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The characteristics of linear and nonlinear crystal optics in dielectrics with incommensurable 
superstructures are investigated theoretically for the case of ammonium fluoroberyllate. The optical 
properties can be described by a spatially periodic distribution of the dielectric constant and nonlinear 
susceptibility tensors which depend on the order parameter. The form of the tensors can be established 
on the basis of the phenomenological theory. The fields are determined by solving the Maxwell equations. 
Effects similar to the spatial dispersion effects, but more pronounced, are found. Moreover, a periodic 
dependence of the reflection coefficient on the position of the boundary with respect to the 
superstructure, and the appearance of ellipticity in the reflected light, are predicted. For the nonlinear 
properties it is shown that there is noticable second harmonic generation due to low local symmetry. The 
influence of the surface results in the appearance of additional components of the harmonic field and in 
their periodic dependence on the position of the boundary with respect to the superstructure. This is 
most manifest on propagation of the wave along the axis of the superstructure. Qualitative agreement is 
observed between the theory and the only known experiment on second harmonic generation by the 
incommensurable phase. Quantitatively, however, the difference is appreciable and may be ascribed to the 
domain structure of the incommensurable phase. The analysis shows that the existence of a multidomain 
structure may result in a considerable increase of harmonic generation in the incommensurable phase. 

PACS numbers: 78.20.Dj, 78.20.Bh, 42.65.Cq 

P h a s e s  with incommensurable supers t ruc tures  whose 
periods great ly exceed the interatomic dis tances but 
are smal le r  than the  optical wavelengths X have by now 
been  observed i n  a la rge  number of d ie lec t r ics  (see, 
e. g., Refs. 1-3). It is natural  to expect the  propaga- 
tion of light in  such  s t ruc tures  to have cer ta in  singu- 
larities, part icular ly those s i m i l a r  to the  s ingular i t ies  
known f r o m  crys ta l  optics with spat ial  dispersion. The 
presence of spat ial  dispersion leads to a number of 
qualitatively new effects, the magnitude of which is 
determined by the  ratio a / X  or ( a / ~ ) ~ ,  where  a is the 

rad ius  of t h e  intermolecular  interaction.' On the o ther  
hand, optical effects  due to the supers t ruc ture  should 
b e  determined by a n  analogous p a r a m e t e r  in which a is 
replaced by d, where d is the  period of the  superstruc-  
ture, and mus t  therefore b e  much more  strongly pro- 
nounced and much easier to observe  i n  experiment. 

One can hope that  a n  experimental  study of t h e  optical 
proper t i es  of incommensurable phases  will yield new 
data  on the i r  s t ruc ture  and singularities. T h e  r e s u l t s  
of the f i r s t  experiments5 turned out to b e  quite inter- 
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esting; second-harmonic generation was observed in 
the incommensurable phase of ammonium fluoroberyl- 
late, and i ts  character differed from the character of 
the generation observed in the commensurable polar 
phase (no generation of second harmonic was observed 
a t  all in the high-temperature nonpolar phase). 

In light of the foregoing, i t  is important to study theo- 
retically the crystal optics of incommensurable phases, 
to which the present paper is in fact devoted. The mag- 
neto-optical effect in media with helical magnetic 
structure were investigated in Ref. 6; i t  was shown 
that under certain conditions total reflection of light is 
observed, the reflection coefficient oscillates with 
changing frequency of the light and with changing crys- 
tal thickness, and the rotation of the plane of polariza- 
tion can reach appreciable values. We a r e  interested 
in noncommensurable phases produced in structural 
phase transitions, where effects of another kind should 
manifest themselves. We emphasize that optical ef- 
fects in such phases do not reduce merely to a more 
pronounced manifestation of effects known from the 
optics of ordinary crystals with spatial dispersion. 
Definite peculiarities should be possessed here by 
boundary effects. In fact, whereas in an ordinary 
crystal the position of the boundary can vary only by an 
integer number of lattice periods, in a crystal with a 
superstructure the change can be a fraction of a period 
of the superstructure, and this should lead, for ex- 
ample, to a periodic change in the reflection coeffi- 
cient, depending on the position of the boundary rela- 
tive to the distribution of the order parameter. 

In the present paper, the structure of the incommen- 
surable phase is described in the macroscopic approxi- 
mation-as a spatial periodicity of the order parameter, 
in analogy with the procedure used in Refs. 7 and 8. 
From the point of view of the optical properties, the 
incommensurable phase is represented a s  a periodic 
spatial inhomogeneity of the dielectric tensor and of the 
linear dielectric susceptibility tensor in the region of 
the optical frequencies. The optical properties of cho- 
lesteric liquid crystals a r e  described in similar fash- 
ion,' but the character of the structure, and therefore 
also the employed approximation, the analysis method, 
and a number of investigated phenomena is in our case 
different than in the case of liquid crystals. The mac- 
roscopic approach makes i t  possible to express the 
final results in terms of the constants of the thermo- 
dynamic potential in the Landau theory of phase transi- 
tions and in terms of some other quantities, which can 
be determined in principle from independent experi- 
ments. 

By way of example we consider ammonium fluoro- 
beryllate. The choice of this substance is dictated by 
the fact that the incommensurable phase was investi- 
gated in relatively great detail both from the theoreti- 
ca18,10,fi and the experimenta?15 points of view. 

1. STRUCTURE OF INCOMMENSURABLE PHASE OF 
AMMONIUM FLUOROBERYLLATE 

A most important role in the study that follows is 
played by the local symmetry of the incommensurable 

phase. We must therefore first  consider i t s  structure, 
which determines the character of the periodicity of 
the optical quantities. 

