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It is shown that the interaction between two-dimensional electrons alters significantly the character of 
their scattering by impurities and phonons in quantizing magnetic fields. The reason is the transverse 
drift of the electron cyclotron-resonance orbit centers in the electric field produced by the carrier-density 
fluctuations. In sufficiently strong magnetic fields and at not too low temperatures, scattering by a 
phonon constitutes an act of Cerenkov scattering by the drifting electron, and elastic scattering by an 
impurity corresponds to a displacement of the cyclotron orbit by a distance of the order of the quantum 
magnetic length in a direction perpendicular to the fluctuatuion electric field. It is shown that when 
account is taken of the interaction between the electrons the peak of the cyclotron resonance can have a 
Lorentz shape. The half-width and the shift of the peak are calculated. The profile of the N-shaped 
current-voltage characteristic in the absence of heating is analyzed. 

PACS numbers: 76.40. + b, 72.20.My, 72.20.D~ 

A distinguishing feature of several presently known 
systems i s  the presence of electrons moving in a one- 
dimensional potential well. These are semiconductor or 
semimetal films, inversion layers near semiconductor 
surfaces, thin charged layers over a surface of liquid 
helium, and others. If the distance between the quantum 
levels in the well i s  A &>>T and A &/ti exceeds appreci- 
ably all the characteristic frequencies and the recipro- 
cal relaxation times, then the electrons, if on the low- 
est level, behave as two-dimensional ones in a number 
of effects. One such effect i s  the cyclotron resonance 
observed experimentally for electrons over liquid heli- 
um' and in the p-Si inversion layer2*3 when a magnetic 
field is  applied perpendicular to the surface. 

A transverse magnetic field affects strongly the kine- 
tic phenomena in two-dimensional systems, since the 
electron energy spectrum becomes discrete. Obvious- 
ly, in this case one should speak not of, say, scattering 
by defects, but of lifting of the Landau-level degeneracy 
by the electron-impurity interaction, and of localiza- 
tion of the electrons. Correspondingly, if the impurity 
concentration tz, is  low enough n, << (277 1 ')" (1 = (cii/e~)'" 
i s  the magnetic length), and the impurities are short- 
range, then, neglecting electron-electron and electron- 
phonon interactions, the static conductivity o(0) of the 
system van is he^.^ Allowance for the interaction leads 
to a finite value of o(0) at T fO and the CR line width.=s6 
The CR peak can then have a complicated non-lorent- 
zian profile, and the dependence of the conductivity on 
the temperature and on the coupling constant turns out 
to be quite unusual. 

such a field, the center of the cyclotron orbit drifts 
with a velocity CE/H. Since the electron is "smeared" 
over a region with dimension -1, the characteristic time 
of the interaction of the electron with the short-range 
defect (the "time of flight") i s  equal to ~,=(E-')IH/C 
(the estimate of 7, does not really require that the im- 
purity potential be 6-like). If the impurity level is  
shallow, ?,A << li (A is  the level depth), there is ob- 
viously no localization of the electron on the impurity, 
and elastic scattering takes place instead. Similarly, 
if the electron characteristic velocity he exceeds the 
phase velocity of the surface phonons, then we get elec- 
tron-phonon scattering of the Cerenkov-radiation type 
(in the opposite case, when the coupling is  weak, one 
should more readily speak of quasielastic scattering of 
the phonons by electrons with a discrete spectrum6). 

Thus, although the interaction between the electrons 
does not lead directly to either a shift or a broadening 
of the CR level, nor to a change of the static conduc- 
tivity, it does interfere, via the fluctuation field, with 
the elementary act of scattering by impurities and pho- 
nons, and it must therefore be kept in mind when kinetic 
coefficients a re  calculated. We note that this pertains 
also to three-dimensional systems, where the interac- 
tion between the electrons eliminates the logarithmic 
divergence that appears in the Born approximation in 
the expression for ~ ( 0 ) .  Since re a HIh, the role of the 
considered mechanism is smaller in sufficiently strong 
fields. However, as  shown by the estimates that follow 
(which are, to be sure, quite rough), this mechanism 
remains important up to fields -s lo5 Oe; h addition, it 
i s  of fundamental importance in the investigation of the 

