know that in ordinary theory of critical phenomena 
there is only one essential vertex-the total four-point 
diagram. The evolution of this vertex is described by 
the RG equation, and the multiparticle correlations a r e  
determined by the effective paired constant and do not 
play an independent role in the theory. It follows there- 
fore in our case, where generally speaking two physical 
charges y, and ye a r e  essential and accordingly there 
a r e  two equations of the GML type, that in the limit 
X6 - 0 there should remain only one independent GML 
equation for y4. At the same time, the total six-point 
diagram that characterizes triple correlations in the 
system at  x, = O  i s  on the one hand different from zero 
and on the other hand i s  not expressed in finite form in 
terms of the two-particle vertex. As a result we can- 
not trace distinctly the manner in which the RG equa- 
tion for y6 reduces a s  -- 0 to an equation containing 
actually only y,. This complicates greatly the inter- 
pretation of the results and, furthermore, makes a 
theory that involves a complete six-point diagram very 
inconvenient from the computational point of view. 
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We turn first  to the first  of the indicated difficulties. 
It can be eliminated by choosing in suitable fashion the 
independent variables in the problem under considera- 
tion. We note to this end that all the diagrams in the 
expansions of the vertex parts break up into two cate- 
gories-ultraviolet and infrared. By ultraviolet we 
mean diagrams whose analytic expressions contain in- 
tegrals that diverge like some finite power of the cutoff 
momentum A a s  A - .o. In the expansion (3), for ex- 
ample, the ultraviolet graphs a r e  the second, fourth, 
and sixth, while in expression (4) they a re  the third and 
sixth. All the remaining graphs, including those con- 
taining logarithmic integrals a s  the most strongly di- 
verging factors, will be called infrared. Obviously, 
the fluctuation effects and the thermodynamic anomalies 
associated with them a r e  due precisely to the infared 
skeleton diagrams for the vertices, while the ultra- 
violet diagrams or,  more accurately their ultraviolet 
internal blocks, describe trivial renormalizations of 
the coupling constants, which do not take us  beyond the 
scope of the Landau theory. In such a situation i t  is 
natural to attempt to reconstruct the theory in such a 
way s o  as to cause the ultraviolet diagrams to vanish, 
and to retain in the expansions of r ,,,,, r,,+,,, etc. 
only the infrared diagrams. This can be done by ex- 
cluding all the ultraviolet blocks in the bare vertices, 
i.e., by simply redefining the unrenormalized coupling 
constants. In a theory with a non-polynomial Hamil- 
tonian such a transformation would affect the unre- 
normalized vertices of all orders. In our case, how- 
ever, all that has to be redefined is the constant X4, 
since the ultraviolet vertex blocks can have here not 
more than four ends each. The new unrenormalized 
vertex X, will be specified by the following expansion: 

We shall take it to be the independent variable. We 
note immediately that the functional connection between 
the parameters X4 and x ,  expressed by formula (7), 
does not prevent from assuming them to be independent. 
To this end it suffices to assume that with decreasing 
x we approach the phase-transition line along trajec- 
tories on which &&= 0. This question will be dis- 
cussed in greater detail below.'' 

The choice of X4 as the independent variable auto- 
matically solves the problem of the "extra" logarithms. 
The point is that the sources of these logarithms a r e  
graphs containing internal blocks with large numbers 
of equivalent lines. But it is precisely these blocks 
which turn out to be ultraviolet. As a result, replace- 
ment of x4 by k4 leads to a vanishing of all the danger- 
ous diagrams. The following should be noted in this 
connection. It is easily seen that the transition from 
the variables x i  and X4 to the variables x2 and X4 does 
not reduce by fa r  to only a transfer of the origin and 
to a rotation of the coordinate axes on the phase dia- 
gram of this system. The parameters n2 _and Ad a re  
complicated nonlinear functions of n! and X4: in our 
field-theoretical approach they play the same role a s  
the "nonlinear scaling fields" of Wegner and ~ i e d e l ~ - "  

in the method of the Wilson renormalization semigroup. 
It is therefore not surprising that the described change 
of variables affects quite substantially the properties of 
the graphic expansions for the GML  function^.^' 