The incommensurable phase of ammonium fluoro- 
beryllate exists in a temperature interval from 96 to 
-90 "C (Ref. 21." The symmetry group of the high- 

'temperature phase T >- 90 '"C is ~ i i ( ~ n a m ) ,  while out 
of the polar phase (T <- 96 "C) is the group C&(~n2,a). '~ 
In the polar phase the period along the x axis is doub- 
led and the spontaneous polarization is directed along 
the y axis. The irreducible representation of the D$ 
group, which gives as a subgroup the group C;,, with 
doubling of the period along the x axis, is the second 
of the representation designated in Ref. 13 by the num- 
ber ~70.2 '  

This representation is two-dimensional, therefore 
the density function p(r) (Ref. 15) takes below the 
phase-transition temperature the form 

It is easy to show that depending on the ratio of the co- 
efficients q and 5, the function p(r) has a symmetry of 
one of the three space groups: if q/5=*1, the group 
Gin is realized; if ~ / 5  = 0, ---the group Ci,; in all  the 
remaining cases-the group C: with a specular slip 
plane perpendicular to the z axis. 

In the incommensurqble phase, the ratio q/5 varies 
periodically depending on the coordinate x.' Since the 
period d = 2a/k, of this change is large compared with 
the lattice periods, we can speak of local symmetry of 
the structure. It follows from the foregoing that the 
local symmetry of the incommensurable phase of am- 
monium fluoroberyllate is the symmetry of the group 
c ; ( ~ l l a )  with parameters periodic in x.  

Using the results of Refs. 8 and 10, we can represent 
the dependence of the parameters q and 5 on the coor- 
dinate x in the form 

 PO COQ k~z+p~'a,  cos 3ko=+po'z  a. cos(Zn+i) k s ,  
n>l 

(1) 
& ' ~ o  sin k&-polal sin 3 k s + p o 6 z  (-i)%. sin(2n+l)kg, 

n>a 

where a, a r e  quantities of zeroth or  higher order in po. 
It follows from (1) that under certain transformations 
x--x' the parameters q and 5 go over into each other. 
These transformations-translations and reflections 
of the x axis relative to the coordinate system fixed by 
the choice of the phase in (1)-are given in the table; it 
is indicated in the f i rs t  and second rows how q and 5 
a r e  transformed in this case. 

It is now easy to establish the character of the peri- 
odicity of the different quantities. We consider, for 
example, the component of the local dielectric tensor 
EZY. As follows from the transformation properties of 
the order parameter, in first-order approximation we 
have 

e,- (9'-E') . 

Therefore under the indicated transformations of x, the 
quantity &, transforms in accordance with the third 
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row of the table, from which it is seen that the period 
of the function E ~ ( X )  is equal to r/ko and this function 
is even. Consequently, the Fourier ser ies  of this func- 
tion contains only cos2rnkfl. Inasmuch a s  i t  reverses 
sign under the transfor mation x --x + n/2ko, the num- 
ber m in the argument of cosines should be odd. Thus, 
the Fourier series of this function takes the form 

Using the properties of the representation according to 
which q and 5 transform, it can be shown that formula 
(2) remains valid when combinations of q and 5 raised 
to any power is taken into account in c,,. 

We can establish in similar fashion the form of the 
Fourier series of the diagonal components of the tensor 
cib, which a re  invariant under symmetry transforma- 
tions of the group Dz,, and a r e  consequently propor- 
tional to q2 + t2: 

The components E, and ,c,, a r e  equal to zero, since the 
local-symmetry group has a mirror plane perpendicu- 
lar  to the z axis. 

These considerations can be used for a tensor of any 
rank. The nonzero components contain an even number 
of indices z, and their Fourier expansion, depending 
on whether the number of indices x and y is even or 
odd, takes the form (21, (3) or  the same form a s  for the 
components of the polar vector P, - (77' + 55') or  P, 
-175: 

P.- e C. sin 4 n k c .  Pq- 2 D. sin (2n+1) 2 k c .  
"-1 "-0 

If we average expressions (2)-(4) over the super- 
structure, then only expression (3), which has a dc 
component at n = 0, remains unequal to zero. There- 
fore the only nonzero components in the incommensur- 
able phase of ammonium fluoroberyllate a re  likewise 
the average components of any tensor which have an 
even number of indices x, y, o r  z, just a s  for a crys- 
tal  of class D2,. Thus, with respect to homogeneous 
actions the incommensurable phase has the same sym- 
metry a s  the high-temperature phase; in this sense, 
their point groups coincide. 

Having ascertained the general character of the de- 
pendence of the components .sib on X, which enabled us 
to draw a number of conclusions that a re  valid in all  
orders of approximation in p,, we now refine for the 
concrete calculations the dependence of the tensor cih 
on the order parameter in the lower-order approxima- 
tions. The diagonal components E* can depend only on 

TABLE I. 

invariants made up of 71 and 5. All three invariants of 
second degree (with account taken of the f i rs t  deriva- 
tives) a r e  written out in the thermodynamic potential 
in Ref. 8. When (1) is substituted, the yield, accurate 
to terms -p!, expressions of the type 

ap:+bpo' cos 4k,z. 

We have 11 invariants of fourth degree; two of them 
were written out in Ref. 8, and the remaining ones con- 
tain derivatives of 71 and 5.  Upon substitution of (1) 
all  lead to expressions of the type 

apo'+bpo4 cos 4 k c .  

Therefore the diagonal components, accurate to terms 
-P!, a re  equal to (I = 1,2,3) 

Among the combinations of q and 5 which transform 
like E,,, there a r e  three combinations of second degree: 

and eight combinations of fourth degree. With account 
taken of (11, and accurate to terms -p!, all a re  propor- 
tional to c o s 2 k ~ .  Inasmuch a s  E,, = 0 in the high-tem- 
perature phase (at p, = O), we have 

We neglect the local gyrotropy, which results in in- 
crements -a/~, and the absorption of light; therefore 
all  the coefficients in the components in the tensor 
a r e  real. 

