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A theory of recombination instability of electron-hole drops due to the existence of a condensation flow 
from the gas (i.e.,exciton) phase to the surface of the drops and the recombination flow inside the drop is 
constructed. When the spherical shape of the drop is distorted these flows have a tendency to enhance 
the initial deformation; if their influence prevails over the surface tension, the drops become unstable. An 
instability criterion is derived and the singularities of the instability evolution are investigated for small 
droplets in the course of their rapid growth and for drops close to their stationary size. Drop motion in 
an inhomogeneous exciton gas is also considered, both in the diffusion and in the Knudsen regime. It is 
shown that, depending on the parameter values, the drops can move both with and against the exciton- 
concentration gradient. The interaction of the drops via the exciton gas can cause the excitions to move 
both toward and away from one another. 

PACS numbers: 71.35. + z 

1. INTRODUCTION 

The existence of electron-hole drops, to which an ex- 
tensive literature has been devoted during the last 
decade, is by now a well established fact. The re- 
search results and the noted prospects were expounded 
in a number of reviews.'" It appears that the least ex- 
plained aspect of the problem is at  present the kinetics 
of the drops- their for mation, evolution, motion, and 
splitting. Notwithstanding the many recent papers in 
this direction (see, e.g., Refs. 5-71, the difficult 
problem of drop kinetics is apparently still far  from 
solved. 

We consider in this article several questions connec- 
ted with the kinetics of drops: new possible mecha- 
nisms of their instability, motion of drops in the gra- 
dient of the exciton concentration, and the interaction of 
the drops with one another. It should be noted that cer- 
tain parameters of the excitons and drops a re  still in- 
sufficiently well known; in addition, they depend on the 
temperature and may be structure-sensitive (i. e., they 
may vary from sample to sample) and differ substan- 
tially for different semiconducting materials. It is 
therefore not our purpose to develop a quantitative 
theory for some fully defined system. On the contrary, 
starting from a relatively realistic model, we consider 
related phenomena in various ranges of parameters and 
determine which of them a re  sufficiently general and 
which a re  peculiar only to definite region or behave 
differently in different regions. 

2. RECOMBINATION INSTABILITY 

The drop-instability mechanisms considered in the 
present papers a re  connected with the anisotropy of the 
flows in the gaseous exciton phase and the liquid elec- 
tron-hole phase a t  a small deviation of the drop shape 
from spherical. The quantitative theory is presented 
in Sec. 3. Since i t  is quite complicated, we precede 
i t  with a quantitative picture to make clear the princi- 
pal considered physical mechanisms. 

We consider an electron-hole drop surrounded by an 
exciton gas. We assume that the exciton mean free 
path in the gas phase A, and the electron and hole mean 
free path in the liquid phase A ,  are  small compared 
with the drop radius R(A,, A, << R). The continuous- 
medium approximation is valid for the description of 
either phase. We s tar t  with the instability mechanism 
connected exclusively with the condensation flow of the 
excitons in the gas phase into the drop. At A,<< R the 
condensation flow is diffuse and the exciton concentra- 
tion near the drop surface is lower (and possibly much 
lower) than their concentration n, at  large distances 
from the drop; we denote the concentration difference 
by An. 

Imagine now that the fluctuation caused the drop to 
lose i t s  spherical shape and assume, for example, the 
shape of an egg, as in Fig. 1. Then the narrower end, 
being farther from the drop center, is located in a re- 
gion with higher exciton density; the condensation flow 
to this end is therefore stronger. On the contrary, the 
flatter part turns out to be in a region with a lower 
exciton concentration, and therefore the condensation 
flow to i t  is weaker. Thus, the nonuniformity of the 
condensation flow of the excitons to the drop enhances 
the initial fluctuation and can make the spherical drop 
unstable and cause i t  to break up into smaller droplets. 
We now derive an instability criterion from qualitative 
conside rations. 