The interaction between the electrons can alter quai- static conductivity in the case of scattering by impurit- 
itatively the character of the scattering by impurities ies iiN>>nS. 
and phonons even at carrier densities N such that R >7 I 
(R = N - ' ~ )  and the electron gas i s  far from degeneracy. The fact that the electron-electron interaction broad- 
This change is due to concentration fluctuations, which ens the Landau levels and consequently in€luences the 
cause a fluctuation field ~ ( y )  (which i s  effectively two- conductivity of the two-dimensional system was noted in 
dimensional) to act on each individual electron. If the an interesting paper by ~ ~ z h ~ i . ~  He did not explain, 
temperatures are not too low, T>> e ' l ' / ~~ ,  then&-) is  however, the mechanism of this interaction, and intro- 
practically homogeneous over the length 1 at 1 <<R. In duced, instead of the parameter 7, which is  essential for 
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our problem (and i s  determined by mean inverse fluc- 
tuation-field intensity), the phenomenological lifetime 
r-l of the single-electron states. The parameters y - l  
and re have different physical meanings and a re  not di- 
rectly connected. The expression obtained in Ref. 7 for 
the current differs greatly from our present result, ob- 
tained with heating neglected, see Sec. 3 (cyclotron 
resonance was not considered in Ref. 7, and heating was 
not taken into account). 

The most thoroughly investigated system of nondegen- 
erate two-dimensional electrons is that localized over 
the surface of liquid helium.' In Sec. 4 we analyze the 
shift and broadening of the CR peak as  applied to the 
conditions realized in experiment (see, e.g., Ref. 9). 

time correlation function Q(t) in the region of long times 
t>>wi1, t -7,. In this region it i s  impossible to calcu- 
late Q(t) by the usual perturbation theory in Hi, since the 
terms proportional to 1vqI2t turn out to be of the order 
of unity. At the same time since the interaction be- 
tween the electrons i s  not weak, it i s  impossible to cal- 
culate Q(t) by using the single-electron kinetic equation 
obtained in Refs. 5 and 6. The problem simplifies, how- 
ever, if T >> e i 1 2 / ~ 3  and the average distance between 
the electrons R is much larger than I .  Then the inter- 
electron interaction can be treated in a certain sense 
quasiclassically. 

To calculate ~ ( t )  it i s  convenient to change over to the 
interaction representation by introducing the operators 

1. GENERAL EXPRESSION FOR THE CONDUCTIVITY 
NEAR THE CR PEAK 

The Hamiltonian of nondegenerate two-dimensional 
electrons in a quantizing magnetic field takes in the 
case of interaction with surface phonons (see Ref. 6) 
the form 

Here e, i s  the electron charge, xn and y, are its two- 
dimensional coordinates, q i s  the two-dimensional pho- 
non momentum, and w, i s  its frequency (the system i s  
assumed to be two-dimensionally isotropic). The gauge 
of the vector potential A(r) of the transverse magnetic 
field H i s  of no importance in what follows, and H 
=(curl A),. 

If the cyclotron frequency w c > > r  (r is  the width of the 
CR peak; it determines the characteristic relaxation 
time 7, =r-' of the total momentum of the electrons), 
then the conductivity of the electron gas near the CR 
peak is 

enz 
o,(o)s-Q(o), o-o.;  

2m 

where S i s  the area of the system and ((' ")) denotes 
quantum-mec hanical averaging. 

In the zeroth approximation in Hi, as seen from (1) 
and (2) 

whence Q(w) ~ 6 ( o -  w,). Scattering broadens and shifts 
the CR peak. The form of Q(w) near the maximum is 
determined, according to (2), by the behavior of the 

Hi(?) =exp [i(Ha+HPn)r]H, exp [-i(Ho+Hpr)~], 

where T, i s  the chronological-ordering operator. Equa- 
tion (2) for Q(t) can then be written in the form 

Q(t) =exp (-io,t)?(t), 
Q(t) -S-'[Sp e-"1-' Sp {9-lU(t)~lU-1(t+R)exp[-L(Ho+H~) I). (4) 

It is convenient to calculate the trace in (4) over a sys- 
tem of wave functions that represent the products of the 
wave functions of the non-interacting electron and pho- 
non subsystems, while the trace over the phonons can 
be easily calculated directly (see, e.g., Ref. 10) by us- 
ing Wick's theorem. As a result we have at T >> 7;' 

r,(r) =exp (iH,r)r, exp (-IH,r), (5) 
qq(r) =ii(o,)exp(io,~)+[ii(o~)+l]exp(-iW). 