We consider now the second problem, i.e., which 
field-theoretical object characterizing the effect of 
three-particle interaction might be the most appro- 
priate for our problem. It is known that we have no 
exact relations connecting the complete six-point dia- 
gram with the complete four-point diagram at  X6 =O. 
It i s  therefore convenient to choose a s  a basis a three- 
particle vertex that simply vanishes in this limit. We 
define it in the following manner. Let 
r6(q, q', q",qm, q"") be the complete six-point diagram 
from which we separate the tensor factor 

r.prapV(q,. . . , q"") =re (q. . . . . q""\ (6,p6lafi,,,+1'1 permutations). (8) 

We introduce into consideration the vertex 
r~~,,,,,,(q,. . . ,qH") (denoting the corresponding scalar 
function by r i4)(q, . . . ,qM1)), which constitutes the sum 
of all the six-point diagrams made up of the exact 
propagators GaB(q), using only the unrenormalized 
vertices X4: 

Then the object of interest to us i s  by definition 

- *+-+=, +@+ t.. . 

We shall name y6(q,. . . , qw") the auxiliary six-point 
diagram. It is easily seen, any of the diagrams in the 
expansion of yG(q, . . . , q"") contains at least one unre- 
normalized vertex Therefore in a theory of the 
k4(p4 type, i.e., a t  X,=0, theauxiliary six-point dia- 
gram is identically equal to zero. At the same time, 
as X4 - 0 the total vertex r6(q, . . . , q"") - y,(q,. . . ,qM'), and the auxiliary six-point diagram 
turns out to be precisely the object that determines the 
thermodynamics of the system in the tricritical re- 
g i ~ n . ~ '  

A deeper insight into the nature of the vertex 
Ya(q, . . . , qm) can be gained by turning to  the 
language of operator algebra.1s*i4 We note that in the 
fluctuation region any thermodynamic quantity can be 
represented in the form of Gibbs mean values of cer- 
tain combinations of field operators (pa and V,(pa, each 
of which has i ts  own scale dimensionality. If the theory 
involves only the unrenormalized vertex X4, then the 
behavior of all the vertex parts in the region of strong- 
ly developed fluctuations is determined by a single non- 
trivial dimensionality-the dimensionality of the opera- 
tor of the type6' (p4. On the other hand, if the Hamil- 
tonian of the interaction contains besides X4(p4 also a 
term of the type A,@, then the expressions for the 
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total vertices acquire additional terms that a r e  char- 
acterized by their own independent dimensionality w .  
This dimensionality, calculated on a Gaussian basis, 
determines the tricritical behavior of the system and 
the same dimensionality, but calculated on the basis 
of the typex;rp2 +k4(p4, describes the temperature de- 
pendence of the scaling corrections necessitated by 
the three-particle interaction. It is  to the operator of 
the rp6 type, with dimensionality w ,  to which the addi- 
tional six-point diagram introduced above in terms of 
Feynman diagrams obviously corresponds. 

Thus, we now have everything necessary for the de- 
rivation of the RG equations. The physical charges y4 
and y, in our problem a r e  defined by the following re- 
lations : 

Differentiating the expansions (3) and (10) with respect 
tox2 and taking (7) into account, and dressing the bare 
coupling constants, we obtain 

(14) 
where subtraction at zero momentum transfer is im- 
plied in the internal l-irreducible six-point block of the 
fourth diagram in (13). In expansion (14) there a r e  no 
diagrams containing only the charge y4, since the ef- 
fective coupling constant y6 was generated not by the 
total but the auxiliary six-point diagram. Bearing in 
mind the study of the TCP and its vicinity, where the 
charges y4 and y6 a r e  small, we retain in (13) and (14) 
only terms of lowest (second) order in the charges. 
The corresponding RG equations can be expressed 
analytically in the form 

and 

It is convenient next to go over to the dimensionless 
physical charges 

and to the logarithmic derivative t= -1nx. The final 
forms of the RG equations of our problem a r e  

where 

a ( n )  =2(n+4) / (3n+22),  b (n)  =3 (n+14) / (n+8).  (19) 