We characterize the deviation of the drop from a 

FIG. 1. Drop-instability 
mechanism connected 
with the anisotropy of the 
condensation flows from 
the gas phase. 
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sphere by the dimensionless paramter c. The change 
of c consists of an increase due to the condensation flow 
and a decrease due to restoration of the spherical shape 
under the influence of the surface-tension forces: 

de!dt= (de!dt),,.d+ ( d e l d t )  ,,L ten,, (2.1) 

The density of the diffusion flow on the surface drop 
j -DAn/R where D is the exciton diffusion coefficient. 
The rate of change of the radius drop due to this flow is 
R/R - D A ~ / N R ~ ,  where N is the concentration of the 
electron-hole pairs in the liquid phase. It is conven- 
ient to rewrite this expression in terms of R,, the 
radius of the drop in a stationary gas having the same 
density. In such a drop the total diffushn flow to i ts 
surface is equal to the recombinatiw flow in it: jR: 
-R:,N/T,; here 7, is the lifetime in the drop. There- 
fore 

and R/R-(R,,/R2~,". .If we+assume that the change of 
the condensation-flow density a t  low nonsphericity E is 
proportional to c, then 

To estimate the second term in (2.3), we note that the 
rate of restoration of the shape of the drop by the sur- 
face tension is limited by the friction between the elec- 
tron-hole liquid and the lattice. We shall describe this 
friction by the force p u / ~ ,  per unit volume, where p 
=mN, N is the density of the liquid, m is the exciton 
mass, u is the velocity of the liquid, and 7, -Af/uF, vF 
is the Fermi velocity in the liquid. It is possible, how- 
ever, to combine the surface tension a, the radius R, 
the parameter p/rr, i. e., the three quantities on which 
the second term of (2.1) depends, into a single combin- 
ation with the dimension of time. As a result we have 

Instability sets in when the small c and i ts  derivative 
dc/dt a r e  of the same sign. From (2.1)-(2.4) we get 
directly the instability criterion 

OTOT, OT,N R>R," - - - ----. 
pR,,2 DpAn ' 

We emphasize that the recombination time E does not 
enter in the instability criterion. This is a reflection 
of the fact that the instability is due entirely to the con- 
densation flow to the drop, and not to the recombination 
flow inside the drop. It is therefore natural to call i t  
the condensation instability. A similar instability can 
occur in a system of atoms adsorbed on a surface when 
"two-dimensional" gas condenses into drops of a "two- 
dimensional liquid." 

We proceed now to consider the second instability 
mechanism, due to the presence of recombination flows 
in the liquid phase. In the presence of friction between 
the liquid and the lattice, the recombination flow can be 
maintained inside the drop only on account of an excess 
pressure that increases towards the periphery. It  is 
easy to verify that this pressure is p ( r )  "p?/r0r1, 

where r is the distance from the center of the drop. 
When the drop differs from a sphere both the distribu- 
tion of the recombination and the distribution of the 
pressure become anisotropic. Disregarding for the 
time being the presence of gaskinetic and capillary con- 
tributions to the pressure, the total pressure drop be- 
tween the center of the drop and the surface is the 
same. But at  fixed r the pressure a t  different points 
will differ by an amount 6p - cpR2/r0r,. This state- 
ment is illustrated by Fig. 2, which shows the pressure 
patterns for a drop with elongated (cigar) shape. It  is 
seen that for such a drop the flows in the liquid a re  
predominantly meridional, from the equitorial plane 
to the symmetry axis, i. e., they enhance the nonspher- 
icity . 

Since the meridional flows produced by the pressure 
6 p  are  limited by the friction force characterized by the 
coefficient p/r,, it follows from dimensionality con- 
siderations that the corresponding contribution to dc/ 
dt is of the order of 

It replaces the first  term in (2.1); the previous expres- 
sion (2.4) remains in force for the second term. As a 
result we obtain the instability criterion 

It will be shown in Sec. 3 below that this instability 
develops a t  a l l  values L 2 2, and the critical radius is 
minimal for the quadrupole instability L =2; this in 
fact is the meaning of subscript in R:'. Condensation 
instability, on the contrary, exists within the frame- 
work of the model of Sec. 3 only a t  L > 3; this is indi- 
cated by the subscript of R," in (2.5). 

It is important that R:' contains 7 0  explicitly. There- 
fore this instability is directly connected with the re- 
combination in the drop; in this sense it is natural to 
call it recombination instability. The recombination- 
instability criterion (2.7) was obtained earliere within 
the framework of the hydrodynamic model.' The theory 
of condensation and recombination instabilities will be 
developed in the next section. Since they a re  interre- 
lated and cannot be separated in a l l  cases, we shall 
frequently use the common term "recombination insta- 
bility" for both. 