We have introduced here a symbolic notation according 
to the operatorsiin (with the bar) are  placed on the 
right of 8, and are ordered by the operator F, from 
right to left in decreasing order of time (they "stem" 
from the operator U-'(t + i A), while in the approxima- 
tion T >> 7;' the argument t + i x is replaced by t). The 
operators a,, (without the bar) a re  placed to the left of 
5, and are ordered by the operator T, from left to 
right in decreasing order of time (they stem from the 
operator U (t) in (4)); Sp, means the trace on the wave 
functions of the isolated electron subsystem. 

In the time region t - T,, the matrix elements of ~ ( t )  
are of the order of unity, and to calculate ~ ( t )  it i s  nec- 
essary to gather together the entire series obtained 
from the expansion of the exponential in (5). This can 
be done in the zeroth approximation in T,/T,, (wC7,)-' 
el, by retaining in the n-th term of the expansion only 
the terms -(t/~,)". 
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2. CALCULATION OF THE CORRELATION FUNCTION 
OF THE MOMENTUM OPERATORS Q(t) 

We consider first the term linear in ~ ( t )  in (5): 

Q") ( t )  =S-'Z-l Spa [ 9 - I T 1 T ,  {G ( t )  y l )  exp (-AHo) 1, (6) 

which constitutes actually a sum of skeleton diagrams 
(cf. Ref. 6. It is important, however, that in  the prob- 
lem under consideration it is  not convenient to use sin- 
gle-particle Green's functions). Using the momentum 
amplitudes pa, and the positions It,, of the cyclotron- 
orbit centers, which vary slowly over the time w;' and 
are given in the Appendix, the operators a+, in G can be 
represented, taking (A.3)-(A.5) into account, in the 
form 

a,(% z )  =exp[ iqr . (r )  ] =exp (-'/,lag2) 

xexp[2-'"1q-,Pi.(z) exp ( io , r )  ] (7) 
XexP [ --2-"lqtP-1. ( r )  exp ( - io .r )  ] exp [ i qR , ( z )  1, q,=q,-kq,. 

The double integrals with respect to time in the ex- 
pression for ~ ( t )  have, according to (5), the following 
structure: 

f .T, a.(q. z 1 ) a .  ( -q ,  o). 
0 0 

where q,(q, T) are determined by Eq. (7).') In the series 
expansions of the four exponentials of the rapidly oscil- 
lating expressions 

2-';:lq:P,, ( z l , * )  exp ( iao.zI ,z )  

it is  necessary to retain in the zeroth approximation in 
(w,T,)-' only the terms -exp{imw,(?, -?,)I. If m #0, then 
the main contribution to the integral i s  made by the re- 
gion 7, -r2= wl1. Therefore ?, in P,,(T,) and %(?,) can 
be replaced by T,, so that the integral with respect to T, 

can be immediately calculated. On the other hand if m 
=0, then we must take into account the dependence of 
R,, on the time (it is  through this dependence that the in- 
teraction between electrons affects the scattering), and 
it turns out that i t  suffices to substitute 

At *n = O  the main contribution to the integral i s  made by 
the time interval 7, -7,- 1/\  $,I. 

Calculating in this manner the integrals in ~ ( t ) ,  we 
can reduce expression (6) to the form 

IV,lZ Pq" r-2nT zTexp(- F) (T )  < 6 ( q k - o J > ,  
9 (8) 

S 
p- '-TE dql V, 1' exp (-'/nl'q') PqZ(i-'/rPqa) ( ( ~ q - q k n ) - ' ) ,  
(24 

where N i s  the electron concentration, 2 1 r ~ l ~ < < l ;  it i s  
assumed that exp(w,/T)>> 1, i.e., the electrons are on 
the lowest Landau level and that w, >>o,. The angle 

brackets in (8) denote the following averaging: 

( f  (k) )= I ~ ( B . ) c x P ~ - N I . . )  IIw.[ I exp ( -hHe . ) I I  &]-I, 

rn ." 

The parameters I' and P in (8) have the meaning of 
the broadening and the shift of the CR peak. The damp- 
ing i s  due to transitions between states of the electron 
subsystem with emission or absorption of a phonon, and 
is possible only when the drift velocity in the fluctuation 
field exceeds the phase velocity of the phonon. The shift 
P, is  due to virtual processes, wherein the electron 
hops through rn Landau levels, and this in fact is the 
reason for the sum over *n in the expression for Py. 
These processes are fad ,  and at w,?, >> 1 the electron- 
electron interaction does not affect the value of P,, so 
that the expression for P, coincides with that obtained 
in Refs. 5 and 6. The p term describes the shift due to 
virtual processes not connected with transitions between 
Landau levels. 