The solution of Eqs. (18) will be dealt with in the next 
section. For  the time being we call attention to one 
very important property of these equations. We have 
in mind the absence f rom these equations of generation 
terms. In fact, the right-hand side of the equation for 
g4 does not contain a term proportional to gi, while the 
right-hand side of the equation for g6 has no terms of 
the type g!. This property i s  not a consequence of the 
employed approximation; it can be shown, by analyzing 
the graphic expansions fo r  the GML functions, that it i s  
preserved in any order of perturbation theory. Thus, 
in the absence of some particular bare vertex in the 
problem, the corresponding physical charge is identi- 
cally equal to zero, and the remaining RG equation de- 
scribes directly, i.e., without any modifications, the 
proper "pure9'-critical o r  tricritical-regime . This 
property of the theory makes it very convenient both 
technically and from the point of view of the interpreta- 
tion of the results. 

We note thatYthe RG equations obtained by ~orode t sk i i  
and zaprudskii4 contain generation terms. The pres- 
ence of such a term in their equation for g4 is due to the 
inappropriate choice of the independent variables. (The 
extent to which this choice is inappropriable i s  clearly 
illustrated by the fact that the system of the RG equa- 
tions in terms of these variables turns out to be non- 
conservative, provided, of course, that all the dia- 
grams for the GML functions a r e  calculated. This 
means in fact that there simply a r e  no RG equations 
for the physical charges a s  functions of the variables 
of Ref. 4.) On the other hand, the presence of a genera- 
tion term in the equation for the charge g6, which in 
Ref. 4 is taken to mean not the auxiliary but the total 
three-particle coupling constant, might have been re- 
garded a s  perfectly valid were it not for one circum- 
stance. The point i s  that this term i s  proportional to 
gi, and allowance for this term within the framework 
of the assumed approximation scheme is inconsistent. 

3. SOLUTION OF THE RG EQUATIONS 

We proceed to solve our RG equations. The system 
(18) can be integrated exactly. By making several vari- 
able changes it reduces to a general Riccati equation 
with a zero sum of the coefficients I&), g@) and h@) ,  
and with an integral that is known. The final result is  

for y - l/g6, C' and C" a r e  integration constants, while 
y(a,%) is the incomplete gamma function. Equation 
(20), being in principle the solution of the problem, has 
in fact a complicated structure that yields very little 
information. Therefore instead of analyzing the ob- 
tained solution in the general form, it i s  more con- 
venient to turn directly to consideration of the most 
characteristic particular cases. We begin with the 
region where g4 << g6. It i s  natural to call it tricritical. 
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Tn'critical region. The RG equations take here the 
form 

agJat=g,-a ( n )  g,g., ag,lat=-g:. (21) 

Solving this system and returning to the variable x,  we 
get 

6' (8) 
BI 

g* - l-;;' * gL - x (1-gY' In x)"'"' ' (22 

The cutoff momentum was taken here for simplicity 
equal to unity, while glo' and giO' a r e  the values of g, 
and g6 at the point n = 1. At this point we join together 
the formulas of the fluctuation theory and the results 
of the Landau theory, so  that 

Rewriting the second equation of (22) in the form 

It is easy to verify that the renormalizations of both 
charges in the tricritical region has a purely logarith- 
mic character, as should be the case in the band where 
the six-point diagram is the leading one. We note that 
expressions (22) and (24) coincide with their analogs ob- 
tained in Ref. 3 by summation of a three-dimensional 
parquet diagram. 

Crossover region. In this region g,-g, << 1; therefore 
we take the RG equations in the form 

It is seen that we use here for g, a cruder approxima- 
tion than in the tricritical region. This approximation, 
however, is perfectly correct under the assumed re- 
strictions on the values of g, and g,, since the possible 
a(n) do not exceed 2/3. On the other hand, inclusion of 
the small term a(n)gd6 in the first equation of (21) is 
explained by the fact that it is precisely this term which 
is responsible for the logarithmic renormalizations of 
g,, which a re  of principal interest in the tricritical re-  
gion. 