FIG. 2. Instability mechanism connected with the presence of 
recombination flows inside the drop. These flows are due to 
anisotropic distribution of the pressure, and have a meridional 
direction from the equator if the drop i s  cigar-shaped. The 
pressure distribution patterns are shown along the symmetry 
axis and in the equatorial plane. 
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Condensation instability can appear in the course of 
the growth of the drops only if R? < Rst or  

i. e., at sufficiently large supersaturations. Since 
RlS - (~:d)~/R2,,, the recombination-instability criterion 
is more stringent. However, even in the case when the 
criterion (2.8) is satisfied, if the drop has a small ini- 
tial nonsphericity c the time -70 corresponding to the 
drop growth may not be sufficient for the instability to 
advance enough to cause splitting of the drop. It is 
therefore important to know whether this instability can 
develop during the stage when R is close to R,. As- 
suming RcR, in (2.3) and comparing with (2.4), we ob- 
tain for the instability of a drop with a stationary radius 
a criterion that coincides exactly with (2.7). Conse- 
quently, both instabilities develop simultaneously in the 
region R = R,. 

It is obvious that RiS sets the upper bound of the drop 
sizes in the stationary regime, for in that case n, does 
not exceed a value n\ such that R,(n\) = Ria. The de- 
termination of the drop distribution in size in the re- 
gion of smaller radii is a difficult problem of kinetics. 

\ 

3. THEORY OF RECOMBINATION INSTABILITY 

To construct a theory for recombination instability 
we start  with a simplified isotropic scheme, assuming 
that the mean free path is small compared with R in 
both the gas and in the liquid phase (A,, A, << R) and that 
we can neglect both the drop heating due to the recom- 
bination processes and the influence of the electric 
fields due to the exciton dissociation. The principal 
mechanism of drop instability is presently taken to be 
the phonon wind proposed by ~ e l d y s h ?  The shape in- 
stability can be due also to electron-phonon interaction 
in the dropi0; the electric charge of the drops3'" can 
lead to phenomena of the type of electrocapillary insta- 
bility. We do not consider these effects here. Some 
additional limitations will be formulated below. 

The problem is divided into solution of the equations 
in the gas and liquid phases and the matching of the 
solutions on their boundary. 

A. Gas phase. The exciton motion can be described 
by the differential equation 

If R<<(D7,)ln, which holds true at not too short life- 
times 7, in the gas phase, then recombination can be 
neglected in the actual region a t  scales -R. In the 
same region we can also leave out the exciton photo- 
generation (G = 0). Assuming also that the character- 
istic reciprocal times A<< D/R' (it will be clear later 
on that this is equivalent to R2 << DT~),  we can omit also 
an/at from (3.1), which reduces then to v2n = O  with 
solutions 

where YLM are  spherical harmonics. The spherically 
symmetric part of the solution corresponds to a sta- 

tionary distribution of the concentration and satisfies 
the boundary condition n(r-m) =n,, with n, determined 
only by the pump strength, and n L ~  corresponding to the 
quasistationary perturbations due to the change of the 
drop shape. 

The constants A and BLM a r e  determined by the bound- 
ary conditions on the surface of the drop. The diffi- 
culty is that Eq. (3.1) may no longer be valid near the 
surface. In fact, assume by way of estimate that a t  
r = R  the concentration n(R)=nT, which is the equili- 
brium exciton concentration a t  the surface of the liquid 
phase1' a t  the temperature T. Determining A and esti- 
mating the concentration change 6n in a layer -A, a t  
the drop surface, we get 

At low temperatures nT << n, and the condition 6n <<nT 
may be violated even a t  A, << R. At the surface layer 
we must therefore replace the diffusion equation by the 
kinetic equation, but the latter, owing to  the condition 
R >>A,, can be solved in the quasi-planar approxima- 
tion. 

We consider now the kinetic equation in the approxi- 
mation of the effective collision time 7,: 

u,af/da+(f-f) /~#=0.  (3.3) 

Its  solution in the half-space z > 0 is of the form 

x f  (z', v)dz1,  V,>O, (3.4a) 

I = 
f ( z , v ) = f - = -  exp (e) f (",  v )dz l ,  vZ<0. (3.4b) 

Z&'z " 

Here f is obtained by averaging f over the angles: 

I 
f ( z , u ) = - - j  4n d Q f ( z , v ) ;  (3.5) 

the free-path time T, depends generally speaking on the 
velocity v. The solution (3.4) satisfies the boundary 
conditions. 

On the drop surface (z = 0) the distribution function of 
the departing particles (v, > 0) is a t  equilibrium: 

f +  ( 2 4 ,  U ,  vZ>O) = f o ( u )  =nrcpo(v), 

where po(v) is a normalized Maxwellian function. This 
condition corresponds to the assumption that the stick- 
ing coefficient of the excitons on the surface is equal 
to unity (Y= 1). The validity of this assumption is not 
obvious, but i t  simplifies the calculations greatly. 