2. ELECTROMAGNETIC WAVES IN THE 
INCOMMENSURABLE PHASE (LINEAR CASE) 

In the approximation linear in the field intensity, the 
question of the propagation of light in the incommensur- 
able phase is a variant of the problem of wave propa- 
gation in periodic structure. A definite specific fea- 
ture of the considered question is that an important 
role is played in i t  by the anisotropy of the tensor &a. 
Before we carry out an analytic investigation, we pre- 
sent some qualitative considerations. As shown above, 
the amplitude of the periodic term in the diagonal com- 
ponents zih is proportional to pi, while in the component 
E,, i t  is proportional to pt. It is therefore natural to 
expect the presence of the incommensurable structure 
to affect to the greatest degree that wave for which the 
component E,, is significant. This is a wave traveling 
along the z axis, inasmuch a s  c,, gives rise to a trans- 
verse polarization-vector component that should in- 
fluence noticeably the wave propagation. If the wave 
proceeds along the x or  y axis, the component E,, yields 
only longitudinal polarization, which plays a relatively 
smaller role. Thus, one should expect, within the 
framework of the linear theory, the presence of the 
superstructure to affect primarily waves propagating 
along the z axis. However, a s  will be shown below, 
boundary effects peculiar to the incommensurable 
phase, manifest themselves most clearly for waves 
propagating along the x axis. 

We write down the equation of an electromagnetic 
wave of frequency w :  
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We seek the solution of this equation, a s  usual, in the 
form 

E, (r) =ui (2) e'", (8) 

where ui(x) a re  periodic functions with the period of the 
superstructure. Substituting this expression in (7), we 
obtain the equation for ui: 

where 6 i L  is the Kronecker symbol, and the prime de- 
notes differentiation with respect to x. 

We consider the solution of Eq. (9) in those cases 
when the wave propagates along one of the coordinate 
axes. If we a r e  dealing with the x axis, Eq. (9) yields 
the system (k, = k) 

This system has two solutions, 

corresponding to two possible polarizations of the nor- 
mal waves in the absence of a superstructure. The 
component u, is determined from (10~) .  If we substi- 
tute in the equation the expression (3) for c,, and take 
into account the initial terms of the expansion (5), we 
can easily show that the general structure of the solu- 
tion is of the form 

u,=C [itpo' z (A?' cos 4 n k o z + i ~ ~ '  sin4nkoz) 1. 
#&,I 

Here and below C is an arbitrary constant, A',", B',", and 
the similar quantities with indices a r e  real  combina- 
tions of parameters that determine the dependence of 
E,, ,  on 9 and 5. 

The concrete form of the solution can be obtained in 
the form of an expansion in powers of po. Substituting 
in (10c) c,, from (51, we seek the solution in the form 

where k l  is the wave vector for the given solution. 
Using the known procedure and recognizing that kl /ko  
=d/X<< 1, we obtain accurate to terms -pt 

The quantity kl, accurate to terms -pi, is determined 
by the usual expression in terms of the component c.. 
averaged over the superstructure. 

Using (2) and (3), we find from (10a) and (lob) that u, 
and u, a r e  represented by series of the type 

uv=C [l+p,' z (c:" cos 4 n k d i ~ : '  sin 4nk,,z) 
.>I 1 

Just a s  in the preceding case, we seek the solution of 
the equations in the form of expansions in PO.  We have 

and it  follows from the expression for k2 (which is the 
wave vector in this case) that the dispersion-law cor- 
rections of interest to us vanish here in the considered 
approximation, just a s  in the preceding case. 

When the wave propagates along the z axis, both solu- 
tions of Eq. (9) a r e  characterized by the fact that for 
them all  three components u, differ from zero. We 
consider f i rs t  a wave in which the vector E becomes 
parallel to the x axis a s  p o - 0 .  The general form of 
the corresponding solution of Eq. (9) is 

u.=C (I+,' En:" cos 4nkOz) , u , = ~ ~ ~ ' ~  B:' cos(Zn+l)2kg, 
">I n>o - 

u,--iCp2 ZC."' sin 4nkp 

The solution of Eq. (9) with the aid of the expansion in 
po yields in the first-order approximations the result 

o'po' e'"', E y = C ~ ( ~ l + f ~ O z ) ~ o s  2k0zei4', 
4c k, 

E,= -- 0' oZE,'po' tCuralp' sin 4ka" ' ,  kSa - - (E= + -) . (16) 
4ckoeol'" ca 8c k, 

where a bar over a letter means averaging over the 
superstructure. 

For  a wave in which the vector E becomes parallel to 
the y axis a t  po-0, the general form of the solution is 

s-Cpoz A:' cos (2n+ 1) 2k0z, u,=C (itp: z 8:'' cos inks), 
" S O  ">I 

(17) 
u,-iCp2 ZC?' sin(2n-ti)Zkc. 

m a 0  

In the lowest approximations in p, and d/k ,  the field in- 
tensity and the wave vector k ,  a r e  given by 

(18) 
E . = -  

i ~ o e ~ :  pea {2~1+p,t[ i, (% + -) 271,-37,. +2t ] ]  sin 2ko=eika: 
4ckoeo, eo1 

A similar analysis can be carried out for waves prop- 
agating along the y axis. The wave vector is deter- 
mined in this case, accurate to quantities -pB, by the 
corresponding components cik averaged over the super- 
structure. 