The solution of the system (25) entails no difficulty 
whatever. The result is of the form 

g,=g:'"ix, 

where E i b )  is the integral exponential function. The 
expression obtained for g, can be simplified by recog- 
nizing that in the crossover region we have b(n)g4<< 1. 
In fact, the transition from one asymptotic form to 
another takes place, a s  is  seen from (25), at b(n)g4-"g,, 
and we regard g, a s  a quantity small compared with 
unity. From this we easily obtain that 

If giO' is  not too small, then the change of the asymp- 
totic forms takes place relatively rapidly (at not too 
small values of x ) ,  and Inxin (21) does not have time 
to become large. In this case gs = giO', i.e., the re- 
normalizations of gs in the crossover region are  ines- 

sential. On the other hand if the situation is  close to 
tricritical, namely I ln[ b(n)gjO'] 1 >> 1, then the logarith- 
mic renormalizations become noticeable, and expres- 
sion (27), for the three-particle charge reduces to the 
first  equation of (22). 

Having expressions for g4 and g6 in the crossover re- 
gion, we can find the so-called critical exponent (cross- 
over exponent) $. Let x, be the characteristic value of 
x at which the system goes over from the tricritical to 
the critical regime. Then the exponent J ,  is determined 
by the relation x,-~:. Substituting (23) and (26) in the 
condition for the asymptotic crossover b(n)g4=g6, we 
can easily establish that J ,  = 1. Allowance for the loga- 
rithmic renormalizations of g4 and g6 does not change 
the obtained value of $, but the very relation that con- 
nects x, with A, is somewhat modified: U,-X,I l n ~ , I ~ - ~ ( " ' .  
We present also the value of the crossover exponent in 
the case when the width of the critical region is mea- 
sured not in units of the reciprocal correlation radius 
x ,  but in units of 7. Since x -  rv ,  where v is the ex- 
ponent of the correlation radius, the crossover ex- 
ponent is here equal to l/v. 

Critical region. In this region the principal role is  
played by pair interaction, i.e., g, <<g4. To remain 
within the framework of perturbation theory it is nec- 
essary, in principle, to impose the condition that the 
charge g, itself be small, g, << 1. This limitation, how- 
ever, immediately obstructs the investigation of the 
vicinity of the second- order phase- transition line, 
where, a s  is  well known, g,-1. Yet it i s  precisely this 
region of the phase diagram which is  of fundamental in- 
terest. It is therefore most desirable to relax some- 
what the restriction on g,. Fortunately, there a r e  at 
present grounds for such a step. In fact, we know that 
in the three-dimensional theory of the h4(04 type the 
lowest approximation of the renormalized perturbation 
theory yields perfectly satisfactory results, both quali- 
ta t ive*~'~ and (we have in mind the values 
of the critical exponents). A recent summation of the 
asymptotic ser ies  for the GML functions of three-di- 
mensional  model^,^^"^ in which the highest terms were 
calculated with the aid of the Lipatov method,l8 has 
shown that the success of perturbation theory at  d = 3  i s  
apparently no accident. The point is that the first  two 
terms of the expansion powers of g4 approximate suf- 
ficiently well the exact GML function not only at g, << 1, 
but in the entire interval 0 <g4 s 1;  in particular, the 
coordinate of the stable fixed point obtained in the 
lowest approximation in g4 differs from its exact value 
by less than 30%. This fact enables us to relax the re- 
striction imposed on the value of g,, and assume hence- 
forth g, s 1. One can then expect the results obtained on 
the basis of Eqs. (18) to be at  least qualitatively correct. 

Taking the foregoing into account, we can express the 
system of RG equations in the critical region in the 
form 

Its solution is 
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As x - 0 the charge g,, a s  can be easily seen from (29), 
takes on its asymptotic value unity, and the auxiliary 
six-point diagram vanishes like xb(").  Since the vertex 
ri4'(0,. . . , 0 )  a t  d =3  i s  dimensionless (neglecting the 
exponent q), it follows therefore that the dimensionality 
of the corrections to scaling, necessitated by the three- 
particle interaction, i s  equal to vb(n). If we change 
over now to the more customary variable ?-xi/", then 
the exponent of these corrections w becomes equal to 
vb(n). In the lowest order ing, we have v =  (n + 8)/ 
(n + 14) (Ref. 6); consequently, in this approximation the 
exponent is  w = 3. Thus, the contribution of the three- 
particle forces to the thermodynamics of our system 
decreases quite rapidly a s  the second-order phase- 
transition line is  approached, and these forces a r e  in- 
significant in the critical region. 