Substitution of (3.4) in (3.5) leads after simple trans- 
formations to the self-consistency condition 

where 
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Finally, where A, is the mean free path with respect to elec- 
tron-electron collisions; usually A,, <<A,. 

C .  Boundary conditions. The boundary conditions where M(f) is the solution of the Milne equation12 
reduce to continuity of the flows and to mechanical 
equilibrium of the surface. For  the spherically sym- 
metrical part of the flow with account taken of A, << R it  
follows from (3.2) and (3.11) that This equation has been well investigated, s o  that with 

the aid of (3.4) and (3.8) we can express the complete 
solution in terms of the function?(v) H f (Z = 0, v ) .  The 
form of this function is determined from the condition 
that in the region A, <<z << R the solution of the Milne 
equation must be joined to the solution of the diffusion 
equation: 

n,'=A/R2=(n,-n,)lR. (3.17) 

It is of interest to note that this formula corresponds to  
retention of only the first  term in n: [see (3.11)]. The 
second term can be omitted even if i t  is of the order of 
or  larger than n ~ ,  since i t  competes in the equations 
not with e, but with the term -Rn:, which exceeds i t  in 
the ratio R/A, >> 1. 

Here n: is the limiting value of the derivative of the 
solution of the diffusion equation as z -0, and finally 
does not coincide with the exact value of the derivative 
of 7 a t  z = 0 integrated over the velocities. Using the 
known asymptotic form M ( S )  = J3(5 +q,), q, = 0.710, 
which is valid a t  1:>> 1, we obtain in lieu of (3.8) 

The flow-continuity condition yields, when account is 
taken of (3.16) and (3.171, 

From this we get the known equation for the stationary 
drop radius7 

Calculating with the aid of (3.4) the density j ,  of the 
exciton flow to the drop and the pressure on i t  a s  the 
momentum transfer, and taking into account the prop- 
ert ies of the function M ( l ) ,  we obtain 

j=-Dn.', 

p=n,'T, n.'=n,+q,(u',\,)n,'/(u2)=nT+.i*nn', (3.11) 

i t s  characteristic growth time is 3ro. 

Let now the drop deviate somewhat from a sphere, so  
that i t s  radius in the direction SZ = (8,  cp )  is 

Replacing in (3.2) the radius r = R(S2) + z, expanding up 
to  terms -42, and matching the obtained expansion to  
the quasi-planar solution, we obtain, allowing for 
(3.11), in the lowest nonvanishing order in A,/R, the 
limiting values of the parameters on the gas-phase 
side 

where the angle brackets denote averaging over the 
Maxwellian distribution. 

B. Liquid phase. In the description of the hydrody- 
namics of the liquid phase, we confine ourselves to the 
incompressible-liquid approximation. Then, the lin- 
earized Euler equation supplemented with the friction 
against the l a t t i ~ e , ~ '  becomes 

Writing down the equations for the pressure inside 
the liquid and for the capillary motion (see Ref. 13, 
Sec. 61), we get f rom (3.15), (3.161, and (3.20) the 
expressions for the corresponding contributions: 

and the continuity equation becomes 

div u=-zo-'. (3.13) 

From these we get an equation for the pressure 

V ' p - p l ~ ~ ? ~ ,  

whose solution is 
Analogously, for the velocity of the normal liquid flow 
we have 

In the quasistationary approximation u= -r,vp/p or 

The boundary conditions a re  

here u, is the radial velocity component. 

The linearized equation (3.12) is valid a t  1 (UV)U 1 
<< lu/r, 1 or  7 ,  << 7,. Allowance for the viscosity, i. e., 
the term qv2u/p in (3.121, leads to corrections of the 
order of 

The second of these equations allows us  to determine 
3,. Using also (3.21) and (3.23), we get 
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The presence of the factor L - 1 ensures a neutral 
equilibrium of the drop with respect to translation of 
i t s  center. 

For  the instability condition a t  L a 2  we choose the 
growth of the relative deformation 5/R; this quantity 
is analogous to  the nonsphericity parameter E used in 
Sec. 2. We then get from (3.18) and (3.25) an equation 
for the increment: 

This equation is our principal result, and the remain- 
der is essentially i ts  analysis. It is useful therefore 
to clarify the physical meaning of the individual terms. 
The first  term is connected with the condensation flow 
from the gas phase. The second term is connected 
with various components of the pressure and i t s  three 
members a re  respectively the anisotropic part  of the 
pressure due to the recombination flow in the liquid, 
the capillary pressure, and the gaskinetic pressure on 
the liquid surface. It is seen that the two f i rs t  contri- 
butions are  positive and give rise therefore to insta- 
bility, while the last two a re  negative and therefore 
suppress the instability. 