In the derivation of (8) we used a quasiclassical ap- 
proximation: the fact that the operators Ran=Xn -iffyn 
and ia, do not commute and the higher-order deriva- 
tives were discarded from the expansion of I$(?*) in 
terms of 7, -7,. It i s  seen from (A.3) and (A.4) that 
this i s  equivalent to neglecting the inhomogeneity of the 
fluctuation field over the length I :  

The corrections -e2,12/(R3T)<<l in (8) and (9) were also 
discarded. In this approximation, the calculation of the 
trace in (5) and (6) breaks up into summation over the 
numbers of the Landau levels and integration over the 
positions of the centers of the cyclotron orbits: 

wherein the operators Pa, and Ran commute. The op- 
erators (P,)  e,,), when acting on the wave function, 
increase (decrease) the number of the Landau level of 
then -th electron by unity (they are analogous to the 
creation and annihilation operators for the harmonic 
oscillator). In the derivation of (8) we took account of 
the fact that in the temperature region exp(w,/T)>> 1 the 
contribution made to 6") by the normal product of these 
operators i s  equal to zero. 

The condition for the applicability of (8) and (9) is, 
however, not only the homogeneity but also the small- 
ness of the fluctuation field: 

whence 7:' << T (if the criterion (10) were, not satisfied, 
then the electrons would emit continuously Cerenkov 
phonons of energy wq>T and thermodynamic equilibrium 
would be impossible). Strictly speaking, the inequality 
(10) and the condition that the field be homogeneous 
should take place simultaneously in a self-consistent 
treatment of the fluctuations of the electron concentra- 

749 Sov. Phys. JETP 50(4), Oct. 1979 M. I. Dykman and L. S. Khazan 749 



tion. This can be done roughly by assuming that short- 
range order in the positions of the particles exists at 
e2a'">>T. Then ~ - e f l ' ~ 6 ,  where 6 is the displace- 
ment of the electron from the equilibrium position in 
the "molecule." Associated with this displacement is 
an energy -e;632V3", which can be naturally set equal to 
the temperature. Hence E -N'/?'~. The field can be 
regarded a s  homogeneous, and the quasiclassical ap- 
proximation can be regarded as valid if 6>> 1, from 
which follows (10). The criterion (10) is the condition 
for the quasi-elasticity of the scattering and establishes 
the relation between the concentration of the electrons, 
the magnetic field, and the temperature, at which the 
expressions (8) and (9) are valid. 

It is seen from the derivation of (8) that the largest 
contritrution to ~ ( t )  is made by the time region r, -7, 

-re, wil<< t. Therefore in the expansion of ~ ( t ;  9,) of 
(5) in terms of at) we can confine ourselves in the 
zeroth approximation in r7, <<l and rw;' <<I to only 
those terms in which the double integrals do not break 
up when ordered in time, i.e., the product 
g(rl, r2). . .g(r , ,~,+~) is integrated over the region 
t 2r1 2 ~ ~ 2 . .  .a, >T,+~. This is equivalent to taking 
into account only non-intersecting diagrams. The ob- 
tained series can be easily summed: 

I .* 
F ( t ; 9 , ) = 9 , +  Id?, Sdr ,  T t T l { g ( ~ I ,  r r )F(rr ;  9 , ) ) .  

0 e 
(11) 

Substituting (11) in (5), differentiating with respect to 
time, and recognizing that g(r ,, 7,) is a rapidly oscil- 
lating function of r , -7, with a period - 7,, w;', and 
F (r2; 9'') is a smooth function of T,, we get 

whence 

Q ( t )  =N exp [- ( r+ iP)  t ] ,  t w ~ . > o - ~ . ,  

r 
Q ( a )  =N p+ (o-a,-p)' * l a -ae lar , -* .  (13) 

In the derivation of (12) we have performed calcula- 
tions similar to those that have led to Eq. (8). In addi- 
tion, it was assumed that over times -r-' there is no 
correlation between the electron velocities, and as- 
sumption quite natural if r <e; 1 '/R' << T. 