The last result was obtained within the framework of 
a method which we known not to be rigorous. It is  
therefore desirable to verify i t  with some exactly 
solvable model a s  an example. For this purpose we 
calculate the dimensionality w of the auxiliary six-point 
diagram in the limit a s  n -a .  At glO'<< 1, in the 
zeroth approximation in l/n, the vertex g6 is equal to 
a sum of graphs of the following form: 

Summation of this triple ladder leads to the expression 

Since v = l  for the spherical model, the critical ex- 
ponent w turns out here to be equal to three. Thus, the 
quantity w, which is exact a t  n4-, coincides with the 
value obtained by the lowest approximation of the RG 
method at  d=3. This fact confirms the reliability of 
the results given above. 

To conclude this section, we present the phase dia- 
gram of the system of RG equations (18), which illus- 
trates clearly the behavior of the effective coupling 
constants g4 and gs in the fluctuation region. On this 
diagram (see the figure) there a r e  two fixed points, 
saddle and stable node, which describe respectively 

FIG. 1. Picture of the phase trajectories of the RG system 
of equations (18). The shaded area i s  the region of values of 
the charge g, and g6 at which the disordered phase is thermo- 
dynamically unstable. 

the tricritical and critical regimes. The shaded line 
bounds the region of values of g4 and gg at which the 
phase without a condensate is  thermodynamically stable 
within the framework of the employed approximation. 
At g, < 0 this curve is given by the equation 

it can be easily obtained by analyzing the expression for 
the free energy of the considered system. As seen 
from the figure, the tricritical regime is realized only 
at g iO' = 0. A second- order phase transition takes 
place in the system at g:O'> 0, a first-order transition 
a t  giO) < 0, and the condensate drops out a t  a certain 
finite value of x. 

We note that the system (18) has one more fixed point 
in addition to those shown in the figure. This point i s  a 
stable focus and i ts  coordinates a r e  

Since, however, this point lies far  beyond the limits of 
the region where perturbation theory i s  applicable to 
any degree, it hardly pays to discuss seriously the 
corresponding critical-behavior regime.7' 

4. SUSCEPTIBILITY AND HEAT CAPACITY 

In this section we study the behavior the susceptibility 
and of the singular part of the heat capacity of our sys- 
tem in the disordered phase. These quantities will f irst  
be obtained a s  functions of the renormalization-group 
variables, after which we shall change over in succes- 
sion from x to r and from gi0) to A. 

The susceptibility i s  expressed in the usual manner 
in terms of the propagator 

while x2 is expressed in terms of the mass operator 
z (HE, q ) :  

x'=xoS-Z(x2, 0 ) .  (35) 

In the graphs for z(n2, 0) it is  convenient to carry out 
the subtractions a t  the phase- transition point, i.e., to 
change over to the mass operator 

E(x" 9 )  =Z(xt7  q)  -x(O, 9 )  r ,(36) 

after which the formula for x2 becomes 

x2=T-.7 (x" 0 ) .  (37) 

Here r = x i  - Z(0,O) i s  the linear measure of the dis- 
tance to the second-order phase-transition line, and 
r= 0 a t  T = T,. To find x a s  a function of r and g:O', 
we differentiate x2 with respect to T (under the assump- 
tion that g:O'-X4 does not depend on 7): 

The three-point diagram T(x,q) i s  represented in the 
form of the following graphic series in the bare lines 
and coupling constants: 
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One more differentiation with respect to T makes itpos- 
sible to dress the propagators and vertices and obtain 
the renormalized graphic expansion for a T(x, q)/ar: 

It i s  known that in the lowest order of perturbation 
theory the vertices a t  finite momenta coincide with the 
corresponding dressed charges. Consequently, the de- 
rivative of a T(x, 0)/a r is given in this approximation by 
the first  graph of (40), where the shaded vertex i s  re- 
placed by the charge y,. In analytic form, the equation 
for T(n) = T(x, 0) is 

Using (38) and (17), it can be rewritten in the form 

Solving (42) for T(n), we can obtain with the aid of (38) 
the susceptibility above the phase- transition point. As 
to the heat capacity, in the assumed approximation it is 
determined by the single graph: 

Therefore, knowing the forms of the functions T(x) and 
x(T), we can easily obtain also the functions C(T). 