It is easy to verify by taking (3.19) into account that 
the ratio of the gaskinetic and capillary pressures is of 
the order of A,A~/u, where A ~ J  = T(n, - n,). It appears 
that this ratio is usually small, and to simplify the cal- 
culations we shall omit the gaskinetic pressure. 

It is seen from (3.26) that since the first  term van- 
ishes a t  L = 2, the conditions for the development of 
instabilities with L = 2 and L > 2 can differ substantial- 
ly. 

We begin with the case L =2. The competing terms 
a r e  here the volume and capillary pressures, and in- 
stability exists a t  R > R?: 

We called this the recombination instability mechanism 
in Sec. 2; Eq. (3.27) for the critical radius was ob- 
tained earlier.8 It follows also from (3.26) that the incre- 
ment X -7;'. i, e., the instability evolves within a life- 
time on the order of the time required for the drop to 
grow to the size R -R,. 

We proceed now to instabilities with L > 2, when the 
first  term of (3.26) differs from zero. The difference 
from the case L =2 is particularly large a t  high con- 
centrations in the gas phase, when R, >> RIS; the con- 
densation contribution to the instability is predominant 
here. The instability occurs a t  R > RP: 

The coefficient is minimal a t  L = 3, when 

R2=7.5 (R?") 'IR,tz. (3.28') 

This quantity may turn out to be much smaller than 
RiS. 

The kinetics of the development of instability with 
L > 2 is of interest. According to (3.26), i t s  charac- 
teristic growth time is 

It is therefore natural to assume that the breakup of 
the drops is in a scale -Rp with a time interval - r ~ .  
We note also that R ~ W  (n,- nT)", i. e., it decreases 
with increasing exciton concentration. On the other 
hand if R, -RlS, then R:' < RP with L > 2 because of the 
fast increase of the coefficient of the capillary pressure 
in (3.26) with increasing L.  Thus, the character of 
the instability depends strongly on the exciton concen- 
tration: a t  relatively low concentrations there should 
develop an instability with L = 2, which should give way 
a t  high concentration to  instability with L = 3. 

We have compared above the gaskinetic pressure, 
i. e., the last term of (3.26), only with the capillary 
pressure. It is instructive, however, to compare i t  
also with the first  two terms, since instability is pos- 
sible only if it is smaller than their sum. The neces- 
sary condition for this, in order of magnitude, of the 
form vTrl/R< 1. It restricts rather strongly the radii 
a t  which instability is possible. The hybrid parameter 
vT7$/R, which includes the velocity in the gas V T  and 
the relaxation time r,, will be encountered in Sec. 4 
below; i t  characterizes the ratio of the effects connec- 
ted with asymmetric momentum and mass flows when 
the exciton gas condenses. 

The feasible numerical estimates a r e  quite crude 
even in the case of germanium, on which most research 
was done. If we assume D - lo3 cm2/sec, ro - lo4 sec, 
71 -lo4 sec, 0-  lo4 dynlcm, p -10-lo g/cm3, n, 
-3.10" ~ m ' ~ ,  N -10" cm", then we get R, -3.  lo-' cm 
and R I ~ - R : ~ - ~ O ' ~  cm. Since the results a r e  close, 
this estimate permits no choice between the mecha- 
nisms for the cases L = 2 and L = 3. Both values, 
however, a r e  larger by approximately a decade than 
the experimental one. This allows us  to give prefer- 
ence to the mechanism with L = 3, inasmuch a s  de- 
creasing RlS by one-half ensures a decrease of R:' by 
a decade and reconciles the theoretical estimates with 
the experimental data. 

Of course, the foregoing estimate is in no way proof 
that the mechanism of recombination instability of the 
drops has actually been observed experimentally in 
germanium. It does make i t  meaningful to bear this 
mechanism in mind together with phonon wind.6 

We note in conclusion the following circumstance. 
The condensation mechanism, which corresponds to the 
first  term in (3.26), is essentially connected with the 
anisotropy of the diffusion flows in the gas phase and 
should vanish at A, >> R, i. e., in a Knudsen gas. On 
the contrary, the instability with L = 2 is determined 
predominantly by processes inside the drop and would 
be preserved a t  A, >> R if the regime inside the drop 
were to remain hydrodynamic, i. e., A, << R. As a re- 
sult of Fermi degeneracy, however, we have inside the 
drop A, >>A, ( ~ e f .  14); such a situation is therefore 
not realized. 
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4. MOTION OF DROPS IN  A CONCENTRATION 
GRADIENT AND DROP INTERACTION VIA THE 
GAS PHASE 