As  will be shown below, second-harmonic generation 
manifests itself most strongly for light waves propaga- 
ting a t  an angle to the coordinate axes. Then, bearing 
in mind the discussion that follows, we consider by way 
of example a wave with vector k lying in the xz pIane: 
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If we choose a wave whose electric field E is parallel 
to the y axis a t  po =0, the general form of Eq. (9) is 
then 

u==CpQz CIA? cos (2n+l)2kp 
n a b  

+i cos 0 (B:' sin t)+p,'~d"' )sin (2n+l) 2kox], 

u p C  [ltp.' (D!.' cos 4n4x ticoa 0s:" sin4nk,z) , (19) 
n>1 

I 
u,=C sin 8p02 [cos OF.'" cos (2n+l) 2k,x+i~,'"' sin (2n+l) 2koxl. 

n>O 

The field intensity and the wave vector k, a r e  given, 
accurate to terms -p: and p: respectively, by the ex- 
pressions 

k.Seos sinZ 0 cos 8 

4ko%r 

E.=- 0 cos 2kox-i sin 2k.x 

On the basis of the obtained formulas we can imme- 
diately point out, for example, the following manifesta- 
tion of a superstructure: if in the commensurable 
phase the vector E is polarized along one of the prin- 
cipal dielectric axes, then the refractive index is the 
same for all k perpendicular to the given axis.16 In the 
incommensurable phase in a similar situation, the re- 
fractive index will depend on the direction of wave prop- 
agation. Thus, for a wave polarized on the average 
along the x (or y) axis and propagating along the z axis, 
and for a wave polarized along the same axis and prop- 
agating along the y axis (or x axis), the refractive in- 
dices differ by an amount 

This follows from (16) and (181, and the dependence of 
k on the angle 9 is seen from (20). A similar effect 
takes place also in ordinary crystals in the presence of 
spatial dispersion. In the latter case, this difference 
of the refractive indices is of the order of (a/M2 -lo*. 
To estimate the order of this difference in the incom- 
mensurable phase of ammonium fluoroberyllate, we 
use the results of birefringence measurements," which 
show that a t  the midpoint of the temperature interval 
of the existence of the incommensurable phase the in- 
crements of the birefringence, which can be ascribed 
to the presence of the superstructure, a r e  -lom4. This 
gives for the difference in order of magnitude (yli 
- yl,,)pi. It is natural to assume that the temperature 
of the anisotropy of the coefficients yli is the same that 
a s  cot, i. e., yli = hence 

(a~-y13p.'~Apo'(eot--eor). 

According to the values of the refractive indices for 
ammonium f l u ~ r o b e r ~ l l a t e , ' ~  cot - Eon - which 
yields ultimately for the considered temperatures 
~ l , p i  - 10". The same order of magnitude should be 
expected for t1p; in (6). According to Ref. 2, k/ko 
-lo-' in this case. We can thus expect 

and the discussed difference of the refractive indices 
will be larger by two orders of magnitude than in the 
commensurable phase. The accuracy of modern meth- 
ods makes it possible apparently to observe this effect. 

The character of the spatial structure of the electro- 
magnetic wave in the incommensurable phase, deter- 
mined by the functions ui(x), turns out to be substantial 
in second-harmonic generation, a s  will be shown be- 
low. In addition, this character can manifest itself 
in some other phenomena, for example in the scatter- 
ing of light by defects. 

3. REFLECTION OF LIGHT FROM THE SURFACE OF 
AN INCOMMENSURABLE PHASE 

As already noted in the introductory part, the pres- 
ence of a superstructure in a crystal can influence the 
reflection of light. When considering problems of this 
kind, i t  is necessary to know the boundary conditions 
for the electromagnetic wave. We shall assume that 
the structure of the incommensurable phase near the 
surface of the crystal is the same a s  in the depth. This 
assumption is natural, since a t  the present time there 
a r e  no data of any specifics of the superstructure near 
the surface. 

Waves incident on a surface perpendicular to the x 
axis, along which the superstructure is periodic, en- 
counter a homogeneous boundary that does not differ 
in principle from the boundary of an ordinary crystal. 
We can therefore impose here the usual boundary con- 
ditions. We assume that the wave E:=c, exp(ikx) is 
normally incident on a boundary situated in the x =xo 
plane. The wave excites in the crystal a wave E, 
= u , ( ~ )  exp(iklx), where u, is determined by (l l) ,  and 
produces also a reflected wave Ef =C, exp(- ikx). The 
conditions for the continuity of the z component of the 
field E and of the y component of the field H a t  x = x o  
yield two relations: 

which make i t  possible to find the constant C, and C 
(C enters in u d  as a function of C,. Solving these 
equations, we obtain also expressions for the trans- 
mitted and reflected waves: 

At a constant value of u, these formulas go over into 
the Fresnel  formula^'^ for normal incidence of light. 

At x =xo, the coefficients of proportionality between 
E', E, and E'z in (21) a re  generally speaking complex. 
Therefore, in contrast to the incidence of light on the 
medium without a superstructure, the phases of both 
the transmitted and reflected wave change, but the 
change of phase of the reflected wave is not equal to n. 
Using for u, the approximate expression (12), we ob- 
tain, accurate to terms -p:, the reflection coefficient 

(5ip0'klk~)~-lO-~, 
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and the change of the phase upon reflection 

kk?yupo5 
6,=n+ ---- sin 4k0x0. 

2ko(kiz-kL) so3 

It is assumed that kl > k; if kl < k, the term a is mis- 
sing from 61. In addition, the difference kl- k is as- 
sumed to be not too small. 

For a wave incident along the x axis and having a 
component E',, we obtain similarly on the basis of (14) 

The obtained formulas show that if we remove in 
some manner thin layers of the substance, i. e., if we 
vary xo, the reflection coefficients R1 and R2 will vary 
periodically. Since 61t 6,, if the incident light is po- 
larized in a plane that does not pass through the y and 
z axes, then the reflected light is polarized eliptically, 
and the phase difference 61 - 62 is also a periodic func- 
tion of xo. 

Estimates made under the same assumptions a s  in 
Sec. 2 yield a value -lo4 for the reflection-coefficient 
correction necessitated by the presence of the super- 
structure, and yield for & - 62 a value Effects 
of this order were observed a t  contemporary experi- 
mental accuracy. 