We thus calculate the susceptibility in the tricritical 
region. Substituting the second equation of (22) in (42) 
and recognizing that g<<giO'<< 1, we obtain 

The integration constant i s  chosen here such that the 
Curie-Weiss constant i s  equal to unity in the region 
where the Landau theory is valid. Combining next (44), 
(38) and (34), we obtain 

For the heat capacity, the graph (43) yields 

Substituting here the relations obtained for T(x) and 
X(T) we get 

Thus, when account is  taken of the fluctuation of the 
order parameter in the tricritical region the expres- 
sions for ~ ( r )  and C(r) acquire additive corrections that 
contain logarithmic factors. These corrections a r e  
similar in form to their analogs obtained in Ref. 3, but 
it i s  easily verified that the structure and origin of the 
two types of correction terms a re  in some cases sub- 

stantially different. In fact, the first  correction to the 
susceptibility, obtained in Ref. 3, is  proportional to 
(g:0'/r'12)2, and the logarithmic factor contained in it 
i s  due in part to the logarithmic character of the cor- 
responding bare diagram for  the mass operator. In our 
case, on the other hand, the correction to ~ ( r )  appears 
already in the f i rs t  order in g ~ 0 ' / r i / 2 ,  and its loga- 
rithmic character is  exclusively the consequence of the 
logarithmic behavior of the charge g4. Obviously at 
g:0'/r1/2<<1, i.e., in the region where perturbation 
theory i s  valid, the principal correction should be 
taken to be the one obtained in the present paper. At 
the same time, the approach proposed here makes it 
possible to reproduce also the result of Ref. 3. To this 
end it suffices to examine the graphs of second order in 
g, in the expansion of type (40). 

In the case of the heat capacity, the correction terms 
obtained above and those obtained in Ref. 3 a re  of the 
same structure. The authors of Ref. 3, however, did 
not notice that the coefficient of the first-approximation 
correction for C(T) is identically equal to zero, and 
therefore the principal correction factor i s  proportional 
to GIO", and not tog:O' a s  stated in their paper. 

We discuss next the form of the functions ~ ( r )  and 
C(T) in the crossover region. If the bare vertexgjO' i s  
not too small and the crossover between the asymptotic 
forms occurs a t  small values of Ilnxl, then the fluctua- 
tion renormalizations of the charges y4 and y6 in the 
considered band a r e  small. Therefore the expressions 
for ~ ( r )  and C(r) differ in this case from those obtained 
in the Landau theory only by trivial correlation correc- 
tions proportional to g:0'/~1/2. On the other hand if the 
asymptotic crossover takes place a t  large logarithms, 
then the renormalizations of the charges become sub- 
stantial, and the expressions for ~ ( r )  and C(T) must be 
sought in a manner similar to that used in the trans- 
critical region. The resultant formulas then coincide 
with expressions (45) and (47). 

The calculation of ~ ( r )  and C(r) in the third- 
critical-region entails no difficulty in principle, but 
we must bear in mind here one circumstance. As we 
have seen, the three-point diagram T(u), in the as- 
sumed approximation, does not depend explicitly on the 
charge g,, and therefore, if we wish to ascertain how 
the three-particle forces influence the character of the 
thermodynamic anomalies, we must f i rs t  find the cor- 
rection that must be made to the charge g4 because of 
the unrenormalized coupling constant giO'. For this 
purpose i t  suffices to add to the right-hand side of the 
f i rs t  equation of (28) the term -a(n)g&,, and to solve 
this equationunder the condition 11 - g4 Img6 << 1. The 
result is 

Substitution of (48) in (42) yields 

where 

(n+2) (n+4) (n+8) 
c (n) = 

3(n+14) (n+17) (3n+22) ' 

(49) 