The question of the behavior of drops in an exciton- 
concentration gradient was discussed in a number of 
papers. It was proposed, in particular, that i t  is pre- 
cisely the inhomogeneous distribution of the exciton 
concentration in the gas phase which is responsible for 
the observed motions in the drop cloud. It will be 
shown below that both the drop velocity and the domi- 
nant mechanism of their displacement depend very 
strongly on the relations between a number of param- 
eters. In particular, we shall find i t  convenient to 
consider separately the cases R >> A, and R <<A,, which 
correspond to the diffusion and to the Knudsen regimes 
in the vapor phase. 

In all cases, however, regardless of the ratios of the 
parameters, we can separate two principal physical 
mechanisms that lead to displacement of the drop. The 
first  is the transfer of momentum to the drop in account 
of the asymmetry of the flows and of the concentrations 
in the gas phase, a s  a result of which the liquid ac- 
quires a hydrodynamic velocity, and the stationary 
regime is reached via friction. The second mechanism 
is connected with the asymmetric condensation of the 
excitons because of the supersaturated vapor on the 
drop; it leads to motion of the center of gravity of the 
drop Z without motion of the liquid in the drop relative 
to the lattice. We shall call these the hydrodynamic 
and condensation mechanisms, respectively. They lead 
to opposite directions of particle motion: with and 
against the gas flow in the first  and second cases, re- 
spectively. The equations that describe these proces- 
ses  a r e  

dZ dZ 
M- = - 9 (R-Z) (j, dS), V, = - 

dt dt ' 
* 

where ll and j, a r e  the momentum and mass flows from 
the gas to the surface of the drop, V, and V, a r e  the 
hydrodynamic and condensation contributions to the to- 
tal drop velocity: V =V, +V,, F is the effective fric- 
tion force that describes the momentum transfer from 
the drop to the lattice, R is a vector that runs over the 
surface of the drop, and dS is oriented along the out- 
ward normal to the liquid. 

We assume that in the absence of the drop the con- 
centration in the gas phase has a linear variation 

with 

1 Vn, I /n,<min {A,-', R-'1. 

A. Drop motion in the diffusion regime (R  >>A,). 
Solving the diffusion equation v2n = 0 (see Sec. 3A) with 
the boundary conditions on the drop surface n, =n, and 
with a condition a t  infinity compatible with (4.31, we 
obtain for the concentration around a drop with center 
a t  the point Z = 0 

The asymmetric part of the exciton flux density on the 
drop surface, determined by the last  term in (4.4), is 
equal to 3DRvn,/R. It is seen from i t  that the conden- 
sation flux preserves the spherical shape of the drop, 
and displaces the latter a s  a unit with a velocity 

the very same formula follows also from (4.23. 

As to the hydrodynamic velocity, in the lowest order 
of the diffusion theory we have HI, =pai,, and since 
p = TnT = const, on the surface, the integral in (4.1) 
vanishes and the equation is satisfied a t  Vh=O. A non- 
zero V, results only from various correction terms. 
For  example, a difference between n: and nT [cf.(3.11)] 
leads to  a pressure difference between opposite sides 
of the drop -TAg I Vn, 1 and gives rise to V, --(v,r,/ 
R)V, (vT is the thermal velocity of the excitons in the 
gas). The contribution of the nonlinear terms mnuiu, 
in the momentum flux for the gas, a s  well a s  the con- 
tribution of the Stokes viscous force in the gas flow 
never exceed the foregoing estimates. Thus, the di- 
rection of the drop motion is determined by the param- 
eter u ~ T , / R ;  i f  i t  is small, then V zV,. We have al- 
ready encountered this parameter above, namely in the 
problem of the drop instability i t  determined the ratio 
of the anisotropic gaskinetic and hydrodynamic con- 
tributions to the pressure a t  R -R,, [cf. the third and 
f i rs t  terms in the curly bracket of Eq. (3.2611. 