When the incident light i s  perpendicular to the x axis, 
the ordinary Fresnel formulas remain in force, just a s  
for the commensurable phase. The reason i s  that in 
this case the components of the field intensity take the 
form u(x) exp(i(kyY +kg)) and can be averaged over x 
independently of y or z.  It i s  the obtained expressions 
of type C exp{i(kYy +k,z)) which enter in the boundary 
conditions that follow from the x-averaged Maxwell's 
equations, and this leads to the Fresnel formulas. We 
note that this averaging procedure is meaningless in 
the case of the boundary conditions for a wave p r o p a  
gating along the x axis. The wave takes then the form 
u(x) exp(ikx), it is not periodic i n x ,  and averaging over 
x does not yield the expression C exp(ikx); the result of 
the averaging depends on all  the coefficients in (11) o r  
(13), and the size of the averaging interval also plays a 
definite role. 

4. SECOND-HARMONIC GENERATION 

As indicated above, second-harmonic generation 
(SHG) in ammonium fluoroberyllate was observed ex- 
perimentally,5 but there is in fact no interpretation of 
the experimental results in the cited paper. It is 
therefore of particular interest to consider this ques- 
tion theoretically. The symmetry group of the high- 
temperature commensurable phase which, a s  noted in 
Sec. 1, is also the group of the "averaged" symmetry 
of the incommensurable phase, excludes SHG, since i t  
contains an inversion, but in the low-temperature com- 
mensurable polar phase SHG is, naturally, possible. 
Yet according to Ref. 5, SHG is observed in the incom- 
mensurable phase, and furthermore the generated light, 
a t  a given polarization of the fundamental wave, con- 
tains field-intensity components both allowed by the 
symmetry of the polar phase and forbidden by the sym- 

metry of both commensurable phases. 

The statements made above with respect to the sym- 
metry-forbiddenness is valid, of course, only if no 
account is taken of the dependence of the nonlinear sus- 
ceptibility tensor on the wave vector k. If account is 
taken, SHG becomes possible in a medium with an in- 
version center, but the intensity observed in this case 
is relatively low." In the incommensurable phase one 
can expect a similar but more pronounced effect not 
only because of the large period of the superstructure 
but also because the local symmetry is lower than the 
average one. 

Let us  explain the physical nature of this effect. The 
local SHG is determined by the local values of the ten- 
s o r  of the nonlinear susceptibility xi,&, whose value 
averaged over volumes with dimensions exceeding the 
superstructure period is zero in accordance with Sec. 
1. Therefore in the case of a homogeneous exciting 
field the second harmonic would not be generated. In 
fact, in a homogeneous field, within the limits of the 
period x,,,(x), each point would correspond to another 
point that would generate a harmonic of the same amp- 
litude, but with opposite phase. Actually, however, 
the exciting field is not homogeneous, therefore the 
waves generated in the indicated points have a phase 
difference not equal to a, and have different amplitudes, 
s o  that there is no complete cancellation. It follows 
from this also that the amplitude of the generated har- 
monic should be determined by the inhomogeneity of 
the field, i. e., i t  should be proportional to the magni- 
tude of the wave vector. 

The intensity of the harmonic, a s  is well known, de- 
pends strongly on the degree of satisfaction of the syn- 
chronism condition." The latter means that the spatial 
periodicity of the "nonlinear source" 

should coincide with the length of the normal wave of 
frequency 2w. If we disregard the modulation of the 
amplitude of the fundamental wave a t  the period of the 
superstructure, the field of this wave is proportional 
to exp(ika r), and when the periodicity of x i l r (~ )  is taken 
into account we see  that the periodicity of pYLS is de- 
termined by a factor of the type exd2i(ko + kh}. Since 
ko >> k, the periodicities of PY and of the normal wave 
differs substantially and satisfaction of the synchronism 
condition and the incommensurable phase is impossible. 
Actually, however, the field of the fundamental wave is 
modulated with the period of the superstructure, and 
t e rms  of the type const. exp(2ika r )  can appear in the 
nonlinear source, i. e., there is a possibility of satis- 
fying the synchronism condition. 

The SHG in the incommensurable phase can, of 
course, be phenomenologically described by starting 
with an "averaged" symmetry of the phase, corres- 
ponding to the point group D2,, in accordance yith Sec. 
1. The SHG is then characterized by a fourth-rank 
tensor: 

P:LS =~i~lkiEjEh. 

If we characterize the SHG by an effective tensor of 
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third-rank, in analogy with Ref. 5, then it is defined 
by the relation 

and it is necessary to take into account that i ts  com- 
ponents depend on the direction of the wave vector k. 
From this we find, in particular, that when waves 
propagate along the crystallographic axes only a longi- 
tudinal component of FyLS is produced. This follows 
from the form of the fourth-rank tensors for the class 
D2, and from the transversality of E in this case. Such 
a nonlinear source cannot effectively excite an electro- 
magnetic wave, and therefore when SHG is considered 
special interest attaches to  the propagation of the 
waves a t  an angle to the axes. 

In the preceding arguments we did not take into ac- 
count the presence of a boundary. By virtue of differ- 
ence between the local symmetry and that averaged 
over the volume, the symmetry of the boundary layer 
perpendicular to the x axis does not coincide with the 
averaged one at distances of the order of d. Therefore 
the boundary can give rise to  harmonic components 
that a re  forbidden by the symmetry of the tensor ~ y , ~ , ,  

as will be demonstrated explicitly below. 

Proceeding to the analytic treatment, we must first  
clarify the form of the local tensor xi,*. The nonzero 
components of this tensor, with an odd number of in- 
dices x, a r e  transformed like P,, while the components 
with an odd number of indices y a re  transformed like 
8,. The Fourier expansions of these components xi,k 

a r e  analogous to the corresponding ser ies  (4). The re- 
maining components with odd number of indices z a re  
equal to zero by virtue of the local symmetry. 