(50) 
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and A is an integration constant. Since the argument 
over the exponential in (49) is  small in the investigated 
r e g i ~ n , ~ '  i t  can be expanded in a series: 

T ( x )  = ~ r . ( ~ + ~ ) l ( * + ~ )  [ i + c  (n) g? (xlgY) ) b ( n ) ~ .  (51) 

Using this expression for  T(n), we easily obtain 

and 

where 

Thus, allowance for the three-particle forces has 
brought about the appearance of specific corrections to 
scaling, the exponent of which is universal, and the am- 
plitudes depend on the nature of the investigated thermo- 
dynamic quantities and on the atomic constants of the 
material. As expected, the amplitudes of the correc- 
tions turned Out to be proportional to gio'"h6, and their 
exponent coincided with the one obtained in the pre-  
ceding section. 

We now have thus equations for the susceptibility and 
heat capacity in all the regions of interest to us. These 
equations, however, still do not provide the final solu- 
tion of our problem. The point is that all were obtained 
under the condition dh4/dx=0, and consequently they 
a r e  valid only in those cases when we approach the 
p h a s e  transition line on trajectories along which 
I,(%, A,, X6) = const. To find the final answer we must 
obviously establish the forms of these trajectories, i.e., 
to solve the equation X4=const, say with respect to i,. 
ESut to this end it is necessary to know X, a s  a function 
of its arguments. We shall find X4 in the lowest order 
of perturbation theory. From the expansion (7) we 
easily obtain 

(The cutoff momentum, a s  before is equal to unity.) In- 
asmuch a s  we chose the point n= 1 for the matching to 
the Landau theory, it i s  convenient to choose a s  the 
linear measure of the distance to the TCP not x4 but the 
parameter 

which vanishes at A,(%= 1) = 0. The phase-diagram tra- 
jectories, the evolution of the charges along which is 
described by the RG equations (18), a r e  then specified 
by the relation 

With the aid of (34) and equations such a s  (45) and (52) 
we can change over in (57) from x to 7. As a result we 
obtain the equation of the sought trajectories for the 
case when the metric of the phase diagram is linear 
with respect to both coordinates. In the critical region, 
for  example, this equation takes the form 

where B i s  a certain constant. 

Relation (57) is valid, strictly speaking, not at all 
values of H. The point i s  in a very narrow vicinity of 
the phase- transition line, where I x ~  lnxl;2 1, it is 
necessary to take into account in the expansion (7), 
even a t  small i4 and X6, diagrams of higher order con- 
taining large logarithms. The diagrams that a r e  princi- 
pal in each order can obviously be summed in this case, 
a s  a result of which a logarithmic factor appears in 
front of that term of (57) which is proportional ton.  
Allowance for this factor will lead to a certain deforma- 
tion of our trajectories in an exponentially narrow band 
adjacent to the second-order transition line. 

The determination of the form of the trajectories on 
which the RG equations a r e  valid, completes the solu- 
tion of our problem. Knowing their shape, we can ob- 
tain the susceptibility and heat capacity of the system 
at any point of the phase diagram. 

5. HIGHER VERTICES AND EQUATION OF STATE 

In this section we discuss briefly how to describe the 
influence of the higher unrenormalized vertices 
(x8,Xi0,. . . ) on the critical thermodynamics of our sys- 
tem within the framework of the proposed scheme, and 
also say a few words on the equation of state. 

It i s  known that the fluctuation Hamiltonians of the 
type (2) contain a s  a rule, besides i, and As, unre- 
normalized vertices of higher orders. To take into ac- 
count the contributions of the multiparticle coupling 
constants in the thermodynamic quantities, we can in- 
troduce additional many-point diagrams which a r e  de- 
fined by the relation 

where rzk(q, .  . . ) i s  the total vertex part with 2k ex- 
ternal ends, and rgk - ')(q,. . . ) is a 2k-point diagram 
constructed of exact propagators and unrenormalized 
vertices of order not higher than (2k - 2). It is under- 
stood, of course, that the unrenormalized vertices X2, 
include all the ultraviolet diagrams with 2k ends. It 
i s  easily seen that y2,(q, . . . ) = 0 at  X = 0. For the 
charges ya I y,,(O, 0, . . . ) we can obtain RG equations 
that describe the evolution in the fluctuation region 
when moving along trajectories on which X2, = const. 
Solving these equations, we easily find the exponents 
w,, of the scaling corrections necessitated by each of 
the vertices X,,. For the ordinary critical point, for 
example, the exponents o,, in the lowest order of per- 
turbation theory a r e  given by diagrams of the type 

and a re  equal to 

We see  that these exponents increase rapidly with in- 
creasing k. Similarly, by considering second- order 
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diagrams with triple sections at y, = 0, we can calculate 
the corrections to the tricritical scaling, etc. 

It is very easy to write down in terms of the supple- 
mentary vertices the equation of state near the TCP. 
In this equation, as is well known, the coefficients of 
the expansion of the field F in powers of the order pa- 
rameter @ =( cp) are complete l- irreducible vertices 
ru at zero m~menta.'~ Since r, (0, . . . ,0) 
= r:"(O,. . . ,0)  + y e  and ri4'(0, . . . , 0 )  - y 49, in the 
lowest approximation quadratic in the charges the total 
six-point diagram reduces to the additional vertex y6, 
and the equation of state takes the form 

In the critical region y6 decreases rapidly, so  that the 
last term can be neglected here; in the tricritical re- 
gion, on the contrary, we can omit the second term. 
In the crossover region, obviously, all the terms of 
(62) are essential. A more detailed discussion of the 
equation of state, and also a study of the behavior of the 
system in the ordered phase, is  planned for a separate 
article. 

In conclusion I wish to express my sincere gratitude 
to A. A. Migdal, A. L. ~orzhenevskii, and B. N. 
Shalaev for very helpful discussions of questions 
touched upon in the present paper. 

"1n some papers, the crossover of this system from the tri- 
critical to the critical behavior was investigated within the 
framework of the & expansion. It was treated there simply 
a s  a transition from a Gaussian fixed point of the RG equa- 
tions to a nontrivial singular point. In our problem, how- 
ever. this approach cannot be regarded a s  satisfactory, both 
from the point of view of the method and from the point of 
view of the result: in (4 -&)-dimensional models the operator 
9"s really not taken into account a s  irrelevant in the renor- 
malization-group sense, and it is impossible here in prin- 
ciple to study logarithmic renormalizations associated with 
it. 

 his graph was incorrectly calculated in Ref. 4: a log- 
arithmic factor which is essential in the present case was 
left out. 

3)1n principle Ar depends also on the momenta q, q' and q". 
This dependence, however, can be ignored, since it would 
lead to the appearance, in the effective Hamiltonian, of 
terms that are  irrelevant from the point of view of the re- 
normalization group. We therefore assume q = q' =q" = 0 
in (7). 

*)we note incidentally that the simpler linear transformation 
of the independent variables, used in Refs. 3 and 4, is in 
fact not reflected in the form of the diagram expansions for 
the GML functions. In particular, it does not make it pos- 
sible to get rid of the skeleton diagrams that add logarithms 
to the RG equations. 

5 ) ~ e  note that the usefulness of considering vertices made up 
of unrenormalized vertices of a definite type (Ac o r  As) was 
indicated earlier in a paper by the author. l2 The so-called 
proper vertices introduced there turned out, however, to be 
inconvenient for the solution of the present problem. 

6'We have in mind here, of course, total vertices correspond- 
ing to operators cp(x,)cp(q)-..cp(x,) with unequal arguments. 
Besides these vertices, the theory involves also vertices of 
a special type: with one corner, two corners, etc. They 
correspond to operators of type cpn with partially coinciding 
arguments. The dimensionalities of these operators, a s  is 
well known, differ from the dimensionality of the complete 
n-point diagram. 

?)1t is appropriate to note here that not all the singular points 
of the RG equations contained in Ref. 4 were obtained there. 
The coordinates of the very point which in the authors' opin- 
ion corresponds to the critical asymptotic value were in- 
correctly calculated, a s  can be easily verified directly. 

8 ) ~ e  note that besides the parametric smallness there is also 
here a numerical smallness connected with the factor c(n). 
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