We have assumed throughout a sticking coefficient 
Y =  1. In the opposite limiting case when Y'O, we ob- 
tain for the asymmetrical part of the concentration 

and for the drift velocitys' 

3 Trr 
V h  = - -- Vn,. 

2 mN 

It is seen from a comparison of (4.5) and (4.7) that in 
the two cases the velocities differ by the symbol pa- 
rameter vc/vh - r , / ~ ~ .  Owing to the Fermi degeneracy 
in the liquid, r l  is relatively long," s o  that rg/r, <<I. 
This raises the question whether a regime in which ve 
predominates is possible a t  all  a t  reasonable values of 
Y .  The case Y+ 1 does not admit of an analytic solution, 
for in this case the equation analogous to (3.6) acquires 
a term with a kernel that depends on z + z ' .  It is easy, 
however, t o  join together approximately the flow in the 
diffusion region and the wall current, in analogy with 
the procedure used in Ref. 7. We arrive then a t  the 
following conclusion. The condensation term should 
prevail in the velocity at YR/A~ >> l,y 2 (ZI~T,  /R)'~. 
Physical considerations connected with the structure of 
the drops create an impression that Y is close to unity. 
The decisive role is therefore played by the value of 
the parameter uTr,/R. If i t  is less  than unity then V, 
can prevail, and if i t  is larger than unity then the pre- 
vailing quantity is always 

B. Drop interaction in the diffusion regime. Be- 
cause of the inhomogeneous distribution of the exciton 
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concentration around the drops, an interaction between 
them should exist-either attraction or repulsion. We 
s tar t  with the case Y = 1. Then it follows from (4.4) and 
(4.5) that for drops of radius R and separated by a dis- 
tance r 

We see therefore that the sign of the velocity depends 
on the regime: the drops repel one another in the 
course of condensation (n, > nT) and attract in the 
course of evaporation (n, < nT). This is the qualitative 
difference between our mechanism and phonon wind,8 
where there is always repulsion. Yet the dependence 
on r is the same-the inverse aquare law. 

At Y+ 1, different regions of the parameter values 
a r e  possible. If YR/A,<< 1, then 

rl n,-n+ R'r 
Vh - -yvr--- 

7; N I J '  

If YR/A, >> 1, then 

the relation between these quantities was discussed at  
the end of the preceding subsection. 

C. Drop motion in the Knudsen regime. Because of 
the small drop dimensions, the perturbations of the 
exciton concentration in the drop vicinity, over scales 
-A,, a r e  small relative to parameter (R/A,)~ << 1. We 
can therefore disregard the perturbation produced by 
the drop itself in the distribution function of the exci- 
tons incident on the drop from the gas phase. In the 
reference frame connected with the drop, this distri- 
bution function is 

qo is the Maxwellian function. Here V =V,, since Ve 
is small (V,<< V,); actually, for an immobile drop Vc 
= (D/ZN)vn, and allowance for the drift of the drop 
with velocity Vh does not change the order of magnitude 
of Vc. The total momentum transfer from the gas to 
the drop, which can be easily calculated using (4.11), 
is 

The last term describes here the momentum loss when 
the moving drop evaporates; when substituted in (4.11, 
this term cancels out the term vhdM/dt, on the left- 
hand side. 

Two motion conditions a re  possible here, depending 
on which of the frictions prevails, with the lattice or 
with the gas [the second term in (4.12)]. If friction 
with the lattice prevails, namely 

then the stationary drop velocity, obtained by equating 
the right-hand side of (4.1) to zero, is 

s1<zp5> v=-- 4RN Vn,. 

If friction with the gas predominates, i. e., a criter- 
ion opposite to (4.13) is satisfied, then 

this velocity is of the same order a s  the exciton-gas 
velocity produced by the concentration gradient4' Vn,. 
In this case VJV, - n d N  << 1. 

The ratio of the velocities (4.14) and (4.15) is deter- 
mined by the parameter contained in (4.13). 

D. Drop interaction in the Knudsen regime. In the 
Knudsen case the interaction between the drops can be 
substantial only a t  short distances, r sA,, and reduces 
to partial screening of the gaskinetic flow. We present 
the estimates, but do not write out the numerical co- 
efficients. 

If n, > nT (condensation regime), the drops attract, 
with 

n, z1vTaR r v----- , v--vr(f) '  f 
N r ' r  

for the respective cases of friction with the lattice and 
with the exciton gas (it is assumed that n,>> nT). 

If n , < n ~  (evaporation regime), the drops repel, and 
for the same two cases we have 

& r,vr2R r nr Ra r V ----, V-vr---- 
N r ' r  nc;! ? r  ' 

where n,,, = mas{n,, ~T(R/A,)~); we assume that n~ 
>>n,. Of course, a t  low temperatures, when n~ is 
exponentially small, the decisive contribution should 
be made by evaporation of the nonther malized particles 
produced via Auger recombination in the drop. 