Among the combinations of the quantities q, 5, q', t', 
which transform like P,, there is one second-degree 
combination qq' + 55' and eight combinations of fourth 
degree. When Eq. (1) is substituted in these combina- 
tions, the terms of order pi vanish from nq' + 55', 
while the terms -pi in all  combinations a r e  proportion- 
a l  to s i n 4 k ~ .  Therefore, accurate to terms -p: we 
have 

Xp.=h,po'sin 4k&, b = h z p o ' s i n  4k,x, ;~. .=h,p~'s in 4k0x, 

k=xrn=hrpo( sin 4 k ~ ,  ~ ~ ~ = ~ , ~ - h , p ~ '  sin 4kor. (22) 

There a re  three combinations of second degree 
q [ , q ~ '  - 55', q't' and eight combinations of the fourth 
degree, which transform like P,. Taking (1) into ac- 
count, all of them a r e  proportional, accurate to terms 
ep:, to sin2kox. Therefore 

%uP=~a'(f~+fi'po') sin 2 k p ,  x,=p,'(fz+fZ'po2) sin Zkp,  

(23) 
~ n ~ = ~ r v . = p ~ ' ( f ~ + f r l p ~ ' )  sin 2k0z, ~ . , ,=x, . ,=p~'(f~+ f s fp2 )  sin 2k0z. 

We note that in a polar commensurable phase only com- 
ponents of the type (23) differ from zero. 

In the calculations of the SHG we shall use the given- 
field approximations; i t  is then necessary to replace 
E ,  in by expression (8) with a given ul, and the 
wave equation for the second harmonic1' takes the form 

Here and below a tilde marks a quantity that corres- 
ponds to the frequency 2w. 

We seek a particular solution of Eq. (24) in the form 
Ei(r) =v i (x )  eZik'; 

and obtain for vl the equation 
(25) 

~~'-6,,v,"+4ik,u,'-Zi8~,k,v,'-2ik,v,'-4k:a, 

+ <fz,li.,c,+4 ~ ' c - ~ ~ , ~ ( z )  v , = - ~ ~ , n o , ~ c - ~ ~ , , , ( x )  n,tl,. (26) 

By way of example we consider SHG by a wave pro- 
pagating in the xz plane and have a vector.$ parallel to 
the y axis a t  po = 0. The solution of the linear wave 
equation for this case was obtained in Sec. 2. Taking 
into account the nonzero components of we get from 
(26) 

-ik. sin 0v,'-2k2 sinVv,+ke2 sin 2Bv,+202c-"(2.,c, 

+8,u,) = - 8 n o ' ~ - ~ ( ~ p . u ~ + ~ u ~ + ~ . . u ~ + 2 ~ 1 ~ ~ u ~ ) .  
(27a) 

v,"+4ik. cos 0~ , ' - 4k~u ,+4o~c -~ (@,u .+~ , ,u , )  

=- 16noac-' (X,U.Z+~,,U,Z+X,,.~,'+~X~U~U~), (27b) 
v,"+4ik, cos Bv,'-2ik. sin 9u,'-4k.Z cosZ 9v,  

+2ka2 sin 29u.+4~~c-~~,,v,=-32n02c-Z(~,,,~.~,+~.v.un~,). ( 2 7 ~ )  

The general form of the functions c,(x) and xila(x) is 
determined by ser ies  such a s  (2)-(4). Taking also into 
account the form of ui (191, we obtain the general struc- 
ture of the solution 

u,=CZp,' Z ( U .  sin 4nk,z+i cos 9V. cos 4nkox), 
n>o 

u , = ~ ' ~ ~ ' ~  [ W,, sin(2n+1)ZkOx+i cos BX. cos(Zn+l)  2kox] ,  
n>o (28) 

v.=sin 9CZp0' (cos BY, sin 4nk,x f iZ. cos 4nk,z) .  C 
a>" 

We see therefore that averaging over the superstruc- 
ture does not cause the amplitudes v, and v ,  to  vanish, 
since they contain dc components (at n =O); it is pre- 
cisely for them that we can expect the strongest mani- 
festations of the synchronism conditions. 

The concrete form of the solution of Eqs. (27) can be 
sought, a s  in Sec. 2, in the form of expansions in p,, 
taking (22) and (23) into account. Terms of lowest or- 
der, p i ,  a r e  contained only in the right-hand side of 
(27b), so that in first-order approximation in pi and in 
k/ko, using (20), we have 

4ny,'fZ ? (  k. 
u,= ,-p, C sin 2k0x+2i-cos 0 cos 2k0x . 

c2kc- k .  ) (29) 

In the next higher approximation, greatest interest 
attaches to the amplitudes averaged over the super- 
structure, and & for which we obtain from (27a) 
and (27c) the equations 

The solution of these equations (we leave out the ines- 
sential terms) is of the form 

k. cos 0 2Slf6e02kf 5 x- --nip,'Cz -- 
kOFOie03 [ € 0 ,  (kb2-4k.,'1 
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where 2, corresponds to the second normal wave fre- 
quency 2w for the same direction of k as for the wave 
described by (19). Bir virtue of the interrelation of 
the amplitudes vi, the small denominator ii - 4k2, ap- 
pears in the highest-order approximation also in v,. 
Denoting the term with this denominator by E,, we ob- 
tain 

t'=- 
k.  - YzL1p.5r (cos 2k11-2i - cos 0 sin 2koz 

cZkoz ko 

The general solution of Eq. (24) is a sum of the ob- 
tained particular solution and of the general solution of 
the homogeneous equation, corresponding to expres- 
sions (19) and (201, while the second can be considered 
similarly. The arbitrary constants that enter in these 
relations a re  determined from the boundary conditions 
for the second-harmonic fields with allowance for the 
"reflected" wave." If the wave is incident on the bound- 
ary x=xo  (see Sec. 31, we have a s  a result (we write 
out only the most essential terms) 

k. L " ~ ' ~ z ~ z  ( v l i j x+v l~ , ) exp  (iv*) E,= - j2p0'CZk exp ( i t r )  + ------ 
/:,Eo~ k,Ze~z (32) 

+ k.2p,- ( j , ~ ~ ~ , + f  ,Q,V=) exp ( 2 i t r ) ,  
/~o-&"z 

E,=(v,'ii,+v.'5,) c s p  (ik,,'r) +L:= e s y  (2ik.r). 

We have introduced here the dimensionless complex 
quantities 

2s,, sin 0 sin € I z  exp[i(2k,-kb.')zo] 
v 1  = - 

2 ~ ~ ,  sin 8 sin 01-1-~,,  (k,l&) -' (kb,'k,+knZ)cos e~ ' 
€ 0 1  cos 6, 

y 1  =-- "1, 
TO, sin 8, 

P,, sin 1): ( 2  cos O+kn2k.-'k=-') esp[i(2k.,-k, , ')  z , ]  
V2 = 2rO3 s ~ n  O sin O , + P ~ ,  (kek.) - ' (kaik ,+kRZ)cos  €Iz 

' 

€0, COS 0 2  v2' " - - vz, e,, sin 0, 

i L  = 8?ka (cos  Zk,xo-i -- 2k.,-k, 
K, cos %+k, 2ko 

sin 2koxo ) exp [ i  (aka.--h.,) x , ] ,  

Q , = - E ~ ? P , ~ - ~  cos 2k,z, Qz=cos 2k,x-ikb,'k,-'sin 2k0x, 
Q3='ln (sin 2k ,xf  2ik.k,-' cos €I cos 2k ,x) ,  
QL=cos 2k,x-2ik.k,-' cos 0 sin 2k,x, 

(33) 

where and B2 a re  the angles that determine the direc- 
tions of the wave vectors k, and of the normal waves 
of frequency 2w, while k, is the wave vector of the re- 
flected harmonic (k,= I k,, 1 ). All these vectors lie on 
the xz plane, while the angles and 8, a r e  obtained 
from the relation 

Ea sin €Ir=k,,' sin 0,=2k. sin €I. 

The vector k: differs from Ti, in (311, since O2 + 8. 

The appearance of the components < and 5. (31) cor- 
responds to the symmetry of the tensor utjkl introduced 
above, and to the fact that the field E of the fundamen- 
tal wave is polarized on the average along the y axis. 
From formulas (31)-(33) i t  is seen, in particular, that 
when the waves propagate along the crystal axis (sin0 
= O  or cos0 =0) the "resonant" terms contained in the 
denominators 6: - 4k2, vanish in accordance with the 
statements made above. 

Equations (30) for the components averaged over the 

superstructure a re  similar to the equations that de- 
scribe SHG in an ordinary crystal. In the latter case 
the right-hand sides would contain respectively 

where C, is the amplitude of the fundamental wave. We 
see  therefore that if we introduce the effective tensor 
x;:: for a given direction k, this tensor will have com- 
ponents 

which differ in size and depend on the angle 0. How- 
ever, the effective tensor introduced in this manner 
does not describe the entire situation. There is also 
a field component of the harmonic E ,  (32) that does not 
follow from the symmetry of xijk,, and whose magni- 
tude depends substantially, owing to the presence of IJ. 
and at, on the position of the crystal boundaries rela- 
tive to the superstructure. We note that the resonant 
terms in Ex and E, do not have such a dependence. The 
resonant factors a r e  contained in the second and third 
terms of E, but they a r e  preceded by a small coeffi- 
cient (see Sec. 2): 

The f i rs t  and largest term in E, does not contain a 
resonant factor, i. e., i t  is not sensitive to the synchro- 
nism condition, and i ts  magnitude is of the order of the 
amplitude of the reflected wave. We note that surface 
effects that a r e  not sensitive to the synchronism condi- 
tions were noted even in one of the very f i rs t  studies 
of SHG in a crystal with an inversion center.20 

It is not a1 all  trivial that when the fundamental wave 
propagates perpendicular to the "superstructure axis" 
(in the y z  plane) the qualitative character of the SHG, 
as shown by a special analysis, remains unchanged. 
To be sure, the characteristic effects connected with 
the boundary conditions vanish; in accordance with the 
symmetry of there only components a r e  8, and - 
E,. On the other hand if the wave travels strictly along 
the y or  z axis, then the particular solution (25) yields 
on the average a longitudinal field, a s  is seen with ex- 
pression (28) with cos0 = 0 as an example. Using the 
boundary conditions (see Sec. 3), we find that in  this 
case there will be neither a reflected harmonic nor one 
emerging from the crystal. 

When the light propagates along the x axis, we see 
from (32) that a t  8 = 0 there is a transverse component 
E,. There a r e  no terms with resonant denominators 
in this case, and the intensity of the harmonic depends 
substantially on the position of the boundaries of the 
crystal relative to the superstructure. To illustrate 
this, we calculate in this case, on the basis of (32), 
the Poynting vector averaged over the superstructure 
for the harmonic. In f irst-order approximation, 

where ~p is the argument of y. As seen from these for- 
mulas, both components contain the factor I p /, which 
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according to (33) is a periodic function of xo. We note 
that the Poynting vector is directed at  an angle to the 
z axis, and this angle is a periodic function of x, with 
a period 2n/ 12k,- &,I. If it were possible to satisfy the 
synchronism condition (2k, = i,,), the Poynting vector 
would have a constant direction making with the x axis 
an angle that depends on xo. An additional calculation 
shows that a fundamental wave with a different polari- 
zation (with vector E parallel to the z axis, propagating 
along the x axis, generates a harmonic whose Poynting 
vector has a form similar to (34), with the argument 
of the sine function containing 2k, - E,. 

Let us estimate the order of magnitude of the compo- 
nent x;$ assuming that in the middle of the tempera- 
ture interval of the existence of the incommensurable 
phase the quantities fipi a r e  of the same order a s  the 
corresponding components of the nonlinear susceptibi- 
lity tensor in the commensurate polar phase x@.  By 
way of example we consider the component ~2 ;  for 
which we get from (30) 

.tf - 
; ~ u u  (k/ko) (tsp2) (fsp,'). 

At the same numerical estimates a s  in Sec. 2, we get 
x ~ ~ ~ x ~ $ - I o - ~ .  We recall that in contrast to the linear 
susceptibility, the nonlinear susceptibili* of crystals 
can differ by three orders of magnitude for different 
substances," and therefore the obtained susceptibility 
ratio indicates that SHG in the incommensurable phase 
of ammonium fluoroberyllate is perfectly observable. 

A detailed comparison of the results with those of 
Aleksandrov, Vtyurin, and shabanov5 is difficult, since 
they did not report the details of the experiment. One 
can note a qualitative agreement between our results 
and theirs, namely that SHG is observed in the incom- 
mensurable phase and there a r e  components x;:: that 
a r e  forbidden by the symmetries of both commensur- 
able phases, for example x::. There are, however, 
discrepancies between the theory and experiment. The 
intensity of the generated harmonic in the incommen- 
surable phase, according to our estimates, is lo4 or 
less of the intensity of the SHG in the polar phase, 
whereas in Ref. 5 they observed a much higher inten- 
sity. This discrepancy can be connected with the fact 
that we have considered a single-domain incommen- 
surable phase, whereas in the experiment the crystal 
was apparently multidomain. An analysis of SHG in a 
multidomain crystal is presented below. In addition, 
according to Ref. 5 SHG was observed with light propa- 
gating along axes that were perpendicular to the axes of 
the superstructure. On the other hand, according to 
the foregoing, the harmonic should not be generated in 
this case. The last discrepancy is possibly due to the 
preliminary character of the experimental data. 

5. SHG IN A MULTlDOMAlN INCOMMENSURABLE 
PHASE 

The thermodynamic potentiale does not change when 
the phase of the sines and cosines in (1) is changed. 
Therefore the incommensurable structure can be bro- 
ken up into domains that have different values of this 
phase. This circumstance should greatly influence the 

SHG, especially when the light propagates along a su- 
perstructure axis. In the latter case the SHG takes 
place in fact on the crystal boundary. It is natural to 
expect the same role to be played also by the domain 
walls in a multidomain crystal. At a definite ratio of 
the phases, a substantial enhancement of the second- 
harmonic waves generated on domain walls is possible. 

We shall assume that the domain walls a r e  perpen- 
dicular to the x axis, i. e., they lie in planes x =xm 
(we neglect the wall thickness). To obtain the values 
of the order parameter in each of the domains, x must 
be replaced in (1) by x + q,. We note first  that in first- 
order approximation we can neglect the influence of the 
domain structure on the fundamental wave, since the 
change of its amplitude on passing through the domain 
wall is of the order of p',, a s  can be verified in analogy 
with the procedure used in Sec. 3. 

For  light propagating along the x axis (0 = O), we find 
from (28) that there is only one component E ,  tangential 
to the domain walls. Using (14) and (291, we find that 
E, takes inside the domain with the number m, in the 
first-order approximation in pi, the form 

E,=c,,-,eiG+~,,e-G+~[sin 2k0(z+q,) 

+2ik,ko-' cos 2ko(z+q,) ]eZ*, 

where F = 4nk3zp$2/kicoz and account is taken of the 
fact that in this case k,= kz. We note that in the case 
of the fundamental wave of another polarization E ,  also 
takes the form (35) with kz replaced by kl, f2 by f3, and 
coz by cos. 

Let the number of domains be n. If C, and CT a re  
the amplitudes of the reflected harmonic and that 
transmitted through cryskl,  we obtain for the 2n + 2 
constants C,, CT, Ct . . . , C2, the 2n + 2 relations that 
follow from the continuity of E ,  and H, on the bounda- 
ries. It is easy to eliminate from these relations the 
intermediate constants Ci and obtain for the amplitude 
of the emerging harmonic, neglecting the terms -k/ko, 

X A '  [cos 2k.(r+qm+.)- eos 2kO(zm+qm) I 
n - 0  

x [ I r  cos It. (2,-to) - iI sin It2 (z,-so) ] e n e m .  (36) 

Here is the wave vector of the harmonic outside the 
crystal, xo is the position of the "entrance" face of the 
crystal, the prime on the summation sign denotes that 
terms containing qo and q n + ~  should be excluded. We 
note that for the amplitude C, of the reflected harmonic 
we obtain an expression similar in structure to (361, 
therefore i ts  intensity is of the same order a s  the in- 
tensity of the harmonic emerging from the crystal. 

To obtain estimates based on (36) it is necessary to 
make definite assumptions concerning the character 
of the domain structure. We assume that the dimen- 
sions L of the domains a r e  the same and a re  equal for 
simplicity to N periods of the superstructure: 

We assume that qm= a + mP. Then the sum in (36) 
breaks up into four sums of the form 
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sin k . p C  exp(i,il[ (?li2*K2) L*2$ko]) 
m-n 

If the expression in the square brackets is a multiple 
of 2n, the similar sum is equal to 2n + 1. In this case, 
i. e., when the unique synchronism conditions 

a re  satisfied, the intensity of the harmonic is propor- 
tional to the square of the number of domains, which 
can be very large. Therefore the dependence of the 
intensity of the harmonic, for example on the frequency 
of the light should constitute a set  of peaks. 

It should be expected that in the case of a random dis- 
tribution of the thicknesses of the domains and the 
phases q ,  the height of the peaks will decrease some- 
what, the width will increase (cf. Ref. 211, and over- 
lap of the peak cannot be excluded. As a net result the 
general level of SHG in a multidomain incommensurable 
phase will be much higher than in a single-domain 
phase. We can similarly explain the appreciable SHG 
observed in Ref. 5, but an unambiguous interpretation 
of this experiment is impossible for lack of data on the 
domain structure of both the incommensurable and the 
polar phases. We note also that because of the pres- 
ence of a large number of terms in (361, the position 
of the crystal boundaries x =r,, x, relative to the 
superstructure influences the SHG much less than in a 
single-domain crystal. 

The authors a re  grateful to V. V. Lemanov for a 
discussion of some problems connected with the present 
study. 
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