Thus, according to (13), the form of the CR peak of 
nondegenerate two-dimensional electrons turns out to 
be Lorentzian, when account is taken of their interac- 
tion with one another. The half-width r of the peak is 
determined both by the interaction with the phonons (or 
impurities, see below), and by the intensity E of the 
fluctuation field. It is easy to analyze the dependence 
of r on (E) in the important case of relatively strong 
fields, when T;'>>u, at q s  t'. It follows then from (8) 
that 

According to (14), (8), and (9), the half-width r is pro- 
portional to the average reciprocal intensity of the fluc- 
tuation field, and if we estimate the field at (E)-Nsl 
- N ~ / ? ' ~ ,  then ~ c c N - ' / ~ T ' ~ ,  even though Eq. (13) is  of 
the single-electron form Q(W)CCN, the relaxation pa- 

rameter r=~; '  itself depends quite strongly on the elec- 
tron density. The shift of the CR peak P is likewise, 
generally speaking, dependent on N. 

It is easy to generalize the theory of the shape of the 
CR peak to include the case of electron scattering by 
impurities in the linear approximation in the impurity 
concentration n,. In this approximation, the Hamilto- 
nian of the interaction of the electrons with the scatter- 
e r s  is conveniently written in the form 

(vqvq,>=n,I uq lz&,-q*, 

where u, is the Fourier component of the impurity po- 
tential. Calculations for the model of the interaction 
(15) are similar to those made above for the case of 
the interaction with the phonons. As a result we obtain 
for Q(w) again expression (13), with r and P described 
respectively by Eq. (14) and by expression (8) in which 
it is necessary to replace ~ T I v ~ ( ~ / w ,  and [ % ( w , ) + l l l ~ , 1 ~  
andn,(u,12. The factors 12q2 in (8) and (14) lead to cut- 
off of the impurity potential at distances on the order of 
1. 

3. CURRENT-VOLTAGE CHARACTERISTIC OF 
NONDEGENERATE ELECTRONS IN THE ABSENCE 
OF HEATING 

An interesting feature of two-dimensional electrons is 
the possibility of obtaining an N-shaped current-voltage 
characteristic in the case when the Hall field is equal 
to zero. It is known's2 that the conductivity in quantiz- 
ing magnetic fields is pro-oortional to the cross section 
for the scattering by impurities and phonons. This 
cross section, according to (14), is in turn proportional 
to the time of flight T, of the electron near the defect. 
If the external field ED is strong and exceeds the fluc- 
tuation field E ,  then T, decreases, 7,-ZH/CE, At the 
same time, the possibility of the electron of "hopping 
away" as a result of scattering along the field de- 
creases: in elastic scattering, by virtue of the energy 
conservation law, the electron can hop away only trans- 
versely to the total field Eo+E; if E,>> E ,  then the pro- 
jection of the displacement of the electron on the direc- 
tion of Eo is small. Therefore with increasing field the 
current decreases at Eo>E, and in the case of elastic 
scattering we have j -Et at Eo>> E . 

The Hamiltonian of two dimensional electrons in an 
electric field takes in the case of scattering by phonons 
the form 

R ( t )  =HE,(t) + H I ;  

where Ho and Hi are defined in (1). The vector potential 
Ao(t) of the electric field is assumed to be homogeneous 
in space. 

The expression for the current density j ,  along the 
field 
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i s  best transformed, using the solution of the equation 
of motion 

into 

jz=-ie.FS-I (z V q q V ( b q + L q + ) e s p  (iqr.) 
.L 9 

[we have taken into account here the fact thatAo(t) and 
((b, exp(iqr,,))) vary slowly over the time w,' and that 
the increment - P d w ,  to 8, was discarded when 9, 
was substituted in (IT)]. 

If the current i s  calculated by Eq. (19) in the case of a 
weak interaction and the heating is neglected, it suffices 
to find the density matrix of the system in first order in 
Hi, i.e., to find the linear response to Hi. It i s  conven- 
ient to do this by the standard method, "turning on" Hi 
adiabatically at the instant t - - m e  We assume also that 
there is no electric field at t < t ,  i.e., Ao(t < to)= 0, where 
1, is  a certain remote (-to>> re),  but finite instant of 
time. Then, obviously 

where p i s  the density matrix of the system, and Z is 
the partition function defined in (5) [it actually immater- 
ial what i s  turned on first, the field or Hi; it is impor- 
tant only that at the turning-on instant the density ma- 
trix have the equilibrium form (20)]. 

Calculating in the usual manner the increment aHi to 
p, substituting in (lg), and retaining only the terms dia- 
gonal in q (all others drop out when the decoupling of 
((b,b*,.)) presented below is carried out), we get 

The propagators ~ ( t ,  to) are conveniently written in the 
form 

where (t, to) i s  a C-number which plays no role here- 
after. 

Taking into account the smoothness of the field over 
the times w,' and discarding the derivatives of Ao(t), we 
can simplify (22) still further: 

It follows therefore that 

r, (t) =rxp ( I I I , ~ )  r, e sp  ( - i ~ , t ) ,  (24) 

i.e., the contribution of the field to the dependence of 
the electron coordinate on the time can be exactly 
separated, and this contribution corresponds simply to 
a drift of all the electrons across the field with equal 
velocity. Substituting (24) in (21), replacingA,(t)-A,(?) 
by -(t - ?)cEo in the argument of the exponential, and 
putting t =0, we obtain after simple transformations, 
taking (20) into account, 

e  =E 1' 
- 

i. = S-'Z-'Z I V ,  1 2q,2 Re dx (P( ( 7 )  exp (-er-ie,lZq,Eor) 
T 

1 

where q,(q, 7) and (pa(?) are defined in (5). The factor 
e~p(-ie,$~~'q,7) in (25) describes the influence of the 
external field on the scattering act and leads to a de- 
viation from Ohm's law. If we discard this factor, then 
the expression that follows from (25) for the static con- 
ductivity o(0) coincides, in the lowest order in H,, with 
that obtained in Ref. 6 by an entirely different method. 

Transforming %(q, 7) with the aid of (7) and using the 
quasiclassical approximation developed above, we can 
calculate the integral in (25): 

j X = 2 n ~ ' ~ . ~ l ' ~ ~ q ~  w exp (6 ( q k m - e o ~ o ~ q v - h q )  >. (26) 

Thus, the influence of the field Eo on the scattering act 
reduces simply to an increment to the drift velocity R, 
in the fluctuation field E of the drift velocity e&, 1' in 
the external field. 

It i s  of interest to analyze expression (26) for rela- 
tively strong fluctuation fields, when T;'>>w, at q sl-'. 
If at the same time Eo << (E), then 

It follows from (27) that o(0)a T . If we use the esti- 
mate (E) - N ~ " T ' ~ ,  then ~ ( O ) C C N ' ~ ~ T - ' ~  (in the case of 
scattering by impurities i t  is necessary to replace 
Iv,~'/w, in (27) by n,(u, l a / 2 ~ ,  and then u(O)a: T-'9. 
Thus, although the scattering is quasi-single-electron 
in character, the conductivity varies very slowly with 
the electron concentration. 

In the case of a strong drawing field, when C E ~ H  
>>(I A.1) (but 7;' >>w,), expression (26) is transformed 
into 

i.e., j ,  decreases like Eia. The maximum value of j ,  in 
the field region (e&,(l<<o, is  reached at le0Ed la-(\&I) 
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and amounts to -o(0)/eo B,. It is seen from (26) that the 
decrease of the field j , a~ , ' ~  in strong fields E, takes 
place at arbitrary ril/w,. We note that in the field re- 
gion e&,l-w, the current increases sharply." 

An N-shaped current-voltage characteristic of two- 
dimensional electrons in quantizing magnetic fields in 
the absence of heating was first obtained in Ref. 7. A 
calculation based on a phenomenological introduction of 
the electron lifetime y" yielded in Ref. 7 an expression 
for the conductivity o(0) an expression similar to (27), 
in which 7, must be replaced by y". If collective oscil- 
lations take place in the electron system, then y can be 
estimated as being the limiting oscillation frequency. 
For the two-dimensional Wigner crystal model it 
amounts to - e: 1 2 / ~ 3  (the high frequency oscillations in 
the crystals with frequency zw, are not excited in the 
crystal in the case of slow motion). From the condition 
that the electric field be homogeneous over the magnetic 
length at T>>e;l2/R3 it follows that T ; ' > > ~ ~ , Z ~ / R ~  and 
consequently 7, << y", i.e., although the expressions for 
o(0) are outwardly similar, Eq. (27) differs greatly from 
the result of Ref. 7. The general and quite clear ex- 
pression (26) for the current, when applied to the case 
considered in Ref. 7, that of scattering by impurities, 
differs from the results of Ref. 7. In particular, in Ref. 
7 we have j , aEi l  in strong fields. 

The current voltage characteristic can be of interest- 
ing form if the interaction between the electrons i s  weak 
and Cerenkov scattering inthe absence of adrawingfield 
E,isforbidden, c(~)/H<w,/q. Theninweakfields E ,  
the conductivity appears only when account i s  taken of 
fourth order terms in V ,  (in the case of weak coupling 
with the phonons), and is small.' At E,-HwJqc the cur- 
rent increases strongly because of the appearance of 
the new scattering mechanism (26), and then decreases 
with increasing E, (like E ; ~  in strong fields). 

The form of the current-voltage characteristic can 
change noticeably when allowance i s  made for heating, 
but in strong fields the heating i s  obviously slow. The 
calculation of j, with heating taken into account will be 
carried out separately. 

4. DISCUSSION OF RESULTS 

The foregoing analysis of the influence of the interac- 
tion between the electrons on the electron-phonon scat- 
tering i s  not connected with the model of the electron 
system, and i s  apparently valid for a Wigner single 
crystal or polycrystal, as well as  for an electron liquid. 
It is  merely required that the distance between carriers 
be large, R >> I, that the temperature not be too low, so 
as to satisfy the inequality (lo), and that the fluctuation 
field be homogeneous over the length 1. The interaction 
with the phonons and with the impurities is assumed to 
be weak, so that Pr, <<l, i.e., the impact collision time 
7, is  short compared with the reciprocal collision fre- 
quency r-', and that there be no formation of strongly 
bound polarons or capture by impurities (if the interac- 
tion with the phonons, for example, turns out to be 
stronger than the electron-electron interaction, i.e., 
the half-width of the CR peak calculated neglecting the 
electron-electron interaction is much larger than r;', 

then the single-electron approximation i s  

In the model with ordering we obtain from the condi- 
tion (10) 

This inequality imposes a lower bound on the magnetic 
field. The upper bound i s  imposed by the Cerenkov 
radiation condition 

It is  of greatest interest to estimate the concentrations 
and the magnetic fields, using Eqs. (29) and (30), for 
two-dimensional electrons localized over the surface of 
liquid helium and interacting with the surface oscilla- 
tions (ripplons).' The phase velocity of the ripplons is 
small: w,/q ~ 1 . 6 . 1 @  cm/sec in the interval of q from 
20 to 10' cm-'. At T= 1 K and N = 10' ~ m ' ~  we get from 
(30) H<2.105 Oe. The lower bound (29) of the magnetic 
field is  quite lax: it yields H >> 10 0e. Much more re- 
strictive are the conditions upe>> 1 and W, >>r. In addi- 
tion, a more stringent upper bound than (30) may be the 
inequality rr, <<I. The condition e x p ( w d ~ )  >> 1 used 
above in the calculation i s  of no significance for the 
assessment of the role of the considered relaxation 
mechanism. 

All the results can be directly generalized to include 
the case of interaction with volume phonons. The cor- 
responding contribution to r and P for electrons local- 
ized over liquid helium turns out to be small, since the 
phase velocity of the volume phonons i s  large. The in- 
teraction with these phonons can, however, be very 
substantial for the energy relaxation of the electrons 
under CR conditions in heating fields: it induces tran- 
sitions between the Landau on which the elec- 
tron-electron interaction has little effect at w,r,>>l. 

Explicit expressions for the width and shift of the CR 
peak and for the magnetic conductivity of the electrons 
over liquid helium take the simplest form in the impor- 
tant case r;'>>w,, when the inelasticity of the scatter- 
ing by the ripplons can be neglected. This case i s  of 
interest from the experimental point of view. In Ref. 9, 
for example, T=0.4 K, wc=1.13.10" sec"  and^-10' 
~ m ' ~ .  In this case w,s108 sec-', and if the fluctuation 
field is estimated from (29), then ~ ~ - 1 0 - l ~  sec. If we 
use the electron-ripplon interaction model8 and assume 
the helium film to be thick compared with 1 (1 =3 lo-' 
cm in Ref. 9), then 

where CY is the surface tension of the helium, p is its 
density, andE, i s  the field that clamps the electrons to 
the surface. Substituting (31) in (27), (14), and (8) we 
get 

If no account is  taken of the electron-electron interac- 
tion, the shift calculated by the method of moments i s  
larger than in (32) (by an approximate factor of 3 under 
the conditions of Ref. 9). The characteristic half-width 
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of the peak is determined in this case by the expression 
f-(r~; ') ' /~mE,. Since f >>l? and they have different de- 
pendences on the clamping field E, as well as on the 
magnetic field ( r m ~ ' ' ~ ) ,  it becomes possible to verify 
in experiment the extent to which the interelectron in- 
teraction influences the relaxation (it is  necessary, 
however, to take into account the possible "softening" 
of the ripplon spectrum by the electron-ripplon interac- 
ti~n'. '~). Another experimental check on the considered 
mechanism of the CR peak broadening might be the mea- 
surement of the dependence of the width of the peak on 
the value of the static (or quasistatic fieldEd. Such a 
field produces an additional transverse drift, the total 
drift velocity increases, and in the expression for T, it 
is necessary to replace the average fluctuation field 
(E-') by (lE+E,I-'), i.e., T, decreases and the half-width 
of the CR peak should decrease. 

The authors are deeply grateful to M. A. Krivoglax for 
a discussion of the work. 

APPENDIX 

The Heisenberg equations of motion for the coordin- 
ates and momenta of the electrons in the absence of in- 
teraction with the phonons are of the form 

2';. 
tan = mlpa., ja,=iao,pa,+ le' $ (rI,,:;~:t,n)s!: , a=*l, 

ra,,=xn-iay", r,,,,m=ra,,-raw2, (A. 1) 

Lr,,, pe,]=i6,m(l-6,e)l~2'~z. 

The prime on the summation sign denotes exclusion of 
terms with m =?a. 

In the case of large distances between particles, R>> 1 
and strong magnetic fields w,y,, ye =$ E'/R', the sys- 
tem of nonlinear equations (A.l) is best solved in the 
region of long times t -y;hw;l with the aid of the known 
averaging method of nonlinear mechanics.lg We seek 
the solution in the form 

I l I p " l - ,  I I " ,  v=O, * I , .  . . . 

The system of equations for phi) and rL: can be obtained 
by substituting the expansion (A.2) in (A.1) and equating 
term by term the terms of like powers of exp(io,t). It 
is  clear from qualitative considerations (which are con- 
firmed by Eq. (A.3)) that y::-1 at v+O. We can there- 
fore expand r ,,, in (A. 1) in powers of r ',",,'m/r Lo!, and 
confine ourselves in the right-hand side of the second 
equation in (A.l) to the first nonvanishing terms of the 
expansion. As a result, the system (A.l) takes the form 

R , R.=,m=Ren-Ran. 
r,,, ( t )  =Ran ( t )  -ia12"Pa, ( t )  exp { ia@J) ,  

pan ( t )  =pa,, ( t )  exp (iao,t) ( 0 .  r.ao.. 

The momentum components (and the corresponding co- 
ordinates) not written out in (A.3) are p6;~)-(y,/w,)~,,, 
while the components p ',", contain at 1 v (22 even higher 
powers of the small parameter Z/R. Neglecting them, 
we obtain from the commutation condition of the opera- 
tors p,, and r ,,, taking (A.3) into account, the commu- 
tation conditions for the operators p',: and r',:: 

[P-m(t ) ,  Pm(t)  1=6.,, [P , , ( t ) ,  R,rm(t) ] = O ,  

[r_(Z',r:: ]=2126,,m, [ ~ ~ ~ ' , R . ~ , ] = o ,  [R- , , ( t ) ,  R,,(t) ]=-2126,,. - 
(A.4) 

The smooth motion described by the operators Ran(+) 
corresponds to the transverse drift of the center of the 
cyclotron orbit in the fluctuation electric field 

e a E ( R , ) = - ~ - Y  IR,-R,.l-', 
2 OR+, 

R,= ( X , ,  Y , , ) ,  R,,=X,-iay,, (A.5) 
where Xn and Y,, are the coordinates of the center of the 
orbit. 

We note that the drift of the center can be described as 
one-dimensional motion by introducing the canonically 
conjugate momenta 9, and coordinates 5, of certain one- 
dimensional particles with the aid of the relations 

= I  En=[-'Y,, [n., E.1 =-i, 

eol & =-C [ (n,-,z,,)a+(En-Em)z]-p 
21 

(A. 6) 

Here $ is  the effective Hamiltonian of these particles, 
and the Hamilton equations for rn and [,, which are ob- 
tained from (A.6), coincide with Eqs. (A.3). 

It i s  obvious that all the foregoing calculations can be 
directly applied to the case of a more general interac- 
tion of two-dimensional electrons, with image forces 
taken into account (see, e.g., Ref. 14). 

l ) ~ e  terms off-diagonal in the electron number are  small a t  1 
<<R and a r e  not taken into account, i. e., the scattering has, 
a s  it were, a single-particle character. However, the pos- 
sibility of scattering is itself due to the interelectron interac- 
tion, which leads to a drift of the centers of the cyclotron or- 
bits. 
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