We thank L. V. Keldysh for a discussion of the re- 
sults. 

')~onfMng ourselves to relatively large drops greatly exceed- 
ing the critical nucleus, we neglect the capillary correction5 
to np 
'Recombination in a moving liquid can be also accompanied by 
a momentum transfer that depends on the recombination 
mechanism. But the corrections for this momentum-loss 
mechanism are small compared with friction in a ratio rr/ro 
<< 1. 
'ft is easily seen that neither (4.5) nor (4.7) agrees with the 
result given in Ref. 4 [see Eq. (7.10) there], but our Eq. 
(4.7) differs only by the numerical factor 3. 

4'Both (4.14) and (4.15) differ from the equation proposed ear- 
lier for the drop velocity in the Knudsen regime [ see Eq. (12) 
of Ref. 121. In particular, Eq. (4.15) differs from the cited 
equation by the factor A#/R. 
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Change in the local geometry of the Fermi surface and 
the anomaly of the electronic sound absorption coefficient 
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A break in a bridge is accompanied by the appearance or disappearance of parabolic-point lines on the 
Fermi surface. As a result, the change in the connectivity of the Fenni surface leads to an anomaly in 
the angular dependence of the sound absorption coefilcient due to electrons, re. The closeness of the 
parabolic-point line to the conical line increases the anomaly. The concept of a phase transition of 2 1/2 
order is generalized to include changes in the local geometry of a Fermi surface not accompanied by a 
change in its connectivity. It is shown that the formation of a "waist" or a "crater" is accompanied by 
the appearance of angular singtllaritiea in re. 
PACS numbers: 71.25.Cx, 62.65. + k 

1. INTRODUCTION 

After  the prediction of a phase t ransi t ion of 2$ order1  
due to a change in the connectivity of the F e r m i  s u r -  
face, the study of the electron energy spec t rum of 
meta l s  and degenerate  semiconductors  by means of ex- 
t e r n a l  action on t h e i r  Fermi sur face  h a s  become wide- 
spread.  Change in the  connectivity of the F e r m i  s u r -  
face,  as is known, t akes  place because of the rear- 
rangement of the s t r u c t u r e  of the surface1) 

e (p) =ep (1 

close t o  isolated points of p space (p =p,), at which 
e i ther  a new cavity of the F e r m i  sur face  is crea ted  o r  
a bridge is b r ~ k e n . " ~  The  significant effect of such a 
s m a l l  change in the spec t rum on the thermodynamic 
charac te r i s t i cs  is due to t h e  fac t  that, because of de- 
generacy, the l a t t e r  are determined not by  all the elec-  
t rons ,  but only by those located on t h e  F e r m i  surface,  
and the r o l e  of slow e lec t rons  is anomalously large,  
since the density of states at c = c ,  is 

T h e  kinetic p roper t i es  of a meta l  are especial ly  
sensi t ive to the s t r u c t u r e  of the F e r m i  surface,  and, 
in cer ta in  cases, the  change in t h e  connectivity of the 
F e r m i  sur face  can lead to rad ica l  changes. For ex- 
ample,  if, as a r e s u l t  of the  breaking of a bridge, the 
F e r m i  sur face  changes f r o m  open to closed, then the  
conductivity in a s t rong  magnetic f ie ld along the di- 
rect ion of the  openness can increase  by f a c t o r s  of tens 
or even hundreds (see Ref. 2, Sec. 28). 

The sound absorpt ion coefficient r is especial ly  
sensi t ive to a change in the  local s t r u c t u r e  of the Fer- 
m i  s u r f a ~ e . ~  T h e  fac t  is that,  f i r s t ,  t h e  role of s low 
e lec t rons  in the interact ion with t h e  sound is even 
m o r e  important than its r o l e  i n  the thermodynamic 
charac te r i s t i cs ,  s ince  the  fo rmula  that  de te rmines  the 
sound absorption coefficient r in the f o r m  of an inte- 
g r a l  over  the F e r m i  sur face  contains v 2  in the de- 
nominator  [cf. with fo rmula  (2)], and second, e lec t rons  
on the  "belt" par t ic ipate  in the absorption of short-  
wave sound (kl>> 1, k = w / s  is the wave vector  of the 
sound wave of frequency w ,  s is velocity, I is the  mean 

We recall that vb,) =O.  

(2) 
f r e e  path of the   electron^)^' 

VL=O, e (p) =ep, (3) 

the s t ruc ture  of which c a n  change upon change in the